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ABSTRACT

Desktop virtual reality has traditionally been the dominant display technology for consumer-level 3D computer graphics. Re-
cently more sophisticated technologies such as stereoscopy and head-mounted displays have become more widely available.
However, most 3D software is still only designed to support desktop VR, and must be modified to both technically support these
displays and also to follow the best practises for their use. In this paper we evaluate modern 3D game/graphics engines and
identify the degree to which they accommodate output to different types of affordable VR displays. We show that stereoscopy
is widely supported, either natively or through existing adaptions. Other VR technologies such as head-mounted displays,
head-coupled perspective (and consequentially fish-tank VR) are rarely natively supported. However, we identify and describe
some methods, such as re-engineering, by which support for these display technologies can be added.

Keywords: virtual reality, graphics engine, head-coupled perspective, head-mounted display, stereoscopy

1 INTRODUCTION

A wide range of computer applications employ virtual
reality (VR) concepts, including the general consumer
applications that involve some sort of 3D virtual envi-
ronment. Common examples of such applications are
3D modelling, computer aided design (CAD), video
games, data visualisation, television and movies.

Recent commercial advances in consumer-level VR
have lead to certain types of VR technology becoming
cheap and of high enough quality to begin displacing
the entrenched traditional technologies. Some exam-
ples of new devices that employ these novel VR tech-
nologies include haptic input methods such as Nintendo
Wii Remote, Microsoft Kinect and Leap Motion Con-
troller; head-mounted displays such as the Sony Per-
sonal 3D Viewer and Oculus Rift; and stereoscopic tele-
vision sets, computer displays and projectors of which
there are too many to name.

While attention and interest towards these tech-
nologies is slowly growing, support for them by VR
applications is still limited. In the case of haptic
inputs this is understandable since implementing
natural user interfaces is a substantial departure from
mouse/keyboard/controller based input systems. On
the other hand, support for new VR display technolo-
gies is much less invasive and in some instances can
even be achieved with no modification to the original
software [10].
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This work presents an investigation into modern soft-
ware applications with the objective of determining
what types of new VR display (not input) technolo-
gies are supported by these applications. We specifi-
cally look at graphics engines: reusable software com-
ponents which handle output to VR displays and are
shared by many applications. This allows a large num-
ber of applications to be covered with only the need to
evaluate a few specific graphics engines. The following
research questions embodies the objective of this study.

How far do modern graphics engines support
consumer-level VR display technologies? How easily
can support be added where they do not?

In answering these questions, we also make the fol-
lowing contributions.

• To provide a resource useful for determining which
graphics engines are suitable for future application
development and research in virtual reality.

• To identify common practises, shortcuts and inter-
action methods in engine design that makes them, in
their current state, unsuitable for VR.

• To determine a general sense of how much attention
is being paid to VR issues in consumer graphics en-
gines.

In this paper we first give some background informa-
tion about graphics engines and VR display technolo-
gies in Section 2, and describe some related work in
Section 3. We then describe our methodology to evalu-
ating the graphics engines in Section 4 and discuss our
results in Section 5.

2 BACKGROUND
Graphics and Game Engines
A graphics engine is a reusable software component
designed to render a 3D virtual environment. Graph-
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ics engines can be distributed as standalone pieces of
software or as part of larger systems, notably, but not
limited to, game engines. This involves taking the cur-
rent state of the simulated environment as input and
rendering an image based on the lighting and shading
model of the simulation. Real-time graphics engines
are those that are capable of performing this process
quickly enough to appear seamless to a user (typically
around 30–60 rendered frames per second). real-time
engines allow the simulation to be interactive and re-
act to inputs from human users; a requirement of VR
systems. In order to achieve real-time speeds, graphics
engines normally delegate rendering to dedicated hard-
ware and use algorithms and models that favour fast
computation over physical accuracy.

VR Display Technologies

Virtual reality display technologies (also known as 3D
displays) are the VR technologies that specifically deal
with visually presenting a virtual environment to its
user. These are used in addition to other VR technolo-
gies such as input systems and audio output, as well
as the software that simulates the virtual environment.
Within the context of this research, we do not consider
the graphical rendering algorithms (such as raserising
polygons, lighting, shading and post-processing) to be
part of a VR display technology, but rather part of the
simulation logic. In this sense a VR display technology
is only the hardware and software that requests graphi-
cal views from the environment simulation and presents
them to the user.

Over time many different display technologies have
been developed to satisfy this role. Nearly all of these
operate on some variant of a camera metaphor; i.e. a
virtual pinhole camera exists in the environment and
regularly takes 2D snapshots which are then displayed
on a physical display surface (such as a computer moni-
tor). The components that make up such a display tech-
nology are the software that models the virtual camera,
the hardware that displays images taken by the virtual
camera, and the software interface that passes these im-
ages in the correct format to the display hardware.

There are several systems [4, 11] for classifying dif-
ferent VR display technologies based on different prop-
erties and generalisations. We utilise an alternative sys-
tem that is based on software implementation require-
ments. In this paper we focus on consumer-level VR
display technologies; specifically desktop VR, stere-
oscopy, head-coupled perspective and head-mounted
displays.

The display properties most important to this study
are how they are interfaced with from software, and
how the rendering pipeline must be adapted to correctly
reflect their perception model. What follows is a brief
description of each of these display technologies, the

(a) Desktop VR

(b) Stereoscopy

(c) Head-coupled perspective

(d) Head-mounted display
Figure 1: Depictions of differences between the VR dis-
play technologies in their simulation models and user’s
perception.

intent of which is to define the specific implementation
requirements we use for this study.

Desktop VR has been the dominant form of present-
ing 3D virtual environments to their users since the ad-
vent of computer graphics. Desktop VR operates on
a pinhole camera model, with a virtual camera con-
trolled entirely by the simulation and a display capable
of showing only a single image from this camera at a
time. As the simplest form of VR it avoids many is-
sues such as eye strain, increased computation cost and
poor image quality that have hampered the use of more
sophisticated technologies.

Because desktop VR is ubiquitously supported as the
default output mode of virtually every graphics engine
available today, we don’t discuss it any further in this
paper.
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Stereoscopy is an extension of the desktop VR
paradigm adapted for binocular vision. Stereoscopy
achieves this by rendering the scene twice, once for
each eye, then encoding and filtering the images in such
a way that each image is seen by only one of the users’
eyes. This filtering is most easily achieved through
special eye glasses, the lenses of which are designed
to selectively pass one of the two encodings produced
by the matching display. Current methods of encoding
are by colour spectrum, polarisation, temporally or
spatially. These encoding methods are frequently
categorised as passive, active or autostereoscopic. The
difference between passive and active encoding is de-
termined by whether or not the glasses are electrically
actively or not: passive encoding systems are therefore
colour and polarisation while the only active encoding
is temporal. Autostereoscopic displays are those that
do not require glasses because they encode spatially,
meaning that the physical distance between the eyes is
sufficient to filter the images.

Consumer stereoscopic displays interface with comput-
ers in the same way as desktop VR displays (via video
interfaces such as VGA or DVI). Since most of these in-
terfaces do not have special modes for stereoscopy, the
two stereo images are packed into a single image in a
format recognised by the display hardware. Such frame
packing formats include interlaced, above-below, side-
by-side, 2D+depth and interleaved.

Because these standarised interfaces are how the soft-
ware passes rendered images to the display hardware,
software applications are not required to know or adapt
to the encoding system of the display hardware. In-
stead, all that is required for stereoscopy to be sup-
ported by a graphics engine is that it is able to render
two images of the same simulation state from different
virtual camera positions and combine them in a frame
packing format supported by the display.

Head-coupled perspective (HCP) operates on
a slightly different principle than desktop VR and
stereoscopy. A virtual window is defined instead of
a virtual camera, with the boundary of the virtual
window mapped to the edges of the user’s display.
Thus, the image on the display depends on the relative
position of the user’s head, as objects from the virtual
environment are projected onto the display in the di-
rection of the user’s eyes. This projection can be done
using a off-axis version of the projection mathematics
used in desktop VR.

In order to do this, the position of the users head relative
to the display must be tracked accurately in real-time.
Tracking systems that have been used for this purpose
include armatures [19], electromagnetic/ultrasound
trackers [18] and image-based tracking [12]. A limita-
tion of HCP is that since the displayed image depends
on the position of a user, any other users looking at the

same display will perceive a distorted image since they
will not be viewing from the correct position.

Head-mounted displays are another type of single-
user VR technology. HMDs combine the enhancements
of stereoscopy with a large field-of-view and head-
coupling similar to HCP. The perceptual model behind
HMDs is to completely override the visual input to the
users eyes and replace it with an encompassing view
of the virtual environment. This is accomplished by
mounting one or two small displays very close in front
of the user’s eyes with a lens system to allow for more
natural focus. Since the displays are so close to the
user’s eyes, any part a display is only visible to one eye,
making the system autostereoscopic.

An orientation tracker is also embedded in the head-
gear, allowing for rotation of the user’s head to be
tracked. This allows the user to look around the vir-
tual environment using natural head motion by binding
the orientation of the virtual camera to the orientation
of the user’s head. This differs from HCP where it is
the position, not orientation, that is tracked.

The software requirements to support HMDs are the
same as stereoscopy, with the additional requirements
that the orientation of the HMD must be considered by
the graphics engine, as well as any distortion caused by
the lens system to be corrected for.

In addition to these four technologies, there are nu-
merous other types of VR displays that we do not
adderess in this study. Fish-tank VR is not discussed
because it is simply a combination of head-coupled
perspective and stereoscopy. Furthermore, we do not
consider more sophisticated VR technologies such as
multi-view displays, gaze-dependent depth of field, vol-
umetric displays, and cave automatic virtual environ-
ments (CAVEs) as they do not match our image of
consumer-level. This is largely due to them being sig-
nificantly more expensive (upwards of $1000 USD),
difficult to construct from off-the-shelf components or
impractical to set up in many environments (CAVEs are
an example of this).

3 RELATED WORK
General purpose graphics/game engines and virtual re-
ality research are intrinsically linked, sharing several
common goals. Both are highly dependent on realistic
real-time 3D graphics and simulations, and both aim to
generate a high degree of immersion and engagement.
Because of this game engines provide many features
that make them useful tools in scientific VR research.
Correspondingly, advances in VR research often end
up in graphics engines when they prove to be useful
enhancements.

Lewis and Jacobson [8] explore the use of game en-
gines for scientific simulation. The networking, graph-
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ical and 3D scene management capabilities of the en-
gines are noted as factors that make them useful for the
variety of sample research applications they have been
used for. Two of the engines mentioned in this article —
the id Tech engine and the Unreal Engine — are investi-
gated in our research, albeit using more recent versions.
The authors do note however that for applications that
require more sophisticated forms of VR, the base capa-
bilities of the engines in question are not sufficient.

A more recent report by Trenholme and Smith [16]
specifically evaluated common game engines for first-
person virtual environments, building upon the work
of Lewis and Jacobson. This work provides generic
descriptions of the advantages and disadvantages of 6
reasonably modern (1–2 major versions behind what is
current now) game engines for use in simulating virtual
environments. However, this comparison does not con-
sider the engines from a VR standpoint, so it misses out
on recent trends. In addition to this, the capabilities of
game engines advance at an extremely rapid pace and
comparisons between previous generation technologies
are not accurate for the current state of the art.

Where the capabilities of an engine are not suffi-
cient for it to be used as-is for VR applications, but
close enough to make it desirable, adaptions can be
made to the engine to allow for its use. Lugrin et
al. [9] describe how the Unreal Engine 3 (again in-
cluded in our research) can be adapted to support ren-
dering in a CAVE system and accept input from a 3D
tracked wand held by the user. This adaption was im-
plemented as C++ plug-ins to incorporate the different
forms of head and wand tracking, split across 6 net-
worked clients to render the different sides of the CAVE
with NVIDIA 3D vision to provide stereoscopy. Sim-
ilar adaptions have been make to other engines to sup-
port more sophisticated VR such as with the Unity En-
gine and CryENGINE.

As well as game engines contributing to VR research,
benefits also flow in the opposite direction, I.E. some
VR technologies originally used for research have now
become available in game engines. Litwiller and LaVi-
ola [6] discuss the implications of one such technol-
ogy (stereoscopy) for gaming. They find that while
there is no actual or perceived performance difference
of the users’ game scores when using stereoscopic 3D,
the users did express a preference towards using stere-
oscopy over desktop VR. Sko and Gardner [14] inves-
tigate different technologies through implementing var-
ious uses of head tracking in games, while Andersen
et al. [1] combine stereoscopy and head-coupled per-
spective (called fish-tank VR) in a first-person shooter
game.

Despite the wealth of research into implementing VR
with game engines, there is little general information on
how well game engines support VR. This may be a re-
sult of the very specialised nature of many VR research

projects, and the tendency to focus on a single graphics
engine or VR technology. By contrast, we discuss how
far several current graphics engines can go to support
various VR display technologies.

4 METHODOLOGY

Given enough time and effort, any graphics engine can
be made to support almost any VR display technology.
Different methods are available to do this, with a differ-
ent amount of intrusiveness needed depending on how
the software is designed and constructed.

Because measuring the amount of effort required to
implement VR in a graphics engine is a difficult and
inexact task, we have instead determined the level of
suport each graphics engine has for each of the VR
display technologies. Additionally, quality factors are
considered where applicable, as well as several generic
properties of the engines that influence the implemen-
tation of these technologies.

Level of Support

With the flexibility of modern graphics engines it is
not particularly meaningful to note features (particu-
larly VR support) as supported or not-supported, since
almost any feature can be made supported with rea-
sonable effort. The addition of such non-native fea-
tures is either facilitated through extension mechanisms
built into the engine itself, built into the platform the
engine runs on, or by re-engineering either of these
two components. Some of the most common exten-
sion mechanisms built into graphics engines are node
graphs, scripting, plug-ins and source modification.

In addition to these built-in extension mechanisms, it
is also possible to add or modify functionality via re-
engineering. This is required when the built-in exten-
sion points do not provide enough flexibility to imple-
ment the desired functionality. Re-engineering involves
modifying the behaviour of a program by overriding
portions of a program’s original code or by replacing
linked code libraries with modified variants. This will
be described in detail along with the other extension
mechanisms at the end of this section.

Level of support is measured by determining which
extension mechanisms can be used to implement a de-
sired VR display technology. Extension mechanisms
with negligible differences have been combined (such
as scripting and plug-ins), with two additional levels in-
troduced for no extension needed (native support) and
no in-engine support possible (re-engineering). Exten-
sion mechanisms are ordered by the proportion of en-
gine code relative to non-engine code that implements
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the VR support. The resulting levels of support and
their ordering follows.

5. Natively supported

4. Via in-engine graphical customisation (including
node graphs)

3. Via in-engine coding (scripting or plug-ins)

2. Via engine source code modification

1. Via re-engineering

This helps to answer our major research question and
gives a sense of engine support and engine flexibility
where high values indicate good VR support or flexi-
bility, and low levels indicate poor VR support and low
flexibility. It is important to note that this ordering is
not a measure of the effort required to implement VR,
but rather a measure of how well the engine assists this
task.

We only report the highest level of support attained,
as subsequently lower levels are practically always sup-
ported as well. In addition to presenting the highest
level of support for each VR technology, we also in-
dicate where third parties have demonstrated working
implementations of the technology.

A brief description of each level of support follows.

Native In engines that natively support a VR tech-
nology, the developers of the engine have intentionally
written the rendering pipeline in such a way that mini-
mal effort is required by the user to enable VR render-
ing. All that is required is to check an option in the de-
veloper tools or set a variable in the engine’s scripting
environment. In addition to easily enabling the tech-
nology, the engines are also designed to avoid common
optimisations and shortcuts that are not noticeable with
desktop VR displays, but become noticeable with more
sophisticated technologies. A common example of this
is rendering objects with correct occlusion but at an in-
correct depth [5], which causes depth cue conflicts un-
der stereoscopy.

Graphical customisation Some engines are de-
signed in such a way that the rendering process can
be altered using custom tools with a graphical inter-
face. One approach to this is via node graphs, where
different components of the rendering pipeline can
be rearranged, modified and reconnected in multiple
configurations. Depending on what types of nodes are
supported, it is sometimes possible to configure the
nodes in such a way as to produce the effect of certain
VR technologies. An example is shown in Figure 2,
which depicts the Unreal Engine’s material editing
interface configured to render red-cyan anaglyph stereo
as a post-processing effect.

Engine coding Practically every engine can be ex-
tended with custom code, using well-defined, but re-
stricted, extension points. The two common forms of
this are scripting, where the engine runs small pro-
grams/scripts in a restricted environment, and plug-ins,
where the engine loads and runs externally compiled
code. Both forms have access to a subset of engine
features; however, plug-ins also have access to exter-
nal APIs while scripts do not. Since this is the mech-
anism through which application-specific functionality
is normally implemented, the engine features available
to the custom code may be targeted more towards ar-
tificial intelligence, game logic and event sequencing,
rather than controlling the exact rendering process.

Engine source code modification In addition to
free open-source engines, some commercial engines
make their complete source code available to users
with the appropriate licence agreement. With access
to the full source code any VR technology can be
implemented, although the amount of modification
required could be significant.

Re-engineering For engines that do not provide
any of the above entry points for customisation,
some amount of change is still possible through
re-engineering. Re-engineering is a form of reverse-
engineering where in addition to learning some of the
workings of the program, some of its functionality is
modified as well. The effort needed to fully reverse-
engineer a rendering pipeline can be significant, so
more minimally invasive forms of re-engineering
are preferable. One of these approaches is function
hooking, which is where the invocation of an internal
or library function is intercepted and replaced with cus-
tom behaviour. Since a very large fraction of real-time
graphics engines use the OpenGL or Direct3D libraries
for hardware graphics acceleration, these libraries make
reliable entry points for implementing visual-only VR
technologies through function hooking. This approach
has proved to be effective for adding stereoscopy to
3D games [10, 17]. We have also shown that it is also
possible to implement head-coupled perspective in this
manner [? ], by hooking the OpenGL functions that
load projection matrices (glFrustum and glLoadMatrix)
and replacing the fixed-perspective matrices provided
by the original program with head-coupled matrices.

Display Technology Support Criteria
For an engine to be labelled as supporting a specific
VR display technology group, it must be able to satisfy
the technical requirements of at least one actual display
technology in that group (e.g. support for anaglyph
stereoscopy indicates general stereoscopy support).
Support can be achieved at any of the levels described
previously, in which case all the technical requirements
of the display technology must be implemented at that
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Figure 2: Configuration of the Unreal Engine to support red-cyan anaglyph stereoscopy, using the Material Editor.
Adapted from [3]. Other stereo encodings can be supported in this manner, E.G. by interlacing the images for
polarised stereo displays.

level or higher. The technical requirements of each
display technology are the same as those outlined in
Section 2.

VR Quality Factors
In addition to the technical challenge of implement-
ing the VR display technologies just discussed, there
are many secondary quality factors that affect a user’s
perceived quality of the VR experience. These factors
arise because the implementations of the display tech-
nologies can not perfectly replicate the physical phe-
nomenon they model. Since the differences are usually
subtle, the user is frequently not consciously aware of
them, but may instead experience some amount of eye
strain, headaches or nausea. There can also be many
different ways to implement any particular display tech-
nology, each of which balances different quality factors
with other factors such as implementation cost. A prime
example of this is stereoscopy, where at least ten differ-
ent mechanisms to split images between the eyes have
been used recently.

While quality factors are most inherently linked to
the display hardware, appropriate software design can
mitigate these issues, while careless design can intro-
duce new issues. Because this study deals with the soft-
ware implementation of VR display technologies, these
software issue are of interest to us.

Examples of hardware quality factors that can be
mitigated through software are crosstalk (stereoscopy),
A/C breakdown (stereoscopy) and tracking latency

(HCP and HMDs). Since these factors are well estab-
lished for their respective display technologies, there
are well-known techniques to minimise issues they
cause. The solutions are respectively reducing scene
contrast, reducing parallax and minimising rendering
delays. In most cases the engines this paper evaluates
have non-native support for the display technologies
associated with these quality factors, and subsequently
do not follow these practices.

Incorrect software implementations can also influ-
ence the quality of the VR effect, which can occur due
to carelessness, or as a result of optimisation for desk-
top VR. An example of this is special layers (such as the
sky, shadows and first person player’s body) at arbitrary
depths in different passes. While this produces correct
occlusion in desktop VR, the addition of the binocu-
lar parallax cue under stereoscopy reveals the incorrect
depth, and creates a conflict between these two depth
cues. This is not an uncommon issue due to the dom-
inant nature of desktop VR, and serves as another ex-
ample of where a naive third party implementation may
not be as good as native VR support.

From these points it should be noted that while non-
native VR implementations might meet the necessary
technical requirements, other factors must be taken into
account as well. Where possible we have pointed out
these quality issues, but due to their dependence on a
specific implementation and application it is difficult to
make generalisations for a single graphics engine.
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General Engine Properties
In addition to VR capabilities, this paper also outlines
several general properties of graphics engines. These
properties are chosen to assist researchers and develop-
ers in the selection of engines, to help identify trends of
VR support and to classify the engines. What follows
is a list of the general properties we considered useful.
We do not elaborate on these properties as, being so
general, they are largely self-descriptive.

• Developer interface

• Licences

• Programming languages

• Target platforms

• Version evaluated

Graphics Engines
The graphics engines of interest to us are those that are
currently being used to render real-time 3D environ-
ments for research, commercial and other applications,
and will likely continue to be used in the near future.
We selected a representative sample of the most popular
engines for this evaluation. The total number of graph-
ics engines is greatly inflated by the number of graph-
ics engines that are custom built for a select few ap-
plications. A secondary limiting factor is access to en-
gines, as many are not made available to 3rd-party de-
velopers, only made available to established companies,
or have prohibitively high licencing costs (in the or-
der of $100k+ USD). This has effectively restricted our
investigation to graphics engines that are open-source
or have free versions available with restricted access.
Fortunately many normally expensive engines provide
such versions, and so we are still able to cover a good
range.

In addition to these restrictions, investigation of spe-
cific engines that are available to us have been priori-
tised according to the following factors.

• Engines should be in active development.

• An engine should have good community support,
and be used in several applications.

• An engine should additionally have been considered
in previous VR research.

• Engines designed for gaming should also have been
used in non-gaming applications.

• Engines should focus on realistic and immersive
graphics, and cutting edge technology.

The engines we evaluated can be put into 4 groups
based on their licencing model, which also serves as a
reasonably good overview of the general types of en-
gine available.

Premium commercial engines (CryENGINE and
Unreal Engine) are the most expensive and have the
most comprehensive set of features. These are targeted
towards large development studios that can afford the
very high licencing costs to use the engine. These
engines provide graphical tools to allow artists and
game designers to use, while also allowing modifi-
cation and extension of their source to implement
application-specific behaviour. A recent trend has been
for free versions of these engines to be released with
specific restrictions, notably no source-code access and
for non-commercial use only.

Commercial engines (Unity) are similar to pre-
mium engines but at significantly lower costs. They
typically have slightly smaller feature sets or be
intentionally simple and lightweight. Their main
target audience is smaller (particularly indie) studios,
individuals and hobbyists. Like premium engines, they
typically provide graphical development interfaces to
allow non-technical users to use them.

Previously commercial engines (Torque3D) are
commercial engines that have at some point been made
open-source. Reasons for this might be because newer
versions of the same engine are now sold commercially,
alternative revenue sources are being followed, because
the engine is no longer competitive or to attract a larger
user-base.

Open-source (OGRE and Irrlicht) are engines that
are available for free under open-source licencing.
They are frequently community developed, but some-
times also have backing by a commercial organisation.
The quality and feature-sets of these engines varies
dramatically, but usually falls short of commercial
engines. These engines are typically fully code based,
and do not provide graphical tools for development.

In addition to the engine categories included in this
study, another major one is proprietary engines. These
are those engines developed in-house for a specific ap-
plication. None of these engines are included in this
evaluation because they, by very nature, are not made
available to third parties for development.

5 RESULTS AND DISCUSSION
The results of our evaluation can be found in Tables 1
and 2 with a discussion to follow.

The most obvious result from this evaluation is that
almost none of the graphics engines evaluated support
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VR technology Stereoscopy Head-coupled perspective Head-mounted display

CryENGINE 5: Native [10] 3: Coding 3: Coding [2]
Support for both dual render-
ing and retargeting. Supports
both manual and GPU driver
frame packing.

Access to camera matrices
through C++ interface. C++
sufficient to access any head
tracking method.

Stereoscopy supported na-
tively, orientation tracking
can be accessed via C++
plug-in.

OGRE 3: Coding [7, 10] 3: Coding 3: Coding [13]
OGRE rendering can be fully controlled and customised via the C++ interface, allowing
implementation of all three display technologies.

UDK 4: Graphical customisation
[3, 10]

1: Re-engineering* 3: Coding

Dual camera rig can be cre-
ated using Unreal Kismet
and outputs packed using the
material editor.

No access to custom cam-
era projection from engine so
re-engineering is needed if
your licence does not include
source code access.

Stereoscopy through custom
implementation, head orien-
tation can be obtained via a
custom DLL and bound to
camera via script.

Unity 3: Coding [15] 3: Coding 3: Coding
Dual cameras can be created
and control via script, im-
ages can be packed as post-
processing filter.

Scripting supports custom
camera projection matrices.
Tracked head position can be
obtained via C++ plug-in.

Stereoscopy through custom
implementation, head orien-
tation can be obtained via
C++ plug-in.

Irrlicht 3: Coding [10] 3: Coding 3: Coding
Irrlicht rendering can be fully controlled and customised via the C++ interface, allowing
implementation of all three display technologies.

Torque3D 3: Coding [10] 2: Source modification 3: Coding [20]
Multiple passes of rendering
are supported. This can be
used to create the dual views
and pack them in a compati-
ble format.

Scripting interface to cam-
era does not support off-axis
projections, camera projec-
tion generation must be mod-
ified in code.

Head orientation can be
accessed from an external
tracker over TCP. Camera
orientation can be updated
based on this via script.

Table 1: Graphics engines’ levels of support for various VR display technologies. *depends on licence

Name and Version Interface Licence Code language Platforms

CryENGINE 3.4.4
GUI
Framework

Free for non-commercial use,
Licence required for commercial
use or source code access

C++
Lua

PC
Games console

OGRE 1.8.1 Library Open-source (MIT) C++
Material scripts

PC
Smartphone

UDK 2013/02b GUI
Free for non-commercial use,
Licence required for commercial
use or source code access

C++
UnrealScript

PC
Games console
Smartphone

Unity 4.0.1f2 GUI

Free limited version
Flat fee pro version
Source code access via special
licence

C#
JavaScript

PC
Games console
Smartphone

Irrlicht 1.8 Library Open-source (zlib) C++ PC

Torque3D 2.0
GUI,
Framework Open-source (MIT) TorqueScript,

C++ PC

Table 2: General properties of graphics engines
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a non-traditional VR display technology. The only en-
gine that does is the CryENGINE, which natively sup-
ports stereoscopy in most of the formats used by mod-
ern stereoscopic displays. There are two explanations
for this deficit. Firstly, that the developers of the en-
gines do not believe these display technologies war-
rant the extra effort needed to support them. Or sec-
ondly, that they believe that the 3rd party support is
good enough that native support is not necessary. It
is our belief that the second point is the more likely,
since all engines support stereoscopy through several
3rd party programs including NVIDIA 3D Vision.

In terms of how well the engines are designed to ac-
commodate 3rd party VR support, most rate very highly
with all but two instances having levels of support at
level 3: coding or better. The two instances of lower
support occurred when the scripting system did not pro-
vide enough control over the camera parameters. It is
unknown whether the lack of access is intentional be-
cause the underlying rendering systems do not support
arbitrary camera properties, or whether they were seen
as unnecessary, not useful or just not thought consid-
ered.

In some cases the engine extension mechanisms do
not have enough functionality to host the entire VR
technology, but do provide communication functional-
ity so that part of the technology can be offloaded to a
separate process. This occurs when the scripting inter-
face can’t access the HMD or HCP head tracking val-
ues directly, but can indirectly over local TCP or UDP.
Native code (e.g. C and C++) is normally needed to
access the head tracking hardware. An example of this
is Torque3D which does not provide any access to na-
tive code at levels of support above level 2: source code
modification.

Of the three display technologies considered, HCP
is the only for which we could not find any examples
of 3rd-party implementations. Potential explanations
might be that this is a less well-known technique, that
it is a predominantly software technique and so is less
easily commercialised, or more likely because it does
not provide as good an effect as the other VR technolo-
gies.

The core point to take away from this work is that
while the majority of graphics engines do not support
most VR display technologies natively, they almost al-
ways provide enough flexibility such that support can
be manually added.

6 CONCLUSIONS
We have described the mechanisms by which modern
graphics and game engines may be extended to support
non-traditional display technologies, particularly stere-
oscopy, head-coupled perspective and head-mounted
displays. Where these engines do not have built-in ex-
tension mechanisms, or the ones that are provided are

too limited, these display technologies can always be
implemented through re-engineering the engine.

Most of the engines evaluated do not provide na-
tive support for any non-traditional display technolo-
gies, and stereoscopy is the only technology that has
any amount of native support in current versions of
these engines. However several engines have support
for head-mounted displays planned for future versions.

In the many instances where an engine does not pro-
vide native support for a display technology, support
can usually be attained by developing a script or plug-in
to produce the effect. Often this has been proved pos-
sible by other researchers or developers, and in many
cases the source for the implementation is publicly
available.

7 FUTURE WORK
As previously discussed, we believe the reason that
most engines do not support most of the VR technolo-
gies evaluated is that there are still too few commercial
displays that use them. As more exemplar displays be-
come available this should start to change, and this can
already be seen with several game engine developers
(Torque3D, UDK and Unity) announcing support for
HMDs (specifically the Oculus Rift) in future versions.
It will be interesting to see whether support for specific
technologies such as this will bleed through to other
technologies as VR sophistication becomes a more im-
portant feature.

We have also considered a very small subset of
the available classes of VR display technologies.
Extending this evaluation to other technologies such
as CAVEs, volumetric displays, multi-view displays
and gaze-dependent field of view will increase the
number of applications that benefit and also expose
how engines can be adapted to cope with technologies
substantially different from desktop VR.

In a similar vein, we have only evaluated 6 graph-
ics engines which represents a tiny fraction of the en-
tire population. Our preference towards selecting high
speed real-time engines that have already been used for
VR applications also means we did not consider any
graphics engines used for applications such as CAD or
scientific visualisation, which often have pseudo-real-
time engines (in the sense that they react reasonably
quickly to input, but not seamlessly).

We have also only considered the display side of VR,
and ignored input technologies. While in many cases
this can be done with little consequence, dependencies
between the two have been known to cause problems.
For instance mouse pointing depends on the virtual
cameras projection properties which breaks down when
there are multiple projections, as with stereoscopy, or
the projection changes continuously, as with the track-
ing from HCP and HMDs. More work is needed to
determine ways in which such input systems can be
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accommodated for when using these display technolo-
gies.
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