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V Plzni dne 16. května 2013
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Abstrakt

Bakterie Escherichia coli si vyvinula pozoruhodný autoregulačńı mechanis-
mus, který reguluje proces jej́ıho děleńı. Min systém je systém tř́ı pro-
tein̊u, které v tomto procesu hraj́ı stěžejńı roli. Vzájemnou spolupraćı tyto
proteiny ovlivňuj́ı správnou volbu mı́sta děleńı a vylouč́ı tak nesymetrické
rozděleńı buňky t́ım, že donut́ı buňku rozdělit se př́ımo uprostřed. Byl
navržen jednoduchý deterministický model dynamického chováńı Min sys-
tému a porovnán s výsledky experiment̊u in vivo. Správné pochopeńı skutečného
chováńı tohoto systému je stěžejńı pro budoućı užit́ı jeho princip̊u v buněčné
regulaci.

Kĺıčová slova: matematické modelováńı, shluková analýza, regulace, buněčné
děleńı, E. coli, Min systém

Abstract

Escherichia coli bacterium developed a remarkable self-regulatory mechanism
that regulates the process of its division. Min system is a system of three
proteins that play the main part in this process. These proteins together
effect the placement of division septum and prevent formation of unequal
daughter cells by directing it to the centre of the cell. A simple deterministic
model of the Min system dynamics was developed and validated with in vivo
experiments. Understanding the system’s dynamics is crucial for further use
of its principles for regulation in cells.

Keywords: mathematical modelling, cluster analysis, regulation, cell divi-
sion, E. coli, Min system
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1 Introduction

Synthetic biology is a quite new and quickly spreading field bringing together
biologists, chemists and engineers for the common purpose of creating func-
tional organisms. Synthetic biological systems are mainly implemented at the
DNA level, which houses the cellular program that instructs the organisms
operations. Thanks to new technologies, changing present or even creating
new DNA sequences has became a routine.

Common engineered systems are made up of electromechanical parts, e.g.,
robots, machines etc. Systems in synthetic biology are made up of various
molecular species interconnected through complex interaction networks, e.g.,
protein interaction networks, transcriptional networks, etc. While the under-
lying technology is different, biological organisms (synthetic or wild types)
implement many of the same systems design principles (e.g., to design sig-
nal transduction and feedback mechanisms). Hence, knowledge of systems
theory is important towards designing new functional biological behaviours.

In this work, a system comprising a protein interaction network is pre-
sented. A mathematical model of its dynamical behaviour is introduced and
further analysed. This model is the first step in understanding the systems
regulatory principles and harnessing them for other functions.
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2 Biological background

2.1 Cell division

Cell division is a process in which a parent cell divides into two daughter cells
with the same genetic material. Cell division is also a way of reproduction
of unicellular organisms such as bacteria and yeast. Binary fission is the
simplest type of cell division. It is a form of asexual reproduction typical
for prokaryotes. The whole process of division includes three steps: DNA
replication, chromosome segregation and cytokinesis.

Figure 2.1: During the binary fission, a cell duplicates its genetic
information (chromosome) and divides it between two newly-formed
daughter cells. Proteins are mainly separated at random. Source:
http://simple.wikipedia.org/wiki/Binary fission
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Biological background Cell division

2.1.1 Binary fission

• DNA replication: In this process, a copy of parent DNA is made.
The double helix structure of DNA is unwound and each of the two
strands serves as a templet for synthesis of the new complemental
strand. The result is two double helix-shaped DNA molecules (chromo-
somes) which are identical and so the genetic information is preserved.

• Segregation: The two chromosomes are separated into the opposite
cell halves so that the cell could, ideally, start dividing between them
and so each daughter cell obtains one chromosome.

• Cytokinesis: Cytokinesis is a complex process driven by the whole
mechanism of proteins and genes. It starts with the selection of a
division site which is determined by formation of Z ring. Z ring is a
ring-shaped assembly of FtsZ proteins on the cell membrane, it starts
getting smaller and smaller and forms a septum that divides the cell
by constricting the cell membrane.

Figure 2.2: FtsZ ring is formed on the cell membrane at the centre of the cell
and division is initiated. The constriction of Z ring divides the cell in two.
Placement of the FtsZ ring is guided by the Min system. Source: [1]

2.1.2 Septum placement

Division placement is the key part that effects whether the cell divides equally
or not. Precise division is important for the viability of daughter cells because
unequal division may lead to minicelling, production of daughter cells through
asymmetric septum placement generating wrong chromosome copy numbers
and leading to the inability to replicate. To avoid minicelling the cell must
divide at it’s center between the two segregated chromosomes. How a cell
directs the division right to the center of its long axis is a task for a system
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Biological background The Min system in E. coli

of proteins called the Min system and investigating it is the main purpose of
this paper.

2.2 The Min system in E. coli

E. coli has developed a self-regulatory system that ensures equal division by
situating septum at the centre of the cell. The system consists of three pro-
teins: MinE, MinD, and MinC, which cooperate all together and coordinate
the FtsZ assembly and further equilibration of Min proteins in both halves
of the dividing cell.

2.2.1 The Min system components

MinD is located in the cytoplasm in both the phosphorylated (MinD-ATP)
and dephosphorylated (MinD-ADP) forms. It binds to the cell membrane at
the cell poles, but only in the phosphorylated form. MinD proteins bound to
the membrane and create a layer that has a shape of a test tube at the pole.

MinE proteins bind to the membrane bound MinDs and form MinDE
complex. Once MinE is bound, MinDE complex dissociates from the mem-
brane and MinD-ADP and MinE is released to cytoplasm where MinD-ADP
is phosphorylated again. MinE proteins binding to MinDs on the edge of the
MinD tube form ring-like structure that moves towards the cell pole releasing
MinDs on the way. The released MinDs diffuse towards the opposite cell pole
and again bind to the membrane. The whole process then repeats generating
a spatial-temporal oscillation pattern alternating between the cell poles.

MinC is not really required for the oscillation to appear [2], it just binds
to MinD and oscillates with it. But this protein actually is the one which
affects Z ring formation and thus the location of the division site.
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Biological background The Min system in E. coli

Figure 2.3: MinD proteins bind repetitively at the opposite cell poles followed
by MinE and MinC proteins. This oscillating behaviour of Min proteins along
the cell’s long axis is required for equal division. Source: [3]

2.2.2 The effect on division placement

The role of MinC is that it inhibits assembly of FtsZ and so the formation
of the Z ring. MinC concentrates at the cell poles because of its binding to
MinD. This means MinC is only present at the poles and is absent in the
centre, where FtsZ can assemble. This fact directs the division site right to
the centre of the cell and prevents potential division sites at the poles.

2.2.3 Spatial-temporal behaviour

The Min system shows periodic oscillations in non-dividing cells but the pe-
riodicity is corrupted once the cell starts to divide. In dividing cell, the shape
of the narrow membrane region near the septum resembles the pole regions
and is also a new location where MinD proteins begin to aggregate. Irregu-
lar oscillation with mid-cell pausing ensue. In certain stage of constriction,
the oscillations split and independent oscillations appear in both halves of
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Biological background The Min system in E. coli

nearly divided cell. In this phase, levels of Min proteins on both sides of the
constricting septum equilibrate. The result is that both daughters obtain an
equal amount of Min proteins and the oscillations persist [4], [5].

This is an example of developed self-regulation which prevents possibil-
ity of one daughter cell obtaining an insufficient amount of Min proteins
disrupting their ability to oscillate from end-to-end.

Figure 2.4: The oscillating pattern changes through the phases of the cell
cycle. Source: [5]
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2.3 Experimental systems

For the purpose of this work, for investigating Min system in vivo, genetically
modified E. coli strain WM12641 was used. It is a strain with a chromoso-
maly integrated lac operator driving expression of GFP-MinD + MinE (GFP
corresponds with green fluorescent protein).

2.3.1 Green fluorescent protein

GFP is a protein that fluoresces green when illuminated by blue light. It is
often used for protein visualization. Fluorescent proteins fused to proteins
of interest enable measuring relative amount of these proteins by measuring
the fluorescence intensity.

The bacterial chromosome of WM1264 strain has been modified for the
purpose of observing Min proteins through GFP fluorescence. The cell syn-
thesizes MinD proteins fused to GFPs allowing the motion of MinD to be
monitored.

2.3.2 The lac operon and IPTG induction

The amount of MinD can not only be monitored but also changed. Common
way of changing protein levels in synthetic biology is to use lac operator.
The lac operator is a gene sequence taken from the lac operon (a collection
of native bacterial genes), where it plays a key role in controlling E. coli’s
lactose metabolism. When lactose is absent there is no need to produce the
enzyme that lyses lactose so the transcription of the lac operon is inhibited
by a regulatory protein binding to the lac operator. In presence of lactose,
the regulatory protein is released and transcription is reactivated.

This mechanism can be influenced using IPTG (isopropyl β-D-1-thiogalacto-
pyranoside), a small molecule that mimics lactose and activates transcription
repressed using lac operator. Adding IPTG to a cell culture can be used
to turn on expression of any protein of interest. In the WM1264 chromo-
some, the expression of GFP-MinD and MinE is controlled by the lac oper-

1obtained thanks to kind cooperation of prof. William Margolin, Ph.D., Department
of Microbiology & Molecular Genetics, University of Texas-Houston Medical School
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ator. Thereby, the concentration of GFP-MinD (and MinE) increases with
increased concentrations of IPTG in the nutritional medium.

2.3.3 Fluorescence microscopy

Thanks to its fusion with GFP, monitoring of MinD proteins in cells is pos-
sible using fluorescence microscopy. According to known molecular excita-
tion and emission parameters, specific filters are appended to standard light
microscopes and used for illuminating and later observing the motion and
concentrations of the fluorescent proteins. When illuminated with blue light,
GFP radiates green light.

Photobleaching

Repeated illumination of the fluorescent proteins leads to a photobleaching
effect that must be considered when interpreting the results. Photobleaching
is the degradation of fluorescent proteins after the light exposure decreasing
the fluorescence intensity for a fixed protein concentration.

2.3.4 Time-lapse microscopy

It is used mostly for long-term live cell imaging. Through repeated image
capture at equidistant time intervals system dynamic behavior is visualized
and quantified. Various techniques must be used to optimize the exposure
time to minimize photobleaching and to extend the effective time duration.

In observing MinD oscillations, the sampling frequency must be suffi-
ciently high relative to the oscillation period limiting the overall visualization
period.
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3 Theory

3.1 Biological models

For creating a model of Min system’s behaviour, both biological and mathe-
matical theory must be combined. Precise description of the biological system
is essential and a mathematical model depends on it directly.

Min system can be described by chemical reactions in which six species
are considered:
dp................phosphorylated MinD-ATP
d.................dephosphorylated MinD-ADP
dm...............MinD bound to the cell membrane
de................MinDE complex
e..................MinE
m.................cell membrane

The basics of Min system’s behaviour is described by following reactions
frequently described in the literature [6].

Cytoplasmic MinD-ATP binds to the cell membrane:

dp +m
km−→ dm

Cytoplasmic MinE binds to membrane-bound MinD and creates MinDE com-
plex:

dm + e
ke−→ de

MinDE complex dissociates and releases MinE and MinD-ADP into cyto-
plasm:

de
kr−→ d+m+ e

MinD-ADP is in cytoplasm again phosphorylated:

d
kp−→ dp

9



Theory Mathematical models

Figure 3.1: The cycle of reactions of Min system consists of MinD-ATP
binding to the membrane (1), formation of MinDE comlplex (2) and its
dissociation (3), and repeated phosphorylation od MinD-ADP (4). Source: [6]

3.2 Mathematical models

3.2.1 Notation

Vectors are denoted by lower case and matrices by capital letters, both in
parenthesis. Sets are in curly braces, ranges and closed intervals in square
brackets, open intervals in parenthesis. Rn denotes n-dimensional set of real
numbers.

3.2.2 Mass action kinetics

The mathematical model was constructed from the chemical processes that
actually take place in the cell. Chemical reactions can be transformed into a
mathematical model using the Law of mass action.

Mass action kinetics are used to describe dynamic behaviour of reaction
networks. Systems of differential equations describe how the concentrations
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of reaction species change with time. The basic rule for applying the mass
action law is as follows:

With reaction
A+B

k−→ C (3.1)

correspond ordinary differential equations, that represent changes in concen-
tration of A, B and C in time:

dC

dt
= kAB

dA

dt
=
dB

dt
= −kC,

where k is reaction rate. The resulting solutions always remain nonnegative
and obey mass conservation laws.

3.2.3 Mathematical model of Min system

Application of the mass action kinetics gives a mathematical model for the
Min system:

ḋp = kpd− kmdpm
˙dm = kmdpm− kedme
ḋe = kedme− krde
ḋ = krde − kpd
ṁ = krde − kmdpm
ė = krde − kedme

If the total concentrations associated with the complexes of the different
species are considered, the mass conservation law can be applied to reduce
the number of equations.

Assuming dT , eT ,mT are total concentrations of MinD, MinE, and places
on membrane respectively, the conservation laws are the following:

dT = d+ dm + de + dp

mT = m+ dm + de

eT = e+ de

11
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Choosing the states to be d,m, e, the other variables dp, dm, and de can be
eliminated using the following relations: dp

dm
de

 =

 1 −1 0
0 1 −1
0 0 1

 ·
 dT − d

mT −m
eT − e


A system of only three nonlinear equations is obtained, with the state vector
x = (d,m, e) and the parameter vector p = (kp, km, kr, ke, eT , dT ,mT ):

ẋ = f(x) : (3.2)

ḋ = kr(eT − e)− kpd
ṁ = kr(eT − e)− kmm(dT − d+m−mT )

ė = kr(eT − e)− kee(mT −m+ e− eT )

3.2.4 Nonlinear system analysis

This model comprises a single compartment based on the previous description
of the Min protein interactions. It is expected that the concentrations of reac-
tion species will change periodically with time. The binding and unbinding of
Min proteins from membrane results in periodical filling and vacating of the
membrane spaces. Not all parameter combinations, however, generate such
cyclical behaviour. Parameter values, i.e., the reaction rates kp, km, kr, ke and
total concentrations dT ,mT , eT , for which the equation 3.2 has an oscillating
solution need to be found.

The described behaviour can be achieved by finding a system with a stable
limit cycle [7]:

Definition 1. Limit cycle is an isolated periodic orbit in the phase space
manifested by periodic oscillations in time. Limit cycle with property that all
trajectories in the vicinity of the limit cycle ultimately tend toward the limit
cycle as t→∞ is classically known as stable limit cycle.
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Figure 3.2: All the system trajectories tend towards stable limit cycle.
Source: http://en.wikipedia.org/wiki/File:VanDerPolPhaseSpace.png

Such system can be found simply by using the sufficient condition for exis-
tence of a stable limit cycle:

Lemma 1. (Poincaré-Bendixson Criterion) Consider second-order au-
tonomous system ẋ = f(x) and let M be a closed bounded subset of the plane
such that

• M contains no equilibrium points

• Every trajectory starting in M stays in M for all future time.

Then, M contains a periodic orbit of the system.

Note, the theorem also applies for regions M that contain unstable and
isolated equilibrium points. Simply a sufficiently small ball is drawn around
each equilibrium point and the interior region is removed from M . For higher
order systems, greater than 2, the theorem does not apply due to possible
chaotic-like behaviours. Below, we apply the criterion to a third order system
assuming that such behaviours do not occur.

First step thus is to find all the system’s equilibria for some parameter
vector p. Letting

ẋ = 0

13



Theory Parameter space analysis

this requires solving a system of three nonlinear algebraic equations:

kr(eT − e)− kpd = 0

kr(eT − e)− kmm(dT − d+m−mT ) = 0

kr(eT − e)− kee(mT −m+ e− eT ) = 0

The process of solving this problem is described in Section 4.2.1.

Stability of the equilibria is determined through linearisation. The non-
linear function f(x) is linearised about the equilibrium xe giving the following
linearised system’s approximation:

ẋ = f(x) ≈ Ax, where A =
∂f

∂x

∣∣∣∣
x=xe

A is called the Jacobian matrix.

The equilibrium xe is unstable if Re{λi} > 0 for at least one eigenvalue
{λi} of A [7].

Parameter values for which all nonnegative equilibria are unstable are
deemed admissible and retained for further analysis.

3.3 Parameter space analysis

In finding possible system representations, both the physical system prop-
erties and the admissible parameter clustering are considered. The areas of
the parameter space where the system more robustly satisfies the conditions
described in Section 3.2.4 are more likely to include the actual parameter
values. If the seven parameters represent a point in a R7 space, this would
appear as an area with higher density of admissible points.

Problem of analysing a huge amount of data is called data mining. Data
mining is the computational process of discovering patterns in large data sets
often involving methods at the intersection of artificial intelligence, statistics,
and database systems. The overall goal of the data mining process is to
extract information from a data set and transform it into an understandable
structure for further use [8].

One type of data mining is clustering, or cluster analysis, which is the
task of grouping a set of objects in such a way that objects in the same group

14
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(called cluster) are more similar (in some sense or another) to each other than
to those in other groups (clusters) [8]. There are many clustering methods
which corresponds to various notions of a cluster. Further, clustering on the
basis of distances is introduced.

When representing these object by points in Rn, cluster is a group of
points that are close to each other, closer than to other points in the data
set. Clustering algorithm goes point by point through the data set and
computes the relative distances to other points in the set. Sufficiently close
points are called neighbours. On the basis of distances the data are divided
into clusters, some point also may not belong to any of them. Each point
should belong to one cluster only. A cluster thus represents data with some
common attributes that are specific for each cluster.

Generally, clustering methods can be divided into two classes:

• Methods for predetermined number of groups

• Methods without predetermined number of groups

The clusters are identified with the areas of parameter space described at
the beginning of this section. The goal is to find at least one cluster of
points among the earlier generated data that will represent a system with
robust oscillating behaviour. It is not known whether such a cluster exists
or what is the maximum number of clusters. It means some method without
predetermined number of clusters should be used for this purpose.

3.4 Experimental validation

Validation of the model base in investigating the behaviour of MinD oscilla-
tions from these three aspects:

• Period

• Magnitude

• Shape

15
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Investigating the period of oscillation should reveal in which circumstances
the process of binding and unbinding of MinD to membrane accelerates or
decelerates, whether its very high or low concentration can cause lost of the
ability to oscillate between the cell poles. Varying magnitude indicates
that the relative amount of MinD proteins that actually bind the membrane
is also dependent on its concentration in cell. Finally, the actual shape of
the oscillation testifies about the character of binding and unbinding of the
membrane. It shows whether all the proteins quickly bind first, and then
more slowly dissociate into cytoplasm or vice versa.

While using the bacterial strain WM1264 for the experiments, it is not
possible to influence transcription of MinD and MinE independently. As a
result, the model can only be validated with respect to equal changes in the
concentrations of MinD and MinE.

Experiments with cell cultures of four different IPTG inductions are per-
formed (the mechanism of induction is described in Section 2.3.2). As many
fluorescent pictures as possible are taken during time-lapse observations, but
the number of pictures suitable for further analysis is limited by photobleach-
ing. At least 20-30 cells from each induced culture should be analysed to
obtain statistically significant data sets.

Using special software, the fluorescent images are analysed. Fluorescence
intensity is measured for both cell halves and also for the bacteria as a unit.

16



4 Results

The basis is to randomly generate vectors of parameters and then decide
whether the system with these specific parameters shows oscillations. First,
the ranges for each of the parameters values was established. Values that
had been already published in articles that present a deterministic model of
Min system [5] were followed . The published values for the reaction rates
are the following:

kp = 0.5 s−1

km = 0.0125 mm s−1

ke = 5.56 · 107 M−1 mm s−1

kr = 0.7 s−1

If these are converted into concentrations of molecules per a cell volume, the
values approximately belong into the following intervals:

kp, km, ke, kr ∈ (0, 10)

dT ,mT , eT ∈ (0, 100)

All the following procedures build on parameters generated in these ranges.

4.1 Biological and mathematical modelling

After generating the first set of random parameter values, none of them
complied with system with a stable limit cycle. The system exhibited only
stable equilibria. An example of the time response is shown in Figure 4.1.

17



Results Biological and mathematical modelling

Figure 4.1: The time response of the simple Min model showing the species’
concentrations settling to the stable equilibrium.

It was clear that the four basic reactions do not describe the system com-
pletely. Hence, it was necessary to include some extra reactions that may
take place in the cell and give rise to the oscillations. The model was further
modified with respect to real Min system’s behaviour.

4.1.1 Modified biochemical network

First, the fact of cooperative binding was included. It means an increased
affinity of MinD molecules to bind to membrane when some MinDs are al-
ready bound there. This effect of cooperative binding is mentioned in litera-
ture [9]. The principal is seen in Figure 4.2 A.

dp +m+ 3dm
km−→ 4dm

Second, the possibility of MinE proteins ”hopping” from a state of MinDE
complex right to another membrane-bound MinD which releases MinD-ADP

18



Results Parameter classification

and unblocks a place on membrane (Figure 4.2 B) was considered. It might
happen during the movement of MinE ring towards the pole, as illustrates
Figure 2.3, and is also discussed in recent in vitro studies of the Min system
[10].

de + dm
kr−→ de + d+m

Figure 4.2: Schematic of two added reactions.

4.1.2 Corresponding mass action model

No extra species were added, so the number of variables in the system persists.
The new differential equations describing the evolution of d and m are as
follows:

ḋ = krde − kpd+ krdedm

ṁ = krde − kmdpm(1 + d3m) + krdedm

ė = krde − kedme

All the following procedures build on this model.

4.2 Parameter classification

A challenging task was to generate a sufficiently extensive data set of admis-
sible parameter values. In evaluating each parameter value, for a randomly
given p, the first step was to compute the system’s equilibria.

19
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4.2.1 Equilibria

Procedure of evaluating the system’s equilibria needs to be as quick as pos-
sible due to the large amount of parameter values that need to be examined
(108). The Symbolic Toolbox was used to transform the three algebraic equa-
tions into a single polynomial equation for e. The roots of the resulting 7th
order polynomial could be easily and efficiently computed and transformed
using MATLAB.

Real, negative, and complex roots were commonly encountered. Since the
examined equations represent physical system, only nonnegative equilibria
are permissible and nonnegativity is required not only for the state vector
(d, m, e) but also for the other species dp, dm and de. All these conditions
reduced the 7 equilibria to at most one real positive equilibrium for every
random parameter vector. In some cases, no real positive equilibrium was
found. While this is in general permissible, after further investigation, the
absence of a real positive equilibrium was attributed to numerical error where
repeated positive roots included a small imaginary part (� 1). In all such
cases, these equilibria were found to be stable and, hence, the associated
parameter values were deemed inadmissible.

4.2.2 Eigenvalues

The case of multiple real positive equilibria did not occur so the existence
of stable limit cycle for a specific parameter value depended on the stability
of the only real positive equilibrium found. Using the linearisation method
described in 3.2.4 showed that 2% of the randomly generated parameter
values correspond to a stable limit cycle. These can be further separated in
two classes based on the Jacobian eigenvalues:

• Class 1 (5%): 2 real positive + 1 real negative eigenvalue

• Class 2 (95%): 2 complex with positive real parts + 1 real negative
eigenvalue

Dependence between the eigenvalues and the oscillation characteristics was
explored. Intuition suggests that eigenvalues with a greater real part λmax

correspond to a more unstable system leading to greater oscillation mag-
nitudes. After analysing several sample values, however, the data showed
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Results Parameter classification

no such dependence. In addition to λmax, other eigenvalue functions were
explored:

•

vD =

 1
0
0

T [
v1 v2

] [ λ1
λ2

]
,

where λ1 and λ2 are real positive eigenvalues and v1 and v2 are corre-
sponding eigenvectors.

•

vDmax =

 1
0
0

T

vmaxλmax,

where λmax is the maximum eigenvalue and vmax is corresponding eigen-
vector.

No dependence was found between the oscillation period or magnitude and
any of the above eigenvalue functions.

One thing that this analysis did reveal was that the system with only
real eigenvalues shows significantly grater oscillations than the system with
complex eigenvalues.

Figure 4.3: Parameters that correspond with only real eigenvalues show sig-
nificantly grater oscillations (A). Figure B shows oscillation of filled mem-
brane.
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Figure 4.4: A typical example of oscillations for system with only complex
eigenvalues with a positive real part. Magnitudes are minimal.

According to these results it was decided to work further only with parame-
ters that represent systems with only real eigenvalues to ensure greater aver-
age oscillation amplitudes similar to those seen in the real system. This will
guarantee at least greater oscillations, on average.

4.3 Cluster analysis

For the purpose of defining clusters, a density-based method DBSCAN was
implemented in MATLAB.
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4.3.1 The DBSCAN method

DBSCAN defines separate areas with higher density than the rest of the data
set. The less dense points are considered as noise.

Figure 4.5: DBSCAN can find non-linearly separable clusters. Source:
http://en.wikipedia.org/wiki/File:DBSCAN-density-data.svg

The method has two parameters. First, the minimal distance between two
points at which these points are considered neighbours (eps). Second, the
minimal number of points (MinPts) that is necessary for starting a cluster
formation. It means each point in a cluster (except the border points) has at
least MinPts points in a radius of eps. The final number and size of clusters
depends on both parameters.
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Pseudocode

(Source: http://en.wikipedia.org/wiki/DBSCAN)

DBSCAN(D, eps, MinPts)

C = 0

for each unvisited point P in dataset D

mark P as visited

NeighborPts = regionQuery(P, eps)

if sizeof(NeighborPts) < MinPts

mark P as NOISE

else

C = next cluster

expandCluster(P, NeighborPts, C, eps, MinPts)

expandCluster(P, NeighborPts, C, eps, MinPts)

add P to cluster C

for each point P’ in NeighborPts

if P’ is not visited

mark P’ as visited

NeighborPts’ = regionQuery(P’, eps)

if sizeof(NeighborPts’) >= MinPts

NeighborPts = NeighborPts joined with NeighborPts’

if P’ is not yet member of any cluster

add P’ to cluster C

regionQuery(P, eps)

return all points within P’s eps-neighborhood

The algorithm of clustering is a significantly time and memory demanding
procedure. DBSCAN visits all points in dataset multiple times. In addition,
it needs to keep the set of neighbours, which is a dynamic array.

The data set had approximately 120,000 points, each a vector in R7.
Distances between two points p and q are given by the Euclidean distance

d(p, q) =

√√√√ 7∑
i=1

(qi − pi)2.

The algorithm is written to work with a distance matrix whose aij entry rep-
resents the distance between pi and pj. This requires memory O(n2), which

24



Results Cluster analysis

is excessive given n = 120, 000. As a result, distances had to be recomputed
for each point while visiting it, slowing down the algorithm significantly.

On the other hand, constant lengthening of neighbours array was avoided.
The algorithm was built on n× 3 array where each row stands for one point
of the dataset. The first column states whether this point was visited or not.
The second column states the cluster the point belongs to. The third column
states whether the point is in the set of neighbours right now. To each point
thus belongs a vector of information:

v = (v1, v2, v3), where

v1 =

{
1 visited
0 ¬visited

v2 = c, c = 1, ...r, where c is cluster ID

v3 =

{
1 P ∈ NeighborPts
0 P 6∈ NeighborPts

A simple testing data set in R2 (shown in Figure 4.6) was created for
debugging the DBSCAN algorithm.
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Figure 4.6: Visualization of the testing data set including 12 points which
form two clearly separable clusters.
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Figure 4.7: The result of DBSCAN algorithm ran with data shown in Figure
4.6. Two clusters shown in different colours are clearly separable and the
point [6, 4] is considered as noise. The corresponding parameters for the
algorithm are eps =

√
2 and MinPts = 3

4.3.2 Cluster visualization

The method of trial and error was used for finding the suitable values for eps
and MinPts. Some balance between these two parameters had to be found
so that the result is one significantly localized cluster and maybe few smaller
ones.

The parameters for DBSCAN that were considered most suitable are

eps = 3

MinPts = 15

27



Results Cluster analysis

Figure 4.8: Number and size of detected clusters can be quickly identified,
but some visualisation is rather difficult. Clusters in R7 are impossible to
imagine or visualize completely. Only R2 projections can be visualised. This
is a projection of identified clusters in eT and mT . Corresponding DBSCAN
parameters are eps = 3 and MinPts = 15. The largest cluster contains
20,389 points from data set of 120,256.

The largest cluster is taken to be the set of potential parameter values. This
cluster is further examined in the following section.

4.3.3 Cluster labelling

To better understand cluster compositions, the data points were labelled
according to corresponding system properties, e.g., the functions defined in
Section 4.2.2 (λmax, vD, vDmax).

28



Results Cluster analysis

Figure 4.9: Values corresponding to eigenvalue functions were assigned to the
points in the major cluster. In all three pictures, an area of most unstable
parameters is defined. The most convincing is probably picture C where the
points, labelled according to vDmax, are the most dense.

The cluster points already satisfy the desired system properties. In order to
better understand the changes in behaviour caused by changes in parameter
values, the resulting oscillations were further characterized for the points in
the cluster. For the purpose of obtaining representative amount of data, brute
force was used to further characterize clusters. A representation of points
was selected at random and simulated (approx. 10% of the cluster points).
The relative magnitude and period of oscillations in the time response was
subsequently numerically calculated. Monitoring the amount of actually filled
membrane is desired. It means, maxima and minima of dm+de were detected
and relative magnitude thus refers to the value:

mr =
mmax −mmin

1
2
(mmax +mmin)

,

where mmax and mmin stands for maximum and minimum of dm + de.

Results show that period T and magnitude mr of points in the cluster
belong to intervals:

T = [0.036, 0.85]

mr = [0.2, 1.6]

Labelling the whole cluster with either period or magnitude, however, showed
no interpretable result. The dependence on period was found only after more
specified investigation.

Dependence of period and magnitude on relation between total concen-
trations dT and eT , and dT and mT was also investigated. A point from the
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centre of the major cluster was selected. For variable dT and eT , respective
dT and mT , the other five parameters were fixed and new data set was gen-
erated and further clustered. For points of the major cluster found, periods
and magnitudes were again calculated.

The result of period dependence is shown in Figure 4.10 and 4.11 but no
dependence of magnitude was revealed. Magnitude of points in cluster for
varying dT and eT is rather constant and is 0.5, for varying dT and mT it is
in range from 0.04 to 0.6.

Figure 4.10: Visualisation of a cluster found for fixed parameters
kp, km, ke, kr,mT . From A is quite clear that period is proportional to MinE
and inversely proportional to MinD concentration. B just better demon-
strates that considering fixed MinD to MinE ratio, period increases with
increasing MinD concentration.
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Figure 4.11: Visualisation of a cluster found for fixed parameters
kp, km, ke, kr, eT . It is important to understand, that decreasing concentra-
tion of membrane places corresponds to increasing cell volume. Thus, the
figure shows that period is slower in larger cells, according to this figure.

4.4 Experimental validation

Approximately 30 cells were analysed for each IPTG induction. Following
table shows obtained results:

IPTG concentration [uM] Period [s] Magnitude [-]

50 29.9±3.6 1.2±0.16
100 29.8±3.3 1.1±0.13
150 29.9±4.3 1.2±0.11
200 26.6±3.6 1.3±0.14
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Figure 4.12: A shows measured values of oscillation period, B magnitudes.
Both dependences, thanks to quite big variance, could be interpretable either
as linear or inversely linear.

Figure 4.13: A Sequence of fluorescence images of a cell induced with 100uM
of IPTG. This sequence corresponds to B. Left/right membrane stands for
membrane range of left/right half of the cell. Effect of photobleaching is
obvious as mean value of fluorescence intensity decreases.
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Results Remaining issues

The model shows proportional relation between the oscillation period and
MinD concentration, assuming the fixed MinD to MinE ratio (see Figure
4.10). Experimental results, however, are not conclusive in this respect (see
Figure 4.12). Other two experimentally investigated parameters of oscil-
lation, magnitude and shape, both rather accord with the model. While
monitoring the oscillation of membrane bound MinDs, the relative magni-
tude extracted from microscopy images (mr

.
= 1.2) belongs to the interval

[0.2, 1.6]. Considering the cluster identified in Section 4.3.3 as a set of poten-
tial parameter values for the system, this interval defines ranges in which the
magnitude fluctuates. Also the experimentally measured shape of oscillation
indicates, that first MinD proteins relatively quickly fill the membrane and
then more slowly dissociate, which corresponds to behaviour of the model
(see Figure 4.3). When increasing, the wave is more steep.

4.5 Remaining issues

The model predicts the oscillation period varies inversely with the ratio of
MinD to MinE. The literature isn’t clear on how the ratio of MinD to MinE
concentrations influences the oscillation period. Some findings correspond to
the theoretical result of this work [3], more, however, claim the oscillation
period is proportional to MinD and inversely proportional to MinE concen-
trations [6], [9]. None of these opinions could be here either confirmed or
disproved by experiments. The problem of the dependence of oscillation pe-
riod on the ratio of MinD to MinE thus remains unsolved. Bacterial strain
used for the experiments can be further modified to allow independent vari-
ation of MinD and MinE to further validate the presented model.
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5 Discussion

Knowledge obtained by investigating the Min system behaviour can be fur-
ther applied to design cell division control mechanisms. By changing only the
protein concentrations, the oscillation period be varied during specific phases
of the cell cycle (see 2.2.3). This might, for example, influence time to next
division. As a result of high concentrations, the cell might be unable to start
the division process. This could work to delay or synchronize cell division.
Such a tool could be useful in studying cell cycle properties or developing
antibacterial therapies.

Also the the fact that Min proteins itself distribute between the daughter
cells equally could be used. Min proteins could serve as carriers for another
proteins whose expression is monitored. Their equal division would eliminate
noise that naturally arises from the division.

34



Bibliography

[1] Ganhui Lan, Charles W Wolgemuth, and Sean X Sun. Z-ring force
and cell shape during division in rod-like bacteria. Proceedings of
the National Academy of Sciences of the United States of America,
104(41):16110–5, October 2007.

[2] D M Raskin and P a de Boer. Rapid pole-to-pole oscillation of a protein
required for directing division to the middle of Escherichia coli. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 96(9):4971–6, April 1999.

[3] Joe Lutkenhaus. Min oscillation in bacteria. Advances in experimental
medicine and biology, 641:49–61, January 2008.

[4] Jennifer R Juarez and William Margolin. Changes in the Min oscillation
pattern before and after cell birth. Journal of bacteriology, 192(16):4134–
42, August 2010.

[5] Barbara Di Ventura and Victor Sourjik. Self-organized partitioning of
dynamically localized proteins in bacterial cell division. Molecular sys-
tems biology, 7(457):457, January 2011.

[6] Kerwyn Casey Huang, Yigal Meir, and Ned S Wingreen. Dynamic struc-
tures in Escherichia coli: spontaneous formation of MinE rings and MinD
polar zones. Proceedings of the National Academy of Sciences of the
United States of America, 100(22):12724–8, October 2003.

[7] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, third edit edition,
2002.

[8] V Sundaram. C OMPARATIVE S TUDY OF D ATA M INING A
LGORITHMS FOR. 4(2):173–178, 2012.

35



BIBLIOGRAPHY BIBLIOGRAPHY

[9] Filipe Tostevin and Martin Howard. A stochastic model of Min oscilla-
tions in Escherichia coli and Min protein segregation during cell division.
Physical biology, 3(1):1–12, March 2006.

[10] Martin Loose, Karsten Kruse, and Petra Schwille. Protein self-
organization: lessons from the min system. Annual review of biophysics,
40:315–36, January 2011.

36


