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ABSTRACT

We present a novel algorithm to efficiently generate high quality high dynamic range (HDR) images. Our method

is based on the idea of expanding the dynamic range of a reference image at granularity of tiles. In each tile, we

use data from a single exposure, but different tiles can come from different exposures. We show that this approach

is not only efficient and robust against camera and object movement, but also improves the color quality of the

resulting HDR images. We compare our method against the commonly used HDR generation algorithms.
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1 INTRODUCTION

The interest in HDR imaging has rapidly gained pop-

ularity in recent years. This has been accompanied by

the development of various methods to create HDR im-

ages. While it is believed that using dedicated HDR

capture hardware will be the de-facto way of generat-

ing HDR images in future [Rei10a], software solutions

are still commonly used in today’s systems. Among

these multiple exposure techniques (MET) are the most

dominant [Man95a, Deb97a].

In METs, several images of the same scene are captured

by varying the exposure time between the images. This

ensures that each part of the captured scene is properly

exposed in at least one image. The individual images

are then merged to obtain the HDR result. Although

variations exist, the equation below is typically used for

the merging process:

I j =
N

∑
i=1

f−1(pi j)w(pi j)

ti

/ N

∑
i=1

w(pi j). (1)

Here N is the number of LDR images, pi j is the value

of pixel j in image i, f is the camera response function,

ti is the exposure time of image i, and w is a weighting

function used to attenuate the contribution of poorly ex-

posed pixels.

In Equation 1, a weighted average is computed for ev-

ery pixel. While this may be desirable for attenuating

noise, it introduces unwanted artifacts due to ghosting

and misalignment problems. In this paper, we show that

this approach also results in the desaturation of colors
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making the HDR image less saturated than the its con-

stituent exposures.

Computing a weighted average for every pixel also re-

quires that the individual pixels are perfectly aligned.

Otherwise, pixels belonging to different regions in the

scene will be accumulated resulting ghosting and align-

ment artifacts.

In this paper, we propose a method that largely avoids

both of these problems. Our method is underpinned by

the idea that instead of computing an average for ev-

ery pixel, one can use the pixels from a single properly

exposed image. A different image can be used for dif-

ferent regions ensuring that the full dynamic range is

captured. We also introduce the concept of working in

tiles instead of pixels to make the algorithm more robust

against local object movements.

2 PREVIOUS WORK

Starting with the pioneering works of Mad-

den [Mad93a] and Mann and Picard [Man95a], various

algorithms have been developed to create HDR images.

The early work focused on recovering the camera re-

sponse function and choosing an appropriate weighting

function [Deb97a, Mit99a, Rob03a, Gro04a]. These

algorithms assumed that the exposures that are used

to create an HDR image are perfectly aligned and the

scene is static.

Ward developed a method based on median thresh-

old bitmaps (MTBs) to allow photographers use

hand-held images of static scenes in HDR image

generation [War03a]. His alignment algorithm proved

to be very successful and is used as an initial step

of more advanced alignment and ghost removal

algorithms [Gro06a, Jac08a, Lu09a].

In another alignment algorithm, Cerman and Hlaváč es-

timated the initial shift amounts by computing the cor-

relation of the images in the Fourier domain [Cer06a].

This, together with the initial rotational estimate which
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was assumed to be zero, was used as a starting point for

the subsequent iterative search process.

Tomaszewska and Mantiuk employed a modified scale

invariant feature transform (SIFT) [Low04a] to extract

local features in the images to be aligned [Tom07a].

The prominent features are then selected by the

RANSAC algorithm [Fis81a]. This refined set of

features are then used to compute a homography

between the input images.

Several methods have been proposed to deal with ghost-

ing artifacts. These algorithms usually pre-align the in-

put exposures using MTB or other algorithms to sim-

plify the ghost detection process. Some of these algo-

rithms avoid merging suspicious regions where there is

high variance [Kha06a, Gal09a, Ram11a]. Other algo-

rithms try to detect the movement of pixels and perform

pixel-wise alignment [Zim11a]. A recent review of

HDR ghost removal algorithms can be found in Srikan-

tha and Sidibé [Sri12a].

There are also existing algorithms that attempt to

combine data from multiple exposures for the purpose

of generating a single low dynamic range (LDR)

image. Among these, Goshtasby first partitions the

images into tiles [Gos05a]. For each tile, he then

selects the image that has the highest entropy. The

tiles are blended using smooth blending functions to

prevent seams. Mertens et al., on the other hand, do

not use tiles but utilize three metrics namely contrast,

saturation, and well-exposedness to choose the best

image for each pixel [Mer07a]. Similar to Goshtasby,

Várkonyi-Kóczy et al. propose a tile based algorithm

where tiles are selected to maximize detail using image

gradients [Var08a]. In another tile based algorithm,

Vavilin and Jo use three metrics; mean intensity,

intensity deviation, and entropy to choose the best

exposure for each tile [Vav08a]. In contrast to previous

tile based studies, they choose tile size adaptively

based on local contrast. Finally, Jo and Vavilin propose

a segmentation based algorithm which allows choosing

different exposures for different clusters [Jo11a].

Unlike previous methods they use bilateral filtering

during the blending stage.

It is important to note that existing tile-based algorithms

attempt to generate LDR images with more details and

enhanced texture information, whereas our goal is to

generate HDR images with natural colors. Our ap-

proach alleviates the need for explicit ghost detection

and removal procedures. If the dynamic parts of a scene

do not span across regions with significantly different

luminance levels, no ghost effects will occur in the out-

put. Also, we avoid redundant blending of pixels that

can result in reduced color saturation.
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Figure 1: We partition the images into tiles and deter-

mine which exposure to use for each tile.

3 ALGORITHM

The first step of our algorithm is to align the input expo-

sures using the MTB algorithm [War03a]. In this part,

both the original MTB or the MTB with the rotation

support can be used.

Once the images are aligned, we partition each expo-

sure into tiles. Our goal then becomes to choose the

best image that represents the area covered by each tile.

A sample image is shown in Figure 1 to illustrate this

idea. In this image, the under-exposed tiles are marked

with L indicating that these tiles should come from a

longer exposure. Similarly, over-exposed regions are

marked by S suggesting that shorter exposures should

be used for these tiles. Unmarked tiles can come from

the middle exposures.

To make these decisions, we need to define a quality

metric that indicates whether a tile is well-exposed. To

this end, we experimented with the mean intensity as

well as the number of under- and over-exposed pixels

within a tile as potential metrics. Our results suggested

that using the mean intensity gives better results. There-

fore, we marked a tile as a good tile if its mean intensity

is in the range [Imin, Imax]. Imin and Imax are user param-

eters, but we found that Imin = 50 and Imax = 200 can be

used as reasonable defaults.

Based on this criteria, we compute the number of good

tiles for each exposure. We choose the exposure with

the maximum number of good tiles as the reference ex-

posure. This exposure serves as the donor which pro-

vides data for all tiles whose mean intensity stays in

the aforementioned limits. This leniency allows us to

use the same image as much as possible and provides

greater spatial coherency. For the remaining tiles, we

choose the second reference exposure and fill in the

tiles which are valid in this exposure. This process is
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(a) Standard MET (b) LDR reference (c) Our result

Figure 2: (a) HDR image created by using the standard MET. (b) Selected individual exposure from the bracketed

sequence. (c) HDR image created using our algorithm. The top row shows the full images. The middle row shows

the close-up view of a selected region. The bottom row shows the color of a single pixel from the region indicated

in the middle row. Both HDR images are tone mapped using the photographic tone mapping operator [Rei02a].

As can be seen in the zoomed views, the color quality of our result is closer to the selected reference image.

recursively executed until a source image is found for

all tiles1. This process can be represented as:

I j =
N

∑
i=1

f−1(pi j)Wi j

ti
, (2)

Wi j =

{

1 if pixel j comes from image i,

0 otherwise.
(3)

Note that we no longer have the w(pi j) term from Equa-

tion 1 as we do not compute a weighted average.

Finally, we use a blending strategy to prevent the visi-

bility of seams at tile boundaries. For this purpose, we

create Gaussian pyramids of weights (Wi j) and Lapla-

cian pyramids of source images. We then merge the

images by using Equation 2 at each level of the pyra-

mid and collapse the pyramid to obtain the final HDR

image. We refer the reader to Burt and Adelson’s orig-

inal paper for the details of this process [Bur83a].

Since the tiles are not overlapping our algorithm en-

sures that within each tile data from only a single source

image is used. As we demonstrate in the next section,

this improves the color saturation of the resulting HDR

images. A second observation is that each tile is spa-

tially coherent. This means that motion related artifacts

1 It is possible that the a tile is under- or over-exposed in all

input images. In this case, we choose the longest exposure if

the tile is under-exposed and shortest exposure otherwise.

will not occur within tiles. However, such artifacts can

still occur across tiles. Thus our algorithm reduces the

effect of motion artifacts but does not completely elim-

inate them.

4 RESULTS AND ANALYSIS

We present the results of our color preserving HDR fu-

sion algorithm under three categories namely: (1) Fixed

camera & static scene, (2) hand-held camera & static

scene, and (3) hand-held camera & dynamic scene. For

the first configuration, we illustrate that the color qual-

ity of the HDR image created by our method is supe-

rior to the output of the standard HDR fusion algorithm

shown in Equation 1. A sample result for this case is

depicted in Figure 2 where the output of the standard

MET is shown on the left and our result is shown on the

right. A selected exposure from the bracketed sequence

is shown in the middle for reference.

For the image on the left, we used the tent weight-

ing function proposed by Debevec and Malik [Deb97a].

We used the sRGB camera response function for both

images, and a tile size of 64×64 for our result. It can be

seen that, due to the pixel-wise averaging process, the

output of the standard MET has a washed-out appear-

ance. Our result, on the other hand, is colorimetrically

closer to the selected exposure. This is a consequence

of avoiding unnecessary blending between images.
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Figure 3: The colors show the correspondence between the tiles in the HDR image and the source images that

they were selected from. We can see that most tiles were selected from the fourth image. Figure courtesy of Erik

Reinhard [Rei10a].

Figure 3 shows which tiles in the output HDR image

came from which images in the exposure sequence. The

correspondence is shown by color coding the individual

exposures. As we can see from this figure, the major-

ity of the tiles were selected from the fourth exposure.

The tiles that correspond to the highlights on the plants

came from the darker exposures. On the other hand, the

tiles that correspond to the crevices on the rock and the

shadow of the lizard came from the lighter exposures.

We can also see that the last three exposures were not

used at all.

At this point, it would be worthwhile to discuss why

the standard MET gives rise to a washed-out appear-

ance and our algorithm does not. We would not ex-

pect to see this problem if all exposures were perfect

representations of the actual scene. However, in real-

ity, there are slight differences between exposures that

are not only due to changing the exposure time. Slight

camera movements, noise, and inaccuracies in the cam-

era response curve can all cause variations between the

actual observations. The combined effect of these vari-

ations result in reduced color saturation. By avoiding

unnecessary blending, we also avoid this artifact.

The second test group consists of images of a static

scene captured by a hand-held camera (Figure 4). In

this figure, the left column shows the unaligned result

created by directly merging five bracketed exposures.

The middle column shows the tone mapped HDR out-

put after the exposures are aligned by using the MTB al-

gorithm. The right column shows our result obtained by

first aligning the exposures using the MTB algorithm,

and then merging them using our tile-based technique.

As can be seen from the fence and the sign in the in-

sets, our result is significantly sharper than that of the

MTB algorithm. However, we also note that small ar-

tifacts are visible in our result on the letters “R” and

“E”. Further examination reveals that these artifacts are

due to using tiles from different exposures that are not

perfectly aligned.

As the color map indicates, the majority of the final

HDR image is retrieved from the exposure coded by

red (exposures not shown). The darker regions retrieved

data from the lighter (gray) exposure. The highlights at

the top left corner received data from the darker (green)

exposure. In fact, in this example, all five exposures

contributed to the final image but the majority of the

contribution came from these three exposures.

In the final category, we demonstrate the performance

of our algorithm using scenes that have both global and

local movement. To this end, we used the hdrgen soft-

ware2 which implements the MTB alignment algorithm

and a variance based ghost removal method explained

in Reinhard et al. [Rei10a]. In Figure 5, the left column

shows the output obtained by only image alignment but

without ghost removal. The middle column shows the

result of alignment and ghost removal. Although the

majority of the ghosts are removed, some artifacts are

still visible on the flag as shown in the close-ups. The

right column shows our result where these artifacts are

eliminated. The color map indicates the source images

for different regions of the HDR image.

We also demonstrate a case where our algorithm intro-

duces some unwanted artifacts in high contrast and high

frequency image regions as the window example in Fig-

ure 6. The bright back light and window grates cause

high contrast. If the tile size is large, blending tiles from

different exposures produces sub-par results. A reduced

tile size eliminates these artifacts.

Our choice of prioritizing the reference image increases

success in image sets where ghosting effects would nor-

mally occur. If the object movements are located in

regions with similar lighting conditions, our algorithm

prefers the image closer to reference image while con-

structing tiles, preventing ghosting effects. It is possi-

ble that an object moves between regions of different

lighting conditions, and our algorithm may choose tiles

2 http://www.anyhere.com
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Figure 4: Left: Unaligned HDR image created from hand-held exposures. Middle: Exposures aligned using the

MTB algorithm. Right: Our result. The close-ups demonstrate that our algorithm produces sharper images. The

color map shows the source exposures for different regions of the HDR image.

(a) Alignment (b) Alignment and ghost removal (c) Our result

Figure 5: Left: Aligned HDR image created from hand-held exposures using the MTB algorithm. Middle: Aligned

and ghost removed HDR image. Right: Our result. The insets demonstrate that ghosting artifacts are eliminated in

our result. The color map shows the source exposures for different regions of the HDR image.

from different images where the moving object can be

seen. In this case different copies of the object may be

present in multiple locations in the output image.

Finally, we report the running times of our algorithm.

An unoptimized C++ implementation of our algorithm

was able to create high resolution (18 MPs) HDR im-

ages from 9 exposures within 30 seconds including all

disk read and write times. We conducted all of our

test on an Intel Core i7 CPU running at 3.20 GHz and

equipped with 6 GBs of memory. This suggests that our

algorithm is practical and can easily be integrated into

existing HDRI workflows.

5 CONCLUSIONS

We presented a simple and efficient algorithm that im-

proves the quality of HDR images created by using

multiple exposures techniques. By not redundantly av-

eraging pixels in low dynamic regions, our algorithm

preserves the color saturation of the original exposures,

and reduces the effect of ghosting and alignment arti-

facts. As future work, we are planning to make the

tiling process adaptive instead of using a uniform grid.

This would prevent artifacts that can be caused by

sudden illumination changes between neighboring tiles

coming from different exposures. We are also planning

to perform blending using edge-aware Laplacian pyra-

mid [Par11a] to avoid blending across sharp edges. Im-

proved quality of our results can also be validated by a

user study.
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