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Abstract

Computers are ubiquitous; this is especially true in the case of so called embed-
ded devices.

These devices usually have constrained computational resources. Software
development for such systems tends to be conservative and use tools such as C
programming language. More recently, there is a notable inclination towards
Java. Embedded systems have also increased dependability requirements that
lead to adoption of formal methods.

In this work, we try to bring the power of dynamically-typed languages to the
embedded system development. These languages have higher level of abstraction
than Java and due to their flexibility are able to embrace new paradigms such
as Aspect Oriented Programming.

We propose a software development process based on the Python program-
ming language and its advanced compiler called PyPy. We enable to create rapid
prototypes in Python that are then translated to the efficient machine code.

Last but not least, our development process also presents advanced testing
based on formal methods. From the Python code, we also generate the Java
byte-code that is then investigated by Java Pathfinder which is an explicit model
checker.

Our development approach proved to be viable on a couple of case studies.

Keywords: embedded devices, model checking, Python, PyPy, generative pro-
gramming, software development process, linear temporal logic



Abstrakt

Počítače jsou dnes všudypřítomné, což platí především pro takzvané vestavěné
systémy.

Tato zařízení obvykle mají omezenou výpočetní kapacitu. Vývoj softwaru
pro takové systémy je často konzervativní, používá prostředky jako například
jazyk C. V posledních letech je pozorovatelný příklon k jazyku Java. U ves-
tavěných systémů je požadována velká spolehlivost, což vede k využívání for-
málních metod.

V této práci se snažíme přinést sílu dynamicky typovaných jazyků do oblasti
vývoje vestavěných systémů. Tyto jazyky mají vyšší míru abstrakce než napřík-
lad Java a díky své flexibilitě jsou schopny absorbovat nová paradigmata jako
například aspektově orientované programování.

Navrhujeme vývojový proces založený na programovacím jazyku Python a
překladači PyPy. Díky Pythonu můžeme rychle vytvářet prototypy, které se
potom přeloží do efektivního strojového kódu.

Náš vývojový proces obsahuje i pokročilé testování založené na formálních
metodách. Z kódu v Pythonu můžeme vygenerovat Java bajtkód, který potom
zkoumáme nástrojem Java Pathfinder, což je explicitní model checker.

Životaschopnost našeho procesu jsme demonstrovali na několika případových
studiích.

Klíčová slova: vestavěná zařízení, model checking, Python, PyPy, generativní
programování, vývojový proces, lineární temporální logika
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Chapter 1

Introduction

As computer systems become cheaper and more reliable, they are utilized in
wider areas of human activity. The computers also become more diverse; the
word "computer" no longer describes only the workstation on the table, but also
the computer in cell a phone, car, camera and a coffee maker.

These ubiquitous computers are usually called embedded systems. Develop-
ing software for such systems involves dealing with a number or specific con-
strains, mainly computing resources limitations (CPU and memory).

There is a very strong need for dependability of such systems. Embedded
systems are sometimes used in safety-critical applications, e.g., in aerospace field.
Dependability is emphasized even in common applications where correcting an
error via some kind of software update may be very complicated.

Formal methods can substantially contribute to the reliability of embedded
systems. However, the state of the practice has been usually behind the state
of the art of formal methods [1]. Formal methods are still considered hard by
developers as they require special languages and tools. Thus it is important to
make use of formal methods as easy as possible.

Mentioned requirements and constraints have crucial impact on the soft-
ware development process. It tends to be conservative, traditional programming
languages are C and assembly, more recently, Java. On the other hand, state-
of-the-art approaches are also used, mainly model driven development.

In this work, we propose a novel approach to dependable and efficient soft-
ware development. It relies on a programming language with very high level
of abstraction. We use the code generation as the main principle. The code
generation allows us to create very compact machine code from the high level
description. Finally, we try to make usage of formal methods, literally explicit
model checking, as easy as possible.
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Chapter 1. Introduction

1.1 Goals of the Thesis

The overall goal of the thesis is to design a new development approach for
dependable software development and prove that it is viable. The new approach
should produce efficient and reliable programs with less effort via embracing
modern programming paradigms. It is aimed at embedded devices, however not
limited to this domain. More precisely, the goals can be summed up into the
following points:

• Select a high level programming language that plays well with best soft-
ware engineering practices, such as Aspect Oriented Programming (AOP)
and Domain Specific Languages (DSL). Select also development tools that
enable a high level code to be translated to more efficient low level machine
code.

• Design a verification procedure that will earn a set of guarantees of cor-
rectness of the production code. The verification procedure should be easy
to use.

• Show that the generated machine code is suitable for running on an embed-
ded device in terms of memory consumption and computational efficiency.

1.2 Outline of the Thesis

The first chapter ends with definition of some basic terms. Chapter 2 describes
embedded devices and properties of embedded software. Chapter 3 was written
because we want the whole thesis to be self-contained. It recapitulates program-
ming paradigms, formal verification, and other notable technologies.

Chapter 4, "Towards High Level Dynamic Approach", is one of the most
important, it describes why and how dynamic languages should contribute to
the dependable software development.

Chapter 5, is core of this thesis. It proposes a development approach based
on thoughts from the previous chapter.

A fairly deep analysis of the technologies that we selected for our approach is
contained in chapter 6. Chapter 7 describes our customizations of the selected
tool-chain.

In chapter 8, we propose a testing procedure based on formal methods that
fits our development approach. In chapter 9, we present a set of benchmarks that
prove that our code is efficient enough. Chapter 10 contains two case studies,
one of them is a real-world program. Chapter 11 concludes the achievements of
the thesis.
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Chapter 1. Introduction

1.3 Terminology

Through all this work we deal with many terms that are worth clarifying at the
very beginning. These definitions are mostly based on [2].

Correctness is a system’s ability to perform according to its specification in
causes of use within that specification.

Robustness is a system’s ability to prevent damage in cases of erroneous use
outside of its specification.

Security is a system’s ability to prevent damage in cases of hostile use outside
of its specification.

Verification is internal assessment of the consistency of the product consid-
ered just by itself. Verification is about ascertaining that the product is "doing
things right".

Validation is relative assessment of a product vis-à-vis another that defines
some of the properties that it should satisfy: code against design, design against
specification, specification against requirements, documentation against stan-
dards. Validation is about ascertaining that it is "doing the right thing".

Dependability comprises at least three factors: correctness, robustness and
security. For our purposes dependable software means the same as reliable soft-
ware.

Safety-critical system is a system whose failure or malfunction may result
in: death or serious injury to people, or loss or severe damage to equipment or
environmental harm.

7
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Chapter 2

Embedded Systems

Our work is not limited to embedded systems; however, software for embedded
systems is huge motivation for writing efficient and dependable software.

2.1 Characteristics and Classification

No single characterization applies to the diverse spectrum of embedded systems.
Embedded systems are usually special-purpose systems in which the CPU and
all the required secondary resources are bundled on a small factor printed circuit
board or even on the same chip. The expression "embedded" is used to designate
a computer system hidden inside a product other than a computer [4].

Some combination of cost pressure, long life-cycle, real-time requirements,
and reliability requirements can make it difficult to be successful applying main-
stream computer design methodologies and tools for embedded applications [5].
The reliability requirements are imposed due to the fact that embedded sys-
tems typically have to work without human intervention; in fact they are often
designed to substitute supervision of a human operator.

For the purpose of this work, we provide a short overview of some embedded
system classes [6].

Very small systems (i):

• 4 or 8-bits micro-controllers with no OS-like environment.

• Can be found in many every day devices (from coffee machines to cars).

• Main design constraints are cost, then reliability.

• Development is done mainly in C and assembly.

9



Chapter 2. Embedded Systems

Micro-controllers (ii):

• 8, 16 or 32-bit micro-controllers possibly with very small OS, still have
very limited RAM, ROM and CPU power, and have no MMU1.

• Development can be done with various tools and languages (C, C++, Java,
Basic, assembly). There are also some custom languages.

Small systems with quite standard architectures (iii):

• System built around ARM, Freescale, Geode, etc. CPU acts like a small
computer. Can run a complete OS (Linux, VxWorks, QNX, etc.).

• The limitations are small amount of RAM (compared to desktop comput-
ers), limited CPU, sometimes power consumption, etc.

• Very common in printers, network devices (routers), PDAs, GPS devices,
cars.

• No main programming language, developers usually use standard Unix
tools.

In this work, we deal mainly with classes (iii) and (ii).
The presented classification evolves in time as hardware is more and more

powerful over time. However, the class of very small systems is not going to
"extinct" because we can take advantage of extremely low power consumption
to invent new applications, for example based on battery-free devices [3].

2.2 Software in Embedded Devices

An embedded software is a software that runs on an embedded computer. It is
the ultimate source of flexibility and controllability of the embedded system [4].

While pieces of embedded software can vary significantly, depending on the
purpose they are constructed for, there are some characteristics that are typical.
The embedded systems usually does not have graphical user interface (GUI)
that we know from personal computers. User interface (if any) is typically very
limited. Note that in many desktop programs GUI-related code comprises a vast
majority of the program code.

Embedded software development also tends to be conservative. Whereas pro-
grammers of desktop applications use new high level object oriented languages
(e.g., Java, C#, Python) with features such as garbage collection, embedded

1Memory Management Unit
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Chapter 2. Embedded Systems

software development relies mostly on legacy tools such as plain C or assem-
bly, despite the fact that performance of embeddable microprocessors grows for
decades.

2.2.1 Reactive Systems

Embedded programs usually do not use the traditional operating sequence where
input data are supplied to the program when it starts and output data are avail-
able when the program finishes its job. Embedded programs have to keep syn-
chronized with external events from the environment where they are deployed;
these systems are called reactive.

The reactive program usually consists of several tasks that acquire data from
the external environment, do a computation, and then emit output data back.
The tasks have typically form of (possibly infinite) loop.

According to [7], the reactive systems can be divided into two groups: event-
triggered and time-triggered. Trigger is an event that causes execution of some
program code.

Event-Triggered Systems: Events coming to the system at arbitrary time
have to be handled properly. Events are connected with a significant change of
the state of the environment and thus are asynchronous.

Time-Triggered Systems: The only assumed event is a periodical change of
internal clock. When a certain time interval elapses, the state of the environment
is acquired and appropriate actions are executed. Note that behavior of such
systems is generally more predictable than in the case of the event-triggered
counterparts.

2.2.2 Real-Time Systems

Many embedded systems can be also viewed as real-time. Correctness of opera-
tions of real-time systems depends, in part, on the time at which it is delivered
[5].

We distinguish two main classes of real-time systems: hard and soft real-time
systems.

Hard Real-Time Systems: The operation of a hard real-time system is
firmly constrained in many ways. First of all, it guarantees the response time to
be within certain bounded interval, often as tight as several milliseconds; this
fact has major consequences:
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• Peak-load scenario must be well-defined, i.e., the system meets the speci-
fied deadlines in extreme situations that may be very rare.

• To guarantee the real-time properties the design phase incorporates special
methods such as worst-case execution time analysis. To make this analysis
feasible, usage of dynamic data structures is limited.

• Safety-critical nature of many hard real-time systems implies that an error-
detection must be autonomous and recovery actions must be well-defined.

Soft Real-Time Systems: In the case of soft real-time systems, the temporal
properties are weakened and these systems are never safety-critical. The time
when a result of a computation is delivered is still important; however, it is not
strictly guaranteed. Soft real-time systems use best effort approach, i.e., the
result is delivered as early as possible. Peak-load performance is not critical,
because the system usually can slow-down the external environment, e.g., a
human operator.

The data structures in soft real-time systems are less constrained and thus
can be more sophisticated; the error-recovery can employ scheme of creating
checkpoints and executing roll-back action when necessary.

2.2.3 Program Errors

Errors and Failures

Every software-related failure of a deployed embedded system is caused by a
mistake or a bad design decision of a programmer/designer. Overall anatomy of
a failure of a system is provided in [8]:

1. Error: An omission, a mistake, or a bad design decision of a programmer;
may lead to:

2. Defect (also Fault or Bug): A Defect (or a bug) in a source code of the
system; may lead to:

3. Run-time Fault: Invalid run-time state or output; may lead to:

4. Failure: Inability of the system to provide a desirable functionality and/or
performance.

Failures can be characterized from many aspects. One of the characteriza-
tions can be found in [9]:
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• Static versus Dynamic: A static failure (value failure) provokes a wrong
result. A dynamic failure (timing failure) provokes a transient response
which is incorrect, either too fast or too slow.

• Persistent versus Temporary: A persistent failure alters the behavior of
a system for a significant portion of mission time. On the contrary, a
temporary failure alters the behavior at a certain moment.

• Consistent versus Inconsistent: A consistent failure is perceived in the
same way by all users of a system; the failure is said to be inconsistent in
the opposite case.

A failure of an embedded system may have severe consequences or, on the
other hand, may have no consequences at all. For example, the aircraft industry
is recommending a fault categorization of safety-critical systems according to
the following criteria [10].

1. Catastrophic: Fault that prevents continued safe operation of the system
and can be the cause of an accident.

2. Hazardous: Fault that reduces the safety margin of the redundant system
to an extent that further operation of the system is considered critical.

3. Major: Fault that reduces the safety margin to an extent that immediate
maintenance must be performed.

4. Minor: Fault that has only a small effect on the safety margin. From the
safety point of view, it is sufficient to repair the fault at the next scheduled
maintenance.

5. No Effect: Fault that has no effect on the safety margin.

Fail-Safe and Fail-Operational Systems

Fail-safeness is a characteristic of the controlled object, not the controlling sys-
tem. That means, when an error is detected, the controlled object can reach
a safe state where the failure of the computer system have no consequences.
Consider an example of a railway signalling system: the safe state is when all
trains are stopped and the state can be easily reached by setting all the signals
to red.

On the contrary, the example of a controlled object that cannot reach a safe
state easily is a flying plane. The flight control system must always provide
some minimal functionality, even under error occurrences.
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Chapter 3

Related Work

In this chapter, we present an overview of technologies that provide background
for design of our own development approach. The topics that are familiar to
reader can be skipped.

3.1 Static Verification

Static verification is a set of processes that analyzes a piece of software without
actually executing programs built from that software.

3.1.1 Type Checking

Data types are attributes of pieces of data that determine how the data are
interpreted by the computer. They also determine a set of operations that can
be done with the data.

The aim of type checking is to guarantee that the type structure of a computer
program is valid, i.e., all operations performed on data are permitted by the type
definitions.

Type Checking Approaches

Type checking is a processes of identifying errors in a program based on explicitly
or implicitly stated type information.

In static type checking, the type information is associated with variables;
the type is usually determined when the variable is declared. As the types are
directly apparent in the program source code, type correctness can be checked
during compilation. That is, a compiler ensures that operations only occur on

15



Chapter 3. Related Work

operand types that are valid for the operation. This early error detection pre-
vents programmer from significant class of errors. Many wide-spread languages
employ static type checking: C, C++, Java, Ada.

In contrast, there is also dynamic type checking in which the type information
is associated with a particular value of a variable rather than with the variable
itself. As the variable changes values at run-time, the type of the variable may be
changed too. Thus the type correctness can be reliably checked only at run-time.

Programs with static type structure are less flexible, there is a trade-off
between early error detection and higher flexibility. Typical languages with
dynamic type checking are Python, Ruby, and Smalltalk.

Type system is considered weak when distinction between types is weakened
by automatic conversions. In a weakly typed language, a programmer can mix
variables of different and incompatible types in a single expression, because the
types of variables can be automatically converted when needed. For instance, it
is possible to ’add’ (by operator "+") two objects of different types: an integer
of value 10 and a string of value "50". One of the operands have to be converted
to the type of the other operand. So the result of the operation can be either an
integer of value 60 or a string of value "1050". Automatic conversions are usual
in text-processing languages like Perl or PHP.

Type Checking in Ada

Ada is imperative, statically typed, object oriented, general-purpose program-
ming language. It was designed for United States Department of Defense to be
universally used for variety of applications at the department [11].

Ada is designed for large, long-live programs, with mission- or safety-critical
applications in mind. Ada puts strong emphasis on static checking. The com-
piler checks whatever is feasible to check at compile time, e.g., type correctness,
variable scopes, pointer scopes, and array indices. One of the design goals is
memory safety, that means, a direct access to the memory is prohibited. Ada
is also known for one of the most advanced type systems: it includes subtypes,
integrity checks and operator overloading.

Although Ada programming language is rather complex, the native code
produced by its compiler is compact and efficient. This makes Ada very suitable
tool for embedded software development even in challenging areas of avionic and
space applications [12].

User-defined Types

Programming languages like C, C++, and Java allow to create user-defined
types, e.g., structures and classes. However, there is no way how to create prim-
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1type Apples i s new I n t e g e r ;
2type Oranges i s new I n t e g e r ;

Figure 3.1: Elementary Ada Types

1d e c l a r e
2Apple_Count : Apples := 10 ;
3Orange_Count : Oranges ;
4begin
5Orange_Count := Apple_Count ; −−y i e l d s a compi la t ion e r r o r
6Orange_Count := Oranges ( Apple_Count ) ;
7−−e x p l i c i t typeca s t i s OK
8end ;

Figure 3.2: Typecasting in Ada

itive data types like integer or floating-point numbers with user-defined seman-
tics. In Ada, one can create user-defined types that have the same capabilities
as built-in types.

Figure 3.1 shows a definition of two new types: Apples and Oranges. These
new types inherit semantics from the built-in type Integer. Note that Apples
and Oranges are completely independent types, they only share inner binary
representation with the Integer type. Compare with C/C++ approach where
the keyword typedef only creates a new name for an existing type.

Ada compilers guarantee that we cannot accidentally mix apples and oranges
anywhere in the program. Explicit typecast is however possible, see figure 3.2.

If we had some physical computation in our program, it would be useful to
have a type structure that corresponds with used physical laws. For example,
when computing some area, suitable types are Meters and Square_Meters. Ada
compiler can then check that areas and lengths are never confused.
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1type Meters i s new Float ;
2type Square_Meters i s new Float ;
3
4func t i on "∗ " ( Left , Right : Meters )
5return Square_Meters i s
6begin
7−− M u l t i p l i c a t i o n i s done on Float b a s i s _
8−− to avoid r e c u r s i v e d e f i n i t i o n .
9return Square_Meters ( Float ( Le f t )∗ Float ( Right ) ) ;
10end ;
11
12d e c l a r e
13Width : Meters := 5 . 2 ;
14Height : Meters := 7 ;
15Area : Square_Meters ;
16Bad_Area : Meters ;
17begin
18Area = Width ∗ Height ; −− This i s OK.
19Bad_Area = Width ∗ Height −− This y i e l d s a compi la t ion e r r o r .
20end

Figure 3.3: Physical Computation
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1subtype Angle i s new Float range 0 .0 . . 2 . 0 ∗ pi ;

Figure 3.4: Subtype Example

In Ada, one can also define semantics for user defined types. In our example,
when we multiply Meters by Meters, the type the result is Square_Meters. This
is done by appropriate overloading of the multiplication operator for Meters, see
figure 3.3.

Integrity Checks

Ada types also employ value constraints, i.e., a type bears information about
range of values it can contain. This is often combined with Ada subtypes. A
subtype is derived from an arbitrary type and has a constrained range of values.
A variable of a certain subtype can be always assigned to the variable of the type
it was derived from. Contrary, when assigning variables from the supertype to
the subtype, explicit typecast must be inserted. See figure 3.4 for an example of
the Angle subtype that can be always assigned to a variable of the Float type.

Conclusion

Static type checking is a powerful technique, the main advantage is an early
error detection. It is relatively easy to implement and thus it is widely used in
mainstream languages such as Java or C++ as well as in languages for safety-
critical domain, e.g., Ada.

Although the type correctness of a program is essential, it does not imply that
the program run-time behavior is correct as well. Wrong explicit typecast may
raise a run-time exception whose correct handling is generally not guaranteed
by compile-time check.

3.1.2 Formal Verification Theory

Formal verification is a process where mathematically-based methods are used
in order to prove that a certain system, e.g., a computer program, has a desired
set of properties. Formal methods are considered "hard" and "expensive" as
they require special tools and skills. For our purposes, the most notable formal
approach is model-checking.

19



Chapter 3. Related Work

The Model-Checking Problem

Model-checking is a process of checking whether a given system (e.g., a finite
state system) is a model of a given logic formula. The process is done by enu-
meration (explicit or implicit) of all the states reachable by the system and the
behaviors that traverse through them [13].

Input to the model checking-process is:

• A model, e.g., a finite state system M .

• A set of formulae φ = {ϕ1, ..., ϕn} that specify a desired behavior (prop-
erties) of the model. The formulae can be expressed for instance by linear
temporal logic (LTL).

The model-checking process examines whether M satisfies φ, i.e., M |= φ.
The result is thus a yes/no answer.

A valuable aspect of model-checking is that if M does not satisfy φ, the
procedure provides a counterexample, i.e., a state sequence from the initial state
of the examined system to the state that violates the demanded property.

Kripke Structure

A system that we are going to verify is usually a piece of software (a program).
Programs are not directly verifiable by the model-checking because they are
typically too complex. For instance, they have infinitely many states. In order
to make the model-checking feasible, the examined system has to be represented
in a more compact and abstract form. The common approach is to represent the
system as the Kripke structure [13]. It comprises of states, state transitions, and
set of propositions associated with each state. The same propositions are used
in formulae that describe properties of the structure. Formal definition follows:

Kripke structure over a set of propositions P = {p1, ..., pn} is a tuple M =
〈S,R, L〉 where

• S is a finite set of states,

• R ⊆ S × S is a set of directed edges,

• L : S → 2P is a labeling function which labels each state with a (possibly
empty) set of propositions.

For a vertex s ∈ S with L(s) = {p1, ..., pm} ⊆ P we say for each pi ∈ L(s)
that pi holds in s or shortly: s |= pi.

The unlabeled structure 〈S,R〉 is a transition system. A pointed Kripke
structure 〈S,R, L, s0〉 is a Kripke structure with a starting state s0 ∈ S.
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Linear Temporal Logic

Linear temporal logic (LTL) is a modal logic with modalities referring to time
[14]. It is a subset of richer Generalized Computational Tree Logic (CTL*). Its
atoms are atomic propositions reflecting the current state of a system.

A model for a temporal formula ϕ is an infinite sequence of states (i.e., a
word)

π = π0π1π2... (3.1)

where each state πi provides an interpretation for the atomic propositions
mentioned in ϕ.

The set of LTL formulae is defined inductively starting from countable set of
atomic propositions, Boolean operators, and the temporal operators X (Next)
and U (Until):

ϕ := a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ (3.2)

Given a model π, as above, we present an inductive definition for the notion
of a temporal formula ϕ holding at a position j ≥ 0 in π, denoted by (π, j) |= ϕ.
For a state formula ϕ,

(π, j) |= ϕ⇐⇒ πj |= ϕ.

That is, we evaluate ϕ locally, using the interpretation given by πj.

(π, j) |= ¬ϕ⇐⇒ (π, j) 6|= ϕ
(π, j) |= ϕ ∧ ψ ⇐⇒ (π, j) |= ϕ and (π, j) |= ψ
(π, j) |=Xϕ⇐⇒ (π, j + 1) |= ϕ
(π, j) |= ϕUψ ⇐⇒ for some k ≥ j, (π, k) |= ψ, and for every i such that

j ≤ i < k, (π, i) |= ϕ

We adopt standard abbreviations ∨, ⇒, true, and false for Boolean ex-
pressions. For convenience, we also define temporal operators F (in the future,
eventually) and G (globally)

(π, j) |= Fϕ⇐⇒ (π, j) |= true Uϕ
(π, j) |= Gϕ⇐⇒ (π, j) |= ¬F¬ϕ

Classification of Temporal Properties

Linear temporal logic is defined over infinite sequences of states that correspond
with computations. A property is a predicate on such sequences. It determines
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whether a sequence is acceptable (having the property) or unacceptable (not
having the property).

Let a property Π be a set of infinite words. A property Π of the system is
defined to be specifiable by LTL if there is an LTL formula ϕ such that π |= ϕ
if and only if π ∈ Π.

Consider, for example, a particular program that assigns an integer value to
a variable x. Let Π be the property requiring that the value of x is monotonically
increasing. Now, it is obvious that the sequence of states

〈x : 0〉, 〈x : 1〉, 〈x : 2〉, 〈x : 3〉, ...

belongs to Π, whereas the sequence

〈x : 0〉, 〈x : 2〉, 〈x : 1〉, 〈x : 0〉, ...

does not.
According to [15], temporal properties can be partitioned into two classes:

safety and liveness. The classes can be informally characterized as:

• A safety property states that some bad thing never happens.

• A liveness property states that some good thing eventually happens.

Safety properties typically represent requirements that have to be continu-
ously maintained by the system. For example, a safety property should specify
the mutual exclusion: a lock is acquired at most by one thread. Liveness proper-
ties, on the other hand, represent requirements that need not hold continuously,
but have to be eventually of repeatedly fulfilled. For example, it is guaranteed
that one of the threads requiring a lock eventually acquires it.

More sophisticated hierarchical classification of temporal properties was de-
fined in [14] where they are classified into six classes: guarantee, safety, obliga-
tion, persistence, recurrence and reactivity. Properties from particular classes
can be intuitively viewed as making different claims about occurrences of "good"
and "bad" things during the computation. Informal definition follows [16]:

• guarantee: something good happens at least once

• safety: something good always occurs (nothing bad occurs)

• obligation: conditional occurrence of a good thing

• recurrence: something good occurs infinitely many times
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• persistence: something good occurs continuously from a certain point (bad
things occur only finitely many times)

• reactivity: conditional occurrence of infinitely many good things

For example, suppose that x is a program variable and its value should be
positive. Then G(x > 0) is a safety property that holds if x is always positive.
Similarly, a guarantee property F (x > 0) holds if x is positive at least in one
state of the computation.

Note that it is decidable whether a given LTL formula belongs to a particular
class, though the decision requires exponential time.

Büchi Automaton

In order to decide whether an arbitrary sequence of states (a word) π satisfies a
given formula ϕ, the formula is usually translated to an automaton. Note that
the computation (and thus the word) can be infinite in general. LTL formulae
can be more naturally translated into non-deterministic finite-state automata
with a special acceptance condition—Büchi automata.

A Büchi automaton is a tuple B = 〈Q,A,∆, q0, F 〉 where:

• Q is a finite set of states,

• A is a finite set of labels,

• ∆ ⊆ Q×A×Q is a labeled transition relation,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of accepting states.

The execution of the automaton B on an infinite word π = π0π1π2... over al-
phabet A is an infinite word σ = q0q1q2... over alphabetQ, such that: (qi, πi, qi+1) ∈
∆, ∀i ∈ N . An infinite word π over alphabet A is accepted by the automaton B,
if there exists an execution of B on π where some element of F occurs infinitely
often.

Further information on automata over infinite words can be found in [17];
an efficient algorithm for translation of LTL formulae to Büchi automata was
published in [18] and [19].
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Model Checking Algorithm

Once we have a system represented as a Kripke structure K = 〈S,R, L, s0〉
and an LTL formula ϕ specifying desired behavior (both over propositions P =
{p1, ..., pn}) then we can check if K |= ϕ.

We construct a nondeterministic Büchi automaton B¬ϕ = 〈Q, 2P ,∆, q0, F 〉
accepting infinite words which are not models of formula ϕ. Then a product
automaton K × B¬ϕ is constructed in the following way:

K ×B¬ϕ = 〈S ×Q, 2P , (s0, q0),∆′, S × F 〉 where ∆′((s, q), a) = {(s2, q2)|a ∈
L(s), (s, s2) ∈ R, q2 ∈ ∆(q, a)}.

A word that is accepted by the product automaton is a counterexample—a
witness of the incorrect behavior of the system. If the language of the product
automaton K × B¬ϕ is empty, then K |= ϕ holds.

The State-space Explosion Problem

The major drawback of model-checking is that it scales badly. If a model size
grows linearly, the state space of the model tends to grow exponentially; the
problem is referred to as the state space explosion. The nature of the growth
is given by the fact that every component added to the model multiplies the
number of model states. For example:

• A variable of type 32-bit integer has 232 possible states.

• Threads that can run in parallel are usually modeled by thread interleav-
ing. The state model of the thread interleaving is created by the Cartesian
product of the state models of the individual threads.

In spite of the fact that hardware resources (mainly memory) are cheaper
and more powerful every day, even trivial models have to employ techniques
to reduce the state explosion. The most notable are: abstraction, partial order
reduction, and slicing.

Abstraction: Concrete data types, e.g., 32-bit integer, can be abstracted.
Instead of storing the exact integer value, only a property of the value is stored,
e.g., Negative, Zero, Positive. This can be done when a certain specification
does not depend on an exact value of some data but instead depends only on
the sign of the data.

Partial order reduction: When some state transitions are commutative, i.e.,
the same state is reached by different order of transitions, one of the equivalent
paths can be omitted.
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Slicing: A program P is reduced according to some statements of interest
C = {s1, ..., sn} in the following way: all statements of P that do not affect
any of the statements in C are removed. If a property Π is affected only by the
statements in C and if Π holds for a reduced version of P , it also holds for P .

3.1.3 Formal Verification in Practice

Manual Creation of a Formal Model

In order to perform the model-checking, a formal model (such as Kripke struc-
ture) of an examined system must be created.

The most straightforward possibility is to construct the model by-hand. This
is usual in an early stage of the development: the model is constructed as a
mock-up of the demanded product. The construction is usually done in a special-
purpose language of a particular model checker, for instance the SPIN model
checker uses Promela as the specification language. The main drawback of this
approach is that the production code that is derived from the specification, does
not necessarily preserve all the properties of the specification.

Promela (Process Meta Language) is a verification modeling language. It
describes possibly large but finite state system that is to be verified by the
SPIN model checker. The system can be concurrent; dynamic process creation
is also supported. In Promela, inter-process communication can be done via
channels that are either synchronous (i.e., randezvous) or asynchronous (i.e.,
buffered).

An example of a binary Dĳkstra semaphore is shown in figure 3.5. The
example consists of three user processes and one process that provides mutual
exclusion. The communication is done synchronously via channel semaphore.
Each user process has to receive the symbol p before it enters the critical section.
When the user process is leaving the critical section, the symbol v is sent back
to the dĳkstra process. The dĳkstra process controls the mutual exclusion by
sending p symbol when semaphore is open and accepting v symbol when the
semaphore is closed (open == 0). Note that a Promela process blocks whenever
a non-executable statement is reached, e.g., an attempt to read from an empty
channel, an attempt to write to a non-buffered channel nobody is attempting to
read from, or a comparison expression that is evaluated to false.

Formal Model Extraction

A formal model can be also extracted from a program source code written in a
general-purpose language. A major advantage of such an approach is that the
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1#d e f i n e p 0
2#d e f i n e v 1
3chan semaphore = [ 0 ] o f { b i t } ;
4
5proctype d i j k s t r a ( ) {
6bool open = 1 ;
7do
8: : ( open == 1) −> sema ! p ; open = 0
9: : ( open == 0) −> sema?v ; open = 1
10od
11}
12
13proctype user ( ) {
14do : :
15semaphore ?p ;
16/∗ c r i t i c a l s e c t i o n ∗/
17semaphore ! v ;
18/∗ non−c r i t i c a l s e c t i o n ∗/
19od
20}
21
22i n i t {
23run d i j k s t r a ( ) ;
24run user ( ) ; run user ( ) ; run user ( ) ;
25}

Figure 3.5: A Semaphore in Promela

properties that are verified in the model are also present in the program source
code.

Example of such a tool is Bandera [20]. Bandera is a tool set for extracting a
finite-state model from a Java source code. A finite-state model is represented in
Bandera Intermediate Representation language that is further used for emitting
input of a particular external model-checker, e.g. SPIN or SMV. The result of
the external verification is then mapped back to the original program code.

The code translation to the language of a model-checker cannot be performed
directly. The state space must be reduced in order to make the verification fea-
sible. Bandera provides several optimizations for state space reduction, mainly
abstraction and slicing.

Java Pathfinder 2

Java Pathfinder 2 (JPF2) [21] is an explicit model checker for Java developed
at NASA. Its predecessor Java Pathfinder 1 [22] attempted to translate Java
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source code to Promela language though it is now retired.
JPF2 is a special implementation of the Java Virtual Machine (JVM) that

has a model-checking facility. The verification is done at the Java byte-code
level; JPF2 does not need access to the source code of the investigated program.

Conventional JVM executes Java byte-code sequentially and the state of the
running program is constantly altered during the execution. JPF2, on the other
hand, has the ability to store every state of the program and restore it later
when needed. This approach allows all reachable states of the program to be
examined. The JPF2 architecture is pluggable; there is a possibility to use
various algorithms for the state space traversal. JPF2 can also use heuristic
methods to determine which states should be examined first in order to discover
an error.

The model-checker can search for deadlocks, check invariants, user-defined
assertions (embedded in the code), and LTL-expressed properties. JPF2 pro-
vides techniques for fighting the state space explosion: abstraction, slicing. User
can also specify the level of atomicity, the atomic step can be set to one byte-code
instruction, to one line of Java code, or to a block of code.

JPF2 also supports non-determinism to be injected into a deterministic Java
program. For instance the method Verify.randomBool() returns either true or
false, and JPF2 guarantees that both possibilities will be examined.

Java Pathfinder 2 is a mature tool that is practically used at NASA. The
main advantage is that it checks real Java programs and can provide a proof of
correctness.

SPIN

SPIN [23] is an explicit model checker developed at Bell Laboratories. The
verification is mainly focused on proving the correctness of inter-process com-
munication.

SPIN checks a finite state model specified in the Promela language that was
briefly described above. The specification of a valid behavior can be done by
built-in Promela assertions as well as by LTL formulae.

The verification process can be done in two modes. In the first mode, simu-
lation is performed: SPIN directly executes the specification. This may or may
not discover assertion violation but cannot give a proof of correctness.

The second mode is a formal verification. The Promela model along with
the LTL-based properties is translated to C code, i.e., a special-purpose model
checker written in C language is generated. The model-checking process itself
is performed by the native program that was compiled from the generated C
sources. This approach allows SPIN to be very efficient and handle models with
relatively large number of states.
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3.2 Run-time Verification

Unlike the static verification, the run-time verification analyzes the software by
evaluation of the run-time behavior of a program.

3.2.1 Testing

Software testing is a very general term for process of investigation quality of a
software product. The very essential approach is to run a tested program with
some prepared input data. After the program finishes, we compare the actual
output data with the expected output data; when the two data sets are equal
then the program passes the test.

Testing is a heuristic method; it should give a good confidence of program
correctness but cannot provide a proof of correctness because testing of all com-
binations of input and preconditions is feasible only for trivial programs. There
are plenty of ways how the program can be tested: from the mentioned essential
test case to the fault injection techniques.

Important property of a test is code coverage, i.e., the portion of the code
(measured in statements, paths, conditions, etc.) that is actually examined by
the test. Safety-critical applications are often required to demonstrate 100%
code coverage.

Basic testing methods:

• Black-box testing: the examination of the software functionality is done
without any understanding how the internals behave. The only way how
to investigate the correctness is to analyze the outputs of the program.
The key for successful black-box testing is selecting the input data that
has a chance to discover defects; there are many techniques dealing with
this issue such as boundary value analysis or model-based testing.

• White-box testing: the examination is done with access to the internal
data structures and algorithms of the tested system. The tests can be
thus designed to satisfy some code coverage criteria. Apart from analyzing
final output data, intermediate results of the computation can be analyzed.
Moreover, intermediate data can be also altered (a fault injection), which
is extremely useful for fault-tolerant systems development.

Testing can be viewed from many aspects. For example unit tests investi-
gate the minimal software components (e.g., a class) whereas integration tests
investigate composition of such components. The aim of regression tests is to
discover bugs originated by unintended consequences of program changes during
the development.
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3.2.2 Simulation

Computer simulation is not only useful part of modeling in physics, chemistry
and biology; a simulation can be also used for verification of software systems.

Simulation-based Testing

First of all, simulation approach can be used as an advanced testing technique
useful for reactive embedded programs. A tested system is run without any
modification, but instead of interacting with a real world environment, i.e., some
physical process it controls, it interacts with a simulation of the environment.
An advantage of this kind of black-box testing is that a simulation process is
able to provide far more realistic data than simple hand-written tests.

Simulation-based Checking

Further step is to turn the investigated program into a simulation process as
well. Example of such an approach can be found in [24] where a Java concurrent
program is checked on top of J-Sim [25]. J-Sim is an object-oriented library
for discrete-time process-oriented simulation, it was developed at University of
West Bohemia.

J-Sim is capable to simulate a run of Java concurrent programs. In order to
perform the simulation, a general Java source code must be transformed to a code
that can be handled by J-Sim. Special conversion tool called J-SourceMorph is
provided for the task [26]. The transformation is done in the following way:
all thread-related interactions with JVM such as new thread creation or syn-
chronizations (e.g., calls to wait and notify methods) are replaced by J-Sim
equivalents. This turns a concurrent Java program into a J-Sim simulation pro-
cess.

The program is then run in a simulation mode. It interacts with a model of
Java threading subsystem and with a model of supposed external environment.
The simulation can help to discover thread interaction errors, e.g., deadlocks,
because the simulated thread scheduler is able to provide a variety of timing
schemes. In comparison, the standard JVM scheduler tends to behave regularly
unless it is under a huge stress.

Conclusion

The simulation approach is capable to test a program under fairly realistic con-
ditions. Although it does not provide formal proof of correctness, it provides a
reasonable confidence of the correct program behavior. Another strength is that
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the simulation is able to deal with time-related properties of the tested software
system.

3.2.3 Design by Contract

Design by contract (DbC) is a paradigm based on the idea that collaborating
parts of a program should explicitly specify conditions, e.g., interface and input
data under which they are able to operate. Furthermore, they should also specify
what the result of the computation should be and a set of invariants that are
maintained during the computation.

The name of the paradigm is taken from the business world where a client
and a supplier sign a contract before the business transaction is performed.

Design by contract is native for the Eiffel programming language [27]. Eiffel
is statically typed object-oriented imperative language. Another language worth
mentioning for built-in DbC support is the D language [28]. The paradigm can
be relatively easily used in many common languages.

The Eiffel DbC stands on four constructs:

• Precondition: An assertion that must hold before a method is executed.

• Postcondition: An assertion that must hold after a method is finished.

• Invariant: An assertion that must hold during a lifetime of an object
(class-invariant) or during a computation loop (loop-invariant).

Whenever an assertion does not hold, an exception is raised. A program
should never handle this exception, instead it should "fail hard". In a correct
program, the assertions are never violated; this principle allows assertions to be
removed after debugging, e.g., for performance reasons.

Example of a factorial computation written in Eiffel is shown in figure 3.6.
Te computation requires the input data n to be positive and assures that the
result of the computation will be greater or equal to the input.

Conclusion

Adding assertions to a program is in general a good programming practice. DbC
is only more precise application of this practice. DbC is a general principle to
some extent applicable to any code; however, some languages provide built-in
support for it.
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1f a c t o r i a l (n : INTEGER) : INTEGER i s
2r e q u i r e
3n >= 0
4do
5i f n = 0 then
6Resu l t := 1
7e l s e
8Resu l t := n ∗ f a c t o r i a l (n−1)
9end
10ensure
11Resu l t >= n
12end

Figure 3.6: Factorial with Contracts

3.2.4 LTL Run-time Verification

Run-time verification is a technique between testing and formal verification.
Whereas testing relies on ad hoc informal test cases, run-time verification uses
formal specification. The specification of correct behavior is typically given by
set of linear temporal logic (LTL) formulae.

Unlike model-checking, the verification is not done on a model of the tested
piece of software but on the real application. The specification is checked against
the running program. The main difference between model-checking and the run-
time verification is that the model-checking verifies all possible execution paths
while run-time verification investigates only the actual execution path.

Execution paths are finite as every real program earlier or later terminates.
Note that Büchi automaton is constructed to recognize infinite traces. LTL run-
time verification employs alternating finite automaton [29] to cope with finite
traces.

Java Logical Observer

Java Logical Observer (J-LO) is an implementation of LTL run-time verification
for Java programs; exhaustive description can be found in [30]. J-LO introduces
a special kind of LTL called dynamic linear temporal logic (DLTL). DLTL con-
tains free variables in propositions which can be bound to objects along the
execution trace at run-time. An alternating finite automaton is used to match
the traces.

DLTL predicates can be embedded into program source code in the form of
Java annotations. J-LO views LTL verification as a cross-cutting aspect (see
section 3.3.4) and uses AspectJ to inject a verification code into the code of the
original program.
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Conclusion

LTL run-time verification is a valuable technique; however, it cannot provide a
proof of correctness as it investigates only the actual execution path. The major
advantage is that it verifies a concrete implementation.

3.3 Tools and Practices for Dependable Soft-

ware

This section presents a set of approaches that we consider beneficial for effective
software development. These techniques help people to express their ideas with-
out obstacles; that should reduce a frequency of design flaws and boost faster
development.

3.3.1 Generative Programming

Generative programming is a process of creating a program code by an auto-
mated tool, i.e., the code is not directly written by a human.

Every compiler of a programming language such as C or Ada can be viewed as
an automated code generator; a programmer writes a human-readable code (the
actual source code) and the compiler generates a code runnable by a computer—
a low level machine code. Without compilers and automated low-level code
generation the creation of large applications would be unfeasible.

3.3.2 Model Driven Development

Generative programming can be used to generate a program code from a model
of the intended program. The model of the program is created in order to inves-
tigate some properties of the program, for instance, UML models concentrate on
design and architecture whereas formal models, e.g., written in Promela, inves-
tigate the correctness of algorithms. While it is possible to generate a program
code from a model, the process is not straightforward. In order to investigate
the selected properties, the model is abstracted, i.e., information not necessary
for the purpose of the model is omitted. When generating a program code, we
need to add information omitted by the model. When the information is added
back, we have no longer a guarantee that the generated program code maintains
the properties of the model.

The critical factor of success of the model-centric development is the code
generator. For instance, [31] defines the requirements for a code generator that
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generates RTSJ-compliant1 [45] Java code from abstracted UML2 model as fol-
lows:

1. The code generator should be easy to validate.

• The generated code should be compact.

• Model-to-code traceability should be direct.

• Code generator development tools should allow easy model naviga-
tion.

2. Separation of concerns

• Separating generated from manually-written code should be easy.

• The separation between functional and non functional semantics should
be met.

• The integration of concurrent and sequential semantics should be
easy.

3. The generated code should be high-quality.

4. Expressiveness of target programming language.

• The concurrency semantics of the target programming language should
be expressive and fully encompass the computational model of choice.

• The target language should support object-oriented semantics.

The model-driven development tends to employ domain-specific models as
universal models proved to be more complicated and less practical [32]. These
models can be specified by domain-specific languages.

3.3.3 Domain-Specific Languages

Domain-specific languages (DSLs) are languages tailored to a specific application
domain [33]. DSLs are basically an opposite for general-purpose programming
languages. Whereas general-purpose languages are designed to be as useful as
possible in various situations, DSLs trade this generality for better expressiveness
in a limited domain.

One of the most widely used DSL is SQL2 which is a language designed for
data definition and manipulation. Another examples of popular DSLs are BNF

1Real-Time Specification for Java
2Structured Query Language
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(Backus–Naur Form) used as notation of context-free grammars, MATLAB for
technical computing, VHDL for hardware design, or LATEX for typesetting.

There are several ways how a new DSL can be implemented. In combination
with an application library any general purpose language can act as a DSL. The
library’s API3 uses domain-specific vocabulary for the names of classes, methods
and functions.

Another possibility is to restrict or extend an existing language. The main
advantage of this approach is that users can use syntax or semantics customized
for a specific domain without the cost connected with development of a new
language.

And finally, one can invent a new DSL. This process is not straightforward
and requires both domain knowledge and language development expertise. There
are three main ways how the new language can be implemented:

• Interpreter: DSL constructs are recognized and interpreted using fetch-
decode-execute loop. This is appropriate for languages that have dynamic
character.

• Compiler/application generator: DSL constructs are translated to some
low level language and library calls. The output may be directly executable
or interpreted.

• Preprocessor: DSL constructs are translated to constructs in an existing
language. This can be done by a macro processor as we know from C
language or by some templating engine.

In the field of embedded software, the main advantage of DSL utilization
is safety and checking of correctness. Usual design goal of a DSL is that user
is not able to write inappropriate and unsafe constructs due to the limitations
imposed by the DSL designer. It is also much easier to verify a limited DSL
code than the equivalent code in general programming language.

For instance [38] presents a language called Action Language for specification
of behavior of embedded control system components. Developer uses Action
Language for specification of a state machine; Java or Ada source code is then
generated from the specification.

Another example of utilization of generative programming on the field of
embedded software can be found in [39] and [40]. They use a DSL for building
executable specifications of the demanded program. A specification language is
built using attribute grammar; the language can be customized for a particular
application. A code generator that employs either a macroprocessor or Prolog
then emits an assembly code.

3Application Programming Interface
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Figure 3.7: Logging Aspect in Apache Tomcat [35]

3.3.4 Aspect Oriented Programming

One of the key best practices in software engineering is a separation of con-
cerns, that means program code should be divided into parts that overlap in
functionality as little as possible. Concerns can be usually viewed as features or
behaviors.

In commonly used programming languages, concerns can be separated by
breaking program code into program units (in procedural languages) or into
classes (in object oriented languages). Unfortunately, there are concerns that
cannot be encapsulated easily: so called cross-cutting concerns that are scattered
across a large portion of the code base. Good examples of such concerns are:
logging, security policy, and transactional processing. Note that AOP can be
viewed as a superset of DbC, in other words, DbC can be easily implemented
with the help of AOP.

Cross-cutting concerns are hard to maintain. Assume we have an application
and we want to change the way application logs its activity. Because majority
of program modules use logging, the change will affect many unrelated pieces of
code.

In figure 3.7 [35], you can see the logging aspect in Apache Tomcat: the white
vertical bars represent individual packages, red colour within bars represents
code for logging.
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Applying Aspects

Aspect Oriented Programming (AOP) attempts to address this problem by allow-
ing a programmer to express the cross-cutting concerns in stand-alone modules
called aspects [34]. First of all, there are some terms that should be explained;
the terms were established by the first widely used AOP implementation for
Java, AspectJ [36].

• Advice is a piece of code that implements an aspect. For the case of the
logging aspect, it should contain a call of some logging routine.

• Join-point is a point in the source code where an advice can be applied.
(Analogy: a break-point is a point where a program can be stopped for
debugging purposes.) In most AOP tools, join-points are defined to be
before/after a method call or before/after a particular statement.

• Cross-cut is a set of join-points suitable for a particular advice. A cross-
cut is usually defined by a matching rule. For instance assume a banking
software: an advice for transactional processing should be applied to all
methods that transfer money from one account to another. Demanded
cross-cut might be defined as follows: method’s name contains "transfer"
and the method has two parameters of the Account class.

Implementation

The AOP paradigm is not directly supported by any of the mainstream program-
ming languages. The code of advices has to be injected into the core application
code (the core aspect) by some kind of a preprocessor. The injection process
is referred to as aspect weaving. The weaver takes the core code written in a
particular programming language and the cross-cutting aspects (that are usu-
ally written in an aspect-enhanced superset of the used programming language)
and produces the final code in the original language. The process is depicted in
figure 3.8.

In environments with well-defined binary format, e.g., Java and its byte-
code, the weaving can be also performed on the compiled representation of the
program. In the case of Java, the transformation can be also done at class load-
time. However, the advantage of the source code level weaving is that the final
source code (that is actually compiled and deployed) stays human readable and
thus suitable for some qualification process [37].

In object oriented environments, some parts of AOP can be implemented by
object inheritance. That means a core class is subclassed to be enhanced by
aspects.
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Figure 3.8: Aspect Weaving

Conclusion

AOP is relatively new paradigm that improves software maintainability by en-
capsulating concerns which, when a conventional design approach is used, are
scattered over a large portion code base.

3.4 Java on Embedded Devices

Java is one of the most influential technologies of the last decade. Java program-
ming language is memory-safe, relatively simple (in comparison with C++), and
thus easy to use. Java popularized the concept of platform-independent code
that is run on a virtual machine. Modern implementations of the Java Vir-
tual Machine (JVM) provide performance comparable to the statically compiled
machine code due to the just-in-time (JIT) compilation.

Java was initially intended for embedded devices; however, nowadays it is
the mainstream technology for mid- to large-scale enterprise applications.

With the growing popularity of Java, there is naturally a trend to use Java
for embedded applications and even for real-time applications, potentially even
safety-critical. There are three main obstacles, however:

• Conventional Java implementation is not optimized for devices with con-
strained memory.

• Conventional Java implementation is not ready for real-time scheduling.

• Real-time garbage collector is still mainly a subject of research.

37



Chapter 3. Related Work

3.4.1 Issues with Constrained Devices

Conventional Java implementations are primary optimized for enterprise ap-
plications; that means, they take an advantage of powerful computers. For
example, Sun/Oracle Java Virtual Machine needs at least several megabytes of
memory just to start its execution.

Special approaches must be utilized for devices with limited memory and
CPU power. There exist several JVMs aimed to this domain. For instance, Sun
Java Micro Edition provides a subset of Java Standard Edition API and is avail-
able in two configurations: Connected Limited Device Configuration (CLDC)
targeted at small mobile devices and Connected Device Profile (CDC) for net-
work appliances. Another examples of small memory foot-print JVMs are Java
In The Small (JITS)[41] or LeJOS [42].

Typically, every special JVM implementation brings its own limitation of
features and its own standard library. These incompatibilities go against one of
the most important factor of Java’s success which is portability, i.e., the "write
once, run everywhere" motto.

Slightly different concept is presented in [43] where a custom JVM is built
to meet the requirements of a particular application that uses the standard
Java API. The idea is that an application usually does not utilize all features
provided by JVM, for instance, some applications do not use threading, floating-
point arithmetic, etc. By removing support for byte-code instructions of these
unused features, one can get pretty compact JVM. This approach scales well:
the most simple applications get the most compact JVM.

Java code is compiled to platform independent byte-code. This byte-code can
be either interpreted or further compiled to a native machine code. Conventional
JVMs perform the translation at run-time. This just-in-time (JIT) compilation
can cause some temporal and unpredictable slowdown when an application starts
and also requires additional memory. So this approach does not fit well for
embedded applications. Pure byte-code interpretation runs predictably but also
brings significant performance overhead that is often unbearable for hardware
with limited computational power.

For these reasons, ahead-of-time (AOT) compilation is often used [44]. That
means, Java code (or byte-code) is translated to the native machine code before
the application is run. Possible disadvantage of this approach is that the machine
code is not as portable as the Java byte-code. On the other hand, embedded
applications are often designed for a specific hardware.
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3.4.2 Real-time Issues

Conventional JVMs implementations are not suitable for developing real-time
embedded systems. The Java garbage collector (GC) can cause unbounded lags
of threads execution. Java thread scheduling is out of control of the application.
To address these issues, the Real-time Java Experts Group created the Real-
Time Specification for Java (RTSJ) [45].

The guiding principles followed by the expert group who created the RTSJ
specification included [47]:

• Backward compatibility with the Java 2 platform.

• No syntactic extension to the Java language, i.e., no new keywords

• Write once carefully, run anywhere conditionally.

• Enable predictable execution.

• Balance between current practice and advanced features.

The RTSJ extends Java memory model by providing scoped memory areas.
These areas guarantees bounded allocation time. A real-time thread can explic-
itly enter a memory area; all subsequent object allocations are then performed
within the current memory area. The memory area is destroyed when it is left by
the thread. The concept of scoped memory areas is real-time friendly; however,
this explicit memory management requires fundamentally different programming
style than is usual in conventional Java applications.

The RTSJ defines universal API for real-time threading that is usable for
many real-time scheduling algorithms. The RTSJ also defines asynchronous
event handling and fine-grained timers.

There are several RTSJ compliant Java implementations nowadays.
As mentioned above, the concept of scoped memory areas is a special ap-

proach, unknown to the standard Java. Therefore, there is a lot of research of
GCs suitable for real-time Java.

There is not a winning solution; every proposal has its own pros and cons.
There are two major flaws in many approaches: either the GC is not provably
real-time, or it imposes large space overheads to meet the real-time bounds.

For instance, Bacon et al. present a real-time GC that guarantees even
utilization of worker threads while keeps low space overhead [46]. It also beats
memory fragmentation by dividing memory into movable pages. However, this
GC works only for uniprocessor systems.
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3.5 Compilation of Dynamic Languages

Dynamic language such as Python cannot be fully compiled ahead-of-time. The
main reason is dynamic code generation, literally the eval function.

3.5.1 PHP Compiler

PHP Compiler’s goal is to speed up PHP based applications [48], it uses C as the
output code. PHP is a dynamically and weakly typed scripting language with
support for object-oriented programs. It is primarily used for web applications
development. The major implementation of PHP is Zend Engine which is a
byte-code interpreter.

The PHP Compiler is tightly interconnected with the original interpreter.
It uses Zend Engine for parsing of some parts of the PHP source code. The
generated C code also calls some functions from the interpreter, mainly for
operator evaluation that is rather complicated due to weak typing. Dynamically
generated code (via eval) can not be translated; however, it can be forwarded
to the original interpreter.

3.5.2 The PyPy Interpreter and Compiler

PyPy [49] is an experimental implementation of the Python language developed
at ETH Zurich since 2003. The most interesting attribute of the PyPy project
is that it is written entirely in Python, i.e., it is self-hosting. The main goal
of the project is to bring the recent fruit of research of interpreters and virtual
machines to the world of Python.

Python is dynamically and strongly typed object-oriented language. Its
main implementation is Python interpreter written in C, usually referred to as
CPython. CPython runs on many architectures and operating systems. Apart
from PyPy, there exist several other implementations: Jython that runs on the
top of JVM and IronPython for .Net.

PyPy consists of several parts. First of all, it is an interpreter. As it is written
in Python, it runs on the top of another interpreter; that means, CPython. So
the program that runs on top of the PyPy interpreter pays the cost of double
interpretation.

Another part of PyPy is a compiler. The primary goal of the compiler is
to translate the PyPy interpreter from Python to C source code that can be
compiled to native machine code. Apart from C, there are several other target
codes supported: Java byte-code, MS Intermediate Language (.Net), SmallTalk,
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LLVM4, and JavaScript.
The PyPy compiler is a single-purpose program. It was designed to compile

the PyPy interpreter to the more efficient code and thus to avoid the double
interpretation. The software stack before and after the translation from Python
to C is depicted in figure 3.9.

Application (Python)

PyPy Interpreter (RPython)

Python Interpreter (C)

OS

PyPy

Compiler

Application (Python)

PyPy Interpreter (C)

OS

Figure 3.9: Translation of PyPy Interpreter

Because of the dynamic nature of the Python language, the PyPy com-
piler only supports more static subset of Python called Restricted Python, or
RPython.

However, PyPy approach combines dynamic and static code. The main
idea is that the dynamic behavior is enabled only up to some fixed point of
execution. At first, the program’s object space is constructed dynamically; all
dynamic features are enabled, including eval. At second, dynamic features are
suppressed. The dynamics is limited only to the features known from compiled
languages, such as dynamic object creation, virtual method call, etc.

The frozen program’s object space is used for subsequent transformations:

1. Type inference. A static data type is assigned to every data field. These
types are abstract, i.e., have only indirect relation with the data types of
the target platform.

2. Low-level typing. According to the selected backend, e.g., C of JVM, a
particular native data type is assigned to each data field.

3. Backend-specific transformations. Implementation details such as memory
management and exception handling are addressed here.

4. Code generation. The final output code is generated, e.g., C source code
or Java byte-code.

The main strength of the PyPy compiler is its flexibility and modularity.
Every step of the compilation can be customized easily.

4Low Level Virtual Machine, http://llvm.org
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3.6 Two Main Development Approaches in a

Nutshell

In this section we describe two basic approaches for development of embedded
software. We know that in practice there are many approaches, some are more
advanced than the others, every of them having their own pros and cons. We
deal with these two basic types to emphasize the features of our own dynamic-
language-driven approach proposed in section 5.3.

3.6.1 The Traditional Approach

Despite the progress in software development tools, nonnegligible amount of
software for embedded devices is done in a way that is several decades old.

The traditional way of developing embedded software relies mainly on stati-
cally typed relatively low level languages like C or C++. These languages offer
error detection based on the compile-time type analysis.

Thanks to the system nature of the mentioned languages, programs can
be very resource efficient. In more recent languages such as Java or C#, the
resource efficiency is reached at cost of utilization of special methods mentioned
in section 3.4.

The only correctness that is guaranteed by the tools is the type correctness
of the program. The type correctness is really useful as it detects errors early;
however, it can handle only limited class of errors.

The most traditional way of delivering guarantees of correctness is testing.
There is a whole universe of testing methods. The naive ones only demonstrate
functionality under certain conditions; advanced testing methods can, however,
provide solid guarantees. On the other hand, they can never provide a formal
proof.

Low level languages are not friendly to formal methods, mainly because their
code is polluted by implementation details. It is much easier to extract a formal
model from Java than from a C code.

Low level languages also demand more effort to finish the software simply
because developers have to deal more with various implementation details. Static
nature of the languages also prevent embracing less traditional programming
paradigms.

3.6.2 Approach with Formal Methods

Generally the highest possible guarantee of correctness, i.e., a proof of correct-
ness, can be achieved by formal methods. First of all, there are plenty of ways
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how one can employ formal methods; this section tries to describe the most
general approach.

Model Driven Development

Due to the high complexity of real world software, the formal methods are usually
applied to a simplified model of the intended piece of software. The model is
usually used for the most critical part of the intended application, e.g., the part
that coordinates the work of multiple threads.

Both the model and the requirements are expressed by some language specific
for this domain, e.g., Promela. The model is investigated whether it fulfills the
desired requirements with help of powerful techniques such as model-checking.

If the model is successfully verified, it is transformed to the real program
implemented in some general purpose language. It is important to say that this
transformation is the major weakness of the approach. If it is done by hand, an
error can be introduced due to a developer’s mistake or omission.

Even if the transformation is done by an automated tool, there is no real
guarantee that the final program has exactly the same properties that were
proven for the formal model. The problem is that we add information during
the transformation. The final program has to deal with implementation details.
The added behavior can, in principle, break the proven properties.

Verifying Real Software

The opposite approach is to try to formally investigate the real software. Again,
there are many possibilities.

First, the formal model can be extracted from a piece of the real software.
Generally, it is a nontrivial task. One has to simplify certain aspects of the
program to keep the model verifiable but not to introduce errors due to an
inappropriate simplification.

Some programming languages are friendlier to this approach than the others.
For example, code in high level functional languages, e.g., Haskell, can be for-
mally investigated more easily than code written in low-level system languages
such as C.

According to the risk connected with utilization of a rare technology (the
technology risk aversion will be discussed further in section 4.1.1), the formal
model extraction tool is more useful if it can extract model from widely used
programming language. The most notable tool in this domain is Bandera (see
section 3.1.3) that extracts models from Java programs.

Second, there are tools that formally check real programs for defects without
the need of an explicit formal model. Major strength of this technique is that
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the tool verifies real behavior of the program. The confidence of the anticipated
behavior of the program is almost absolute if the verification tool investigates
the program in the form of machine code (or byte-code), i.e., the code that is
then really deployed.

Java Pathfinder is the most known tool from this domain. It is an explicit
model checker that verifies programs in a form of Java byte-code. More on this
tool in section 3.1.3.

In spite of the fact that tools like Java Pathfinder have the ability to investi-
gate real software, in practice, it is usual to investigate a simplified version of the
program for better results. But the translation between simplified and unsimpli-
fied version of a Java program is probably less error-prone than the translation
between an abstract program model in Promela and the real implementation in
C.
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Towards High Level Dynamic
Approach

This chapter describes the very nature of dynamically typed languages, e.g.,
dynamic creation of objects space, compilation vs. interpretation, etc. Also, the
role of these languages in the software development process is discussed.

4.1 Introduction

With the help of the analyses of various tools and technologies useful for embed-
ded software development that were provided in chapter 3, we have identified
three main characteristics of embedded software development:

• Technology risk aversion. Tendency to use general and widespread pro-
gramming languages as much as possible.

• Abstraction. According to the particular task, the language with the high-
est level of abstraction is selected.

• Avoidance of hard tools. Required quality standards are met with utiliza-
tion of standard tools rather than with special-purpose tools that require
special knowledge. The friendlier the standard tools are for testing and
formal verification the better.

We will analyze these characteristics and confront them with properties of
high-level dynamically typed languages.
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4.1.1 Technology Risk Aversion

General and widely used programming languages are preferred for several rea-
sons. These languages are mature and numerously proved their qualities in prac-
tice. Because there is a large code-base already existing, there are also many
support tools such as IDEs and profilers. And, last but not least, there are
many sufficiently experienced developers. Affinity to proven languages causes a
slowdown of adoption of new programming languages.
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Figure 4.1: Language Popularity [50]

There is no precise way how to measure the popularity of programming
languages. Estimates are usually built with the help of web search engines, one
of them is depicted in figure 4.1 [50].

For the last three decades the most generally used programming language
was C. Many younger and more modern languages are built on top of C: C++,
Java, C#. There is a noticeable move from C to Java in the last decade in the
world of embedded software development. Java is now a proven technology with
huge knowledge-base and many engineers at the market. It is also often taught
at universities.

Java owe its popularity to the growth of network applications. It is popular
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choice for mid- to large-scale server-side applications for its reliability and secu-
rity. Thanks to its portability it is also used at the client side: as Java applets
in Internet browsers and also in cell phones.

Smaller Internet applications, tend to use dynamically typed languages such
as PHP, Ruby or Python. However, Python is established for big web sites
as well, it is one of the languages officially used at Google, Inc., for instance
YouTube1 web site is mainly powered by Python [51].

There is also an apparent growth of JavaScript a the client side. This dy-
namically and weakly typed object oriented language started as an auxiliary
technology for web browsers. Nowadays, there are complex applications devel-
oped in JavaScript with the help of mature libraries and frameworks. Since 2007,
there is also a major competition among JavaScript interpreter implementations
that results in adoption of the state-of-the-art optimization techniques [52].

Note that there were similar competitions between various C and Fortran
implementations when these technologies emerged in the very mainstream.

Internet applications stimulate the growth of dynamically typed languages.
The rise of dynamical paradigm is depicted in figure 4.2 [53]. As a consequence,
there are more and more developers that are familiar with these languages. If
these become mainstream, we anticipate there will be a pressure for adoption of
dynamic typing languages for embedded software development in the same way
as there is a pressure for Java adoption today.

4.1.2 Abstraction

Selecting the right tool for a particular task is a crucial factor of success. Pro-
gramming tools are evolving in time and newer tools usually outperform the
older ones. In the history of computer programming, we have seen that the
tools improvement and consequential productivity boost is often achieved by
adding a new level of abstraction.

We always pay a price with every level of abstraction. First, we usually need
more computing power; second, we give up some control in favor of the tool
itself.

This can be showed on the following examples:

• When we use the C compiler instead of writing directly an assembly code,
we give up the possibility to use some specific features of an underlying
CPU. Thus, every operating system written in C actually contains some
assembly code.

1http://www.youtube.com
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Figure 4.2: Statical/Dynamical Type System Popularity [53]

• Automatic memory management (GC) allows us to write simpler programs
but we usually sacrifice deterministic behavior.

• With virtual machines such as JVM, we can deploy unchanged programs
on many platforms at the cost of interpretation slowdown or complicated
optimization techniques, e.g., just-in-time compilation.

• Dynamically typed languages offer higher flexibility but sacrifice static
type checking and make optimization techniques harder.

• Domain specific languages or visual design tools help us to better describe
the problem of some application domain but these tools are by definition
not universal.

Mainstream development embraces these new layers as computers are more
and more powerful. The world of embedded software usually adopts new layers
with a delay or with some customizations.

The most notable example of the special approach is Java. For embedded
devices one needs special virtual machines and optimizations such as ahead-of-
time compilation. The default Java garbage collector also cannot be used for
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real-time applications. Pitfalls of Java on embedded devices were described in
section 3.4.

Flexibility of dynamically typed languages can be also employed by embed-
ded software development. Optimization of dynamic languages is more difficult
than optimization of the statically typed counterparts. It is obvious, that special
approaches have to be used here.

4.1.3 Avoidance of Hard Tools

Special tools are inevitable when there are strong dependability requirements;
safety-critical systems are the best example. Formal methods and tools are
considered hard and they require very well qualified developers.

Ideally, the general tools used for the development would be capable of doing
all required testing and verification. Unfortunately, it is rarely true as general
tools are designed only to meet the average quality standards.

Therefore it is desirable that the general tools play smoothly with the spe-
cialized ones. The level of abstraction comes into account again. It is hard to
think formally about low level assembly or C code. Higher level languages are
friendlier; for instance there exists a tool named Bandera that extracts formal
models from a Java programs, see section 3.1.3. When a program is written
in a high level purely functional language such as Haskell, one can directly for-
mally investigate a part of the program because Haskell guarantees that the
investigated part has no side-effects.

High level dynamically typed languages are generally not as formally oriented
as Haskell; however, they provide sufficient level of abstraction.

4.2 What Is High Level Language?

Originally, the term high level programming language denoted a programming
language that abstracts from instructions of a processor (CPU), e.g., C language.
Nowadays, C language is not viewed as a high level language for two reasons.
First, assembly code (i.e., human readable notation of CPU instructions) is now
rarely written by hand. Second, there are widely used languages with much
higher level of abstraction than C.

For the purposes of our work, a high level programming language is the
language that abstracts computer resources in far more general way than C
language. Literally, it should have the following properties:

Memory safety. Program cannot reference invalid memory area; this usually
implies absence of pointer arithmetic.
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Automatic memory management. Unused memory allocated objects are
automatically reclaimed; this is usually achieved by garbage collection algo-
rithms.

Data type abstraction Powerful data types such as variable-size arrays, as-
sociative arrays (dictionaries) or sets are incorporated into the language. Lan-
guage should have the ability to express literals of these data types, e.g., [1,2,4]
and {’a’:1, ’b’:2} are list and dictionary literals in Python. If the powerful data
types are not part of the language, they can be provided in a form of tightly in-
tegrated standard library. Language construct should play smoothly with these
data types, i.e., it should be easy to iterate over container’s items and to perform
certain operation with every item.

Exceptions. Language support for exceptions enables to isolate regular and
error-handling code. This leads to cleaner, shorter and more readable programs.

OOP Although the language does not necessarily have to be object-oriented,
some support for object-oriented programming is desirable as OOP is widely
used paradigm. Good support for mainstream paradigms reduces the technol-
ogy risk for the users of the language.

The characterization given is not very precise. The point is that a program-
mer is able to express his or her ideas in natural, readable, and non-verbose
manner without dealing much with the implementation details.

4.3 Dynamic Programming Languages

Some programming languages are more static while others are more dynamic.
Static languages tend to do more work at compile-time whereas dynamic do
more work at run-time.

4.3.1 Being Static

Programs written in static programming languages cannot alter their structure
at run-time. One of the biggest benefits of this design decision is that type-
checking can be reliably performed prior of the program run, i.e., at compile
time.

Although the compile-time type-checking is very helpful early error detection,
it can detect only a limited class of errors. Most statically typed languages allow
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to work with types dynamically and thus the type checking is deferred to run-
time in some situations to gain more flexibility. For instance Java has operator
instanceof that is useful for object polymorphism. Last but not least, even a
program written in a language with advanced static type checking such as Ada
may fail at run-time due to an incorrect type usage as in the case of Ariane 5
rocket failure [55]. See also section 3.1.1.

The fact that all programming interfaces are unchangeable at run-time opens
the possibility of deep static analysis and subsequent aggressive optimizations
during compilation. Perhaps the best example of language with static compile-
time optimization is C++.

Modern object oriented statically typed languages like Java or C# have an
introspection ability, usually called reflection. By reflection, one can examine
an unknown object at run-time, for instance, acquire a list of methods it imple-
ments. It is also possible to call any of the methods from the acquired list.

Reflection effectively bypasses static type checking which prevents compiler
from aggressive optimizations. Therefore this feature is rather available only
for languages that run on the top of a virtual machine and rely on its run-time
optimizations. Reflection us usually used only for special purposes because it
is not very convenient for a programmer, at least in Java and C#; and it also
brings some performance penalty.

4.3.2 Being Dynamic

There is no real distinction between compile- and run-time in dynamic pro-
gramming languages. The main reason is that everything what is specified by a
programmer prior to the program is run, can be later altered at run-time.

The most obvious consequence is that types of variables may change over
time. That means, reliable static type checking is not feasible; type correctness
can be checked only at run-time.

Moreover, every programming interface can be changed at any time. For
instance, methods of an object can be added or removed. One can also take an
existing method and completely redefine its implementation. This feature gives
dynamic languages outstanding flexibility.

In fact, the structure of a dynamic program is exclusively built at run-time.
When the program is run, it starts with an empty object-space. As the object
definitions are reached during the interpretation, these objects are constructed
and added to the object-space. Take a class definition (that is a special kind of
object) as an example. Every class definition is first instantiated as an empty
class, i.e., without any methods and data fields. Later, when a method definition
is reached, it is instantiated (it is just another kind of object) and added to the
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1c l a s s C:
2de f returnOne ( s e l f ) :
3return 1
4
5de f f ( s e l f ) :
6return 1
7
8c l a s s D:
9pass
10
11D. returnOne = f
12
13c = C( )
14x = c . returnOne ( )
15d = D( )
16y = d . returnOne ( )
17a s s e r t x == y

Figure 4.3: Dynamic Class Definition

class. Every method and data field is constructed at run-time. This also implies
that the class definition is never closed.

While programs in static languages usually have "data definition part" and
"computation part", programs in dynamic languages consist only from sequence
of statements. Some statements create data structures while the others do the
computation. It is possible to arbitrarily mix these two types of statements;
however, it is natural that data structures are defined first and computations
are based on them. Let us call it the two-stage design.

Despite this run-time initialization of the object-space, actual language syn-
tax may resemble static initialization as we know it from, say, Java. This is
illustrated in Python code snippet in figure 4.3 where the C class is defined in
a way as it is usual in static languages. The D class is defined without any
"syntantic sugar". An empty class is defined first and the method returnOne is
added later by referencing an independently created function f. The classes C
and D are identical.

Note that the statement D.returnOne = f is the last statement from the
"first stage" that defines the data structures.

Method calls have also more dynamic nature. In static languages a compiler
checks whether methods are called correctly according to the predefined type
rules. In dynamic languages, however, method calling can be more naturally
viewed as message passing, i.e., the method call is actually a message with a given
name (identifier) and arguments. The callee handles the incoming message at
run-time. The standard reaction on the incoming message is an execution of the
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code of the method with the corresponding name. Thanks to this rather loose
coupling, objects are also able to handle unknown messages. The predefined
handler for an unknown message usually raises an exception but this behavior
can be redefined. For instance, an unknown message can be forwarded to another
object.

Dynamic systems are much harder to optimize than the static counterparts.
When everything can be changed at run-time, there is no room for any assump-
tions about the code flow. Optimizations have to be done also dynamically at
run-time and have to evolve as the program structure may evolve.

4.3.3 Compilation vs. Interpretation

Compilation is a process that transforms a source code written in a programming
language (source language) to another computer language (target language).
The source code is typically human-readable and has a higher level of abstrac-
tion than the target code which is usually machine-readable. When the target
language is a machine code, it can be interpreted directly by a computer, i.e.,
run on hardware.

Apart from interpretation by a computer hardware, it is also possible to
reimplement the hardware functionality in software and build a virtual machine.

As another step, we can build a virtual machine that does not interpret
a machine code of a particular physical computer but interprets some kind of
artificial hardware-independent machine code. The most notable example of
such a technology is Java Virtual Machine that interprets portable Java byte-
code.

For the purpose of this work, we define machine code as the code that can
be directly run on a contemporary hardware; code that runs only on virtual
machine will be referred to as byte-code.

A program can be run on different levels of interpretation. Programming
languages that enable their code to be compiled to machine code are usually
referred to as compiled while others are referred to as interpreted. It is important
to note that each level of interpretation brings an overhead; compiled languages
run order of magnitude faster than interpreted. On the other hand, a software-
implemented virtual machine provides a greater amount of flexibility.

Static and Dynamic Compilation

Static languages such as C or C++ are designed with compilation to the machine
code in mind. Because of their very static nature, the compiler is able to perform
aggressive ahead-of-time optimizations. Note that there also exists C and C++
interpreters [54] but they are not widely used.
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More recent static languages such as Java an C# are compiled to byte-code
rather than machine code. The main advantage of this approach is portability.
Because the byte-code interpretation is relatively slow, virtual machines usu-
ally perform just-in-time compilation to machine code. Optimizations during
the just-in-time compilation can take advantage of the knowledge of the run-
time program behavior. This approach is, however, optimized mainly for large,
enterprise-grade applications.

Dynamic languages are, on the other hand, designed with interpretation in
mind. They also usually depend on the possibility to create, parse and run a
piece of source code at run-time; the function that takes an arbitrary string
containing a piece of source code and runs it is usually called eval.

The most straightforward and naive way of interpretation is to directly in-
terpret the abstract syntax tree that results from the source code parsing. For
instance, the initial implementation of Ruby used this approach. Parsing the
source code prior to every program start is rather inefficient; moreover, the AST
interpretation is not very fast. Therefore, many dynamic languages are compiled
ahead-of-time to byte-code that is then interpreted. Python is a typical example
of this approach. It is important to note, that this compilation can not be done
in all cases ahead-of-time because a new code can be created at arbitrary time
via eval. On the other hand, there is only a limited use of eval in an average
program.

It is of course possible to compile at least some limited parts of the dynamical
code to machine code; some recent JavaScript implementations do that [52].

Dynamic languages implementations naturally tend to perform optimizations
at run-time. This approach can generally lead to rather fast execution.

Note on Constrained Devices: Run-time optimization for embedded de-
vices is challenging if not infeasible. First, emitting optimized version of the
code just-in-time naturally requires additional memory; the more aggressive op-
timizations with code variants for different data types, the more memory is
needed. Generating the optimized code also needs CPU time; in the case of the
reactive system, the just-in-time compiler has to be very careful in the sense of
scheduling its work. Last but not least, the result of the dynamic optimization
is uncertain because it relies on heuristics. It can lead to a very fast execution
in general; however, there might be some corner cases in which the execution
path remains unoptimized and thus slow.
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4.4 Open for New Paradigms

There are many programming paradigms; some of them are widespread while
others are adopted rarely. Most languages support several paradigms; the sup-
port can be either explicit or implicit. Explicit support means that the language
constructs are designed with a particular programming paradigm in mind. Im-
plicit support only allows a particular paradigm to be used in the language;
however, usually with less convenience.

4.4.1 Objects, Aspect, Contracts, ...

It is possible to write an object oriented program in plain C but it generally re-
quires more effort than implementing the same program in C++ or Objective-C.
Design by Contract (DbC) is explicitly supported in Eiffel and D programming
language (note that none of these languages are mainstream); however, this
paradigm can be easily embraced by many languages. Se also section 3.2.3 for
more information about DbC.

Some paradigms, such as Aspect Oriented Programming (AOP, see section
3.3.4), cannot be easily embraced in a programming language that does not have
explicit support for it.

The key process of AOP is called aspect weaving. If the language has an
explicit support for AOP, the aspect weaver is a part of the compiler or inter-
preter. One can also create aspect weaver as an external tool that works as a
source code preprocessor or byte-code postprocessor.

There is a better implicit support for new paradigms in dynamic languages
than in static languages. The reason is that the structure of the program, the
program’s object space, can be manipulated at run-time. This manipulation
is done within the program itself. Utilization of self-modifying constructs in a
dynamic language is much easier than customization of a compiler of a static
language or a virtual machine.

In order to demonstrate this fact, we have implemented a simple DbC sup-
port in Python, see figure 4.4. Our implementation assumes that for a par-
ticular method, there may exist an auxiliary method that checks precondi-
tion: the method factorial has an auxiliary precondition check in method fac-
torial__precond. The DbC weaver transforms a class, in our example the Math
class. The transformation injects call of the precondition check method before
every call of the method that actually implements the desired functionality, i.e.,
the factorial__precond method is always called before the factorial method.
Postcondition checks can be implemented in the same way.

The injection is done by DbcWeaver that is activated during the construction
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1de f make_wrapped_call ( func , precond ) :
2de f wrapped (∗ args ) :
3# This wrapper f i r s t c a l l s the pr e cond i t i on check ,
4# then the o r i g i n a l method .
5precond (∗ args )
6return func (∗ args )
7return wrapped
8
9c l a s s DbcWeaver ( type ) :
10de f __init__( c l s , clsname , bases , d i c t ) :
11super (DbcWeaver , c l s ) . __init__( clsname , bases , d i c t )
12
13f o r name in d i c t . keys ( ) :
14# This method w i l l be wrapped .
15func = d i c t [ name ]
16i f not c a l l a b l e ( func ) : cont inue
17
18try :
19# Try to obta in the method that w i l l be used f o r
20# precond i t i on check ing .
21# I t i s i d e n t i f i e d by naming convention .
22precond = d i c t [ name + ’ __precond ’ ]
23except KeyError :
24# There i s not a pr econd i t i on
25# check f o r method " func " .
26cont inue
27
28# Set wrapped method ins t ead o f the o r i g i n a l one .
29s e t a t t r ( c l s , name , make_wrapped_call ( func , precond ) )
30
31c l a s s Math :
32# Weaving w i l l be app l i ed to t h i s c l a s s .
33__metaclass__ = DbcWeaver
34
35de f factor ia l__precond ( s e l f , n ) :
36# After weaving , t h i s method i s c a l l e d
37# be fo r e " f a c t o r i a l " method .
38a s s e r t n >= 0
39
40de f f a c t o r i a l ( s e l f , n ) :
41r e s u l t = 1
42f o r i in xrange (2 , n+1):
43r e s u l t ∗= i
44return r e s u l t

Figure 4.4: Design by Contract in Python
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of the Math class.
Note that our example relies on Python’s support for metaprogramming

(see the __metaclass__ attribute); however, this support is only a sort of
syntactic sugar and an equivalent functionality can be achieved without it. The
weaver traverses through all attributes of a newly constructed class and suitable
methods are replaced by methods that first do the precondition check and then
call the original algorithm implementation.

Our example shows one way how a new paradigm can be incorporated into a
dynamic language. We also use slightly different approach to DbC in our FTP
client case study, see section 10.2.2.

4.4.2 Domain Specific Languages

Dynamically typed languages also provide viable base for building domain spe-
cific languages, because they provide useful features such as named (keyword)
arguments, closures and operator overloading (in the case of Ruby). These
features enable the classes and objects of some domain-specific library to be
accessed in a way natural for the domain.

Good examples are Rake2 and SCons3 that are software construction tools
like GNU Make and Apache Ant. Rake is based on Ruby while SCons is Python-
based. See simple examples in figures 4.5, 4.6, and 4.7 for illustration of how
Ruby and Python can be used to build a makefile-like DSL.

See figure 4.8 for an example of relation data definition and querying in
Python, literally Django4 web framework. These constructs are used for gener-
ating appropriate SQL commands.

4.5 Conclusion

Focusing on high level dynamic languages makes sense. Dynamic languages are
and will be part of the main stream technologies, so there will be engineers and
support tools available in the future. There is a huge opportunity for utilization
of these flexible technologies for development for constrained embedded devices.

The strong advantages of dynamic approach are paid by several disadvan-
tages. It is obvious that this may work for constrained embedded devices only
with the help of new methods and methodologies. Code performance, correct-
ness, and memory management are the main issues that have to be analyzed
and solved.

2http://rake.rubyforge.org/
3http://www.scons.org
4http://www.djangoproject.com
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1r e q u i r e ’ rake/ clean ’
2
3CLEAN. inc lude ( ’ ∗ . o ’ )
4CLOBBER. inc lude ( ’ he l l o ’ )
5
6task : d e f a u l t => [ " h e l l o " ]
7
8SRC = F i l e L i s t [ ’ ∗ . c ’ ]
9OBJ = SRC. ext ( ’ o ’ )
10
11r u l e ’ . o ’ => ’ . c ’ do | t |
12sh " cc −c −o #{t . name} #{t . source }"
13end
14
15f i l e " h e l l o " => OBJ do
16sh " cc −o h e l l o #{OBJ}"
17end
18
19# F i l e dependenc ie s go here . . .
20f i l e ’ main . o ’ => [ ’ main . c ’ , ’ g r e e t . h ’ ]
21f i l e ’ g r e e t . o ’ => [ ’ g r e e t . c ’ ]

Figure 4.5: Rake Script That Builds a C Application

We will research and propose a development approach aimed to dynamic
languages on embedded devices in the subsequent chapters.
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1namespace : cake do
2desc ’make pancakes ’
3task : pancake => [ : f l ou r , : milk , : egg , : baking_powder ] do
4puts " s i z z l e "
5end
6task : butter do
7puts " cut 3 tab l e spoons o f butter in to t iny squares "
8end
9task : f l o u r => : butter do
10puts " use hands to knead " +
11" butter squares in to 1{{ f r a c | 1 | 2 } } cup f l o u r "
12end
13task : milk do
14puts " add 1{{ f r a c | 1 | 4 } } cup milk "
15end
16task : egg do
17puts " add 1 egg "
18end
19task : baking_powder do
20puts " add 3{{ f r a c | 1 | 2 } } teaspoons baking powder "
21end
22end

Figure 4.6: Abstract Rake Script Describing Pancake Cooking [56]

1env = Environment ( ) # Create an environmnet
2
3l i b _ t a r g e t = " h e l l o "
4l i b_sour ce s = [ " l i b h e l l o . c " ]
5
6l i b h e l l o = env . SharedLibrary (
7t a r g e t = l ib_ta rg e t , source = l ib_sour ce s )
8h e l l o = env . Program(
9source = [ " he l l owor ld . c " ] , t a r g e t = " he l l owor ld " )
10myhello = env . Program(
11source = [ " myhello . c " , " l i b h e l l o . so " ] , t a r g e t = " myhello " )
12
13env . I n s t a l l ( d i r = " Bui ld " , source = h e l l o )
14env . I n s t a l l ( d i r = " Bui ld " , source = myhello )
15env . I n s t a l l ( d i r = " Bui ld " , source = l i b h e l l o )
16env . A l i a s ( ’ i n s t a l l ’ , [ ’ Build ’ ] )

Figure 4.7: SCons Script That Builds a C Application with a Library
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1c l a s s User ( Model ) :
2l o g i n = CharField ( max_length=20 , unique=True )
3f ir st_name = CharField ( max_length=30)
4last_name = CharField ( max_length=30)
5
6my_users = User . o b j e c t s . f i l t e r (
7f ir st_name=’Andrew ’ ) . order_by ( ’ last_name ’ )

Figure 4.8: Data Definition and Querying in Python (Django)
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Chapter 5

The Proposed Development
Approach

This chapter contains an overall design of our development approach. First
we determine the properties of the intended applications, i.e., the hardware and
software platform. Then we select the tool-chain for our approach: the language,
the compiler and the formal verifier.

5.1 Introduction

There are three main objectives of software development for embedded devices.
Their nature forms the development process.

• Fit for purpose

• Dependability

• Reasonable development cost

Software is fit for purpose if it does the desired job. That means, it has all
the functional features that were previously specified. Moreover, it has some
non-functional properties foremost its hardware requirements fit the intended
computer.

The key aspect of dependability is correctness, i.e., behavior according to the
specification. It is practically impossible to prove the ultimate correctness of a
piece of real-world software. We can only earn a set of guarantees of the right
functionality in practice. The most common and relatively mild guarantees are
based on testing. One can earn more solid guarantees by a formal proof of
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some functionality. Thus the development process should be friendly to formal
methods.

Without any doubts, the cost of development is always important. The
development process should embrace methods that enable to build software in
a reasonable time and thus with a reasonable cost.

In this chapter, we propose a development approach for embedded devices
that relies on high level dynamic languages and profits from their properties.

5.2 Specifying Application and Target Platform

Let us specify what kind of applications is our development approach suitable
for and what software and hardware platform we are targeting.

5.2.1 Architecture

We are interested in multi-threaded programs. First, they are common as many
real-world programs have to handle multiple tasks at once. Second, their design-
ing, debugging, and finally proving their correctness is much more complicated
then in the case of single-threaded programs.

We are interested in reactive systems; however, we do prefer neither event-
driven nor time-triggered systems.

Many reactive systems are real-time. We rely on high level dynamic lan-
guages and thus we insist on automatic memory management. Therefore, our
approach cannot be used for hard real-time systems due to the fact that real-
time garbage collectors are a subject of active research. However, if there were
industry-ready hard real-time GC, it can be incorporated. Nowadays, it can be
only used for soft real-time systems.

Inability to cope with hard real-time requirements also makes our approach
hardly applicable to safety-critical systems.

5.2.2 Software

We assume the final product is interfacing an operating system rather than
bare metal. We are not restricted to any particular OS; however, our primary
software platform is Linux and thus POSIX interface.

For convenience and to overcome differences of various operating systems,
we do not access OS directly but through the standard C library. Our primary
target is GNU C Library1 but other variants such as uClibc2 should work as

1http://www.gnu.org/software/libc/
2http://www.uclibc.org/
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well.
Our threading relies on POSIX Threads [57] that are available for many

Unix-like operating systems and even for Microsoft Windows.

5.2.3 Hardware

We are not restricted to any particular hardware architecture. Our primary
CPU architecture is Intel x86, though. Support for another architectures such
as ARM can be achieved relatively simply because we use portable assembly
code, more known as the C language.

We currently assume only 32-bit architectures.
Other hardware requirements are given by the underlying operating system.

As we insist on memory-safe language, it can be safely operated on systems
without MMU3 such as µClinux4.

5.3 Dynamic-Language-Driven Approach

We believe our development approach has some significant strengths in com-
parison with common approaches briefly described in section 3.6. This section
points out key features of our proposed approach.

5.3.1 Basic Principles

First, the program code is primarily written in a widely used high level dynamic
language. According to previous chapters, the code should have the following
properties:

• Relatively short, easy to maintain and debug due to the expressiveness of
the high level language.

• Flexible and open for new paradigms due to the dynamic approach.

• Familiar for many developers on the market because it is based on a
widespread language.

Second, the final output is in the form of native machine code; it is generated
ahead-of-time, not just-in-time. Machine code is fast and compact enough to
cope with constrained hardware resources. However, we will embrace automatic
memory management.

3Memory Management Unit
4http://uclinux.org/description/
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Third, there is a support for formal verification. There has to be a way how
to earn solid guarantees of correctness of the final application. Moreover, the
formal methods used should be accessible even for wide developer audience.

The development approach is designed to have three steps.

1. The program is written in a high level dynamic language. It is runnable
by the standard interpreter of the language.

2. The machine code intended for deployment is generated. The program is
runnable on an embedded computer.

3. Various properties of the code are formally verified or at least tested with
the help of formal methods.

The main strength of the first step is the easiness of development. Because
there is no need of compilation, one can quickly experiment with the code and
create rapid prototypes. Debugging of an interpreted code is more straightfor-
ward than in the case of machine code that is run on CPU. The behavior of
the virtual machine can be easily changed; in contrast, one can not change the
behavior of a physical CPU.

The second step takes the debugged high level program as an input and
produces low-level machine code as an output. This step is actually challenging
and heavily depends on the selected tool-chain, following chapters are dedicated
to this topic.

The result of the third step is a set of guarantees of correctness of the final
machine code. The guarantees are earned by experiments propelled by formal
methods.

The overall scheme of our proposed development approach is depicted in
figure 5.1.

5.3.2 The Tool-Chain Selection

As we have defined our requirements, it is time to choose the language and the
tools we will rely on. Note that our requirements are also partially in contradic-
tion; we embrace high level dynamic approach but we require full ahead-of-time
compilation. So it is obvious that dynamic behavior has to be suppressed to
some reasonable level at some point of translation.

We want to rely on mainstream language to conform technology risk aversion
so there are only a few possibilities: PHP5, JavaScript6, Python7, Perl8, and

5http://www.php.net
6http://www.ecma-international.org/publications/standards/Ecma-262.htm
7http://www.python.org
8http://www.perl.org
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Figure 5.1: Overall Scheme of Our Approach

Ruby9.
All these languages are really high level and dynamic. Level of support

of object-oriented programming and exception handling, however, differs. Perl
has only implicit support for OOP and exception handling. There are also less
rational criteria such "cleanness" of the language design; we state that JavaScript,
Python and Ruby are cleaner and more elegant than Perl and PHP.

The main criteria is, however, availability of an ahead-of-time compiler that
emits machine code with no additional dependencies. The compiler should not
completely sacrifice dynamic features. The only tool that meets our requirements
is the Python compiler called PyPy, see section 3.5.2.

The main useful features of the PyPy compiler for ours intentions are:

• The output code is not emitted directly from the source code but from a
dynamically constructed object space and thus really embraces dynamics.
In contrast, the PHP compiler, see section 3.5.1, works directly with the
source code and thus completely avoids the dynamic features.

• There are several output codes available; though, we employ only C and
Java byte-code.

• The translation process is fully modular and easy to tweak. PyPy itself is
written in Python.

There are also many features of the Python language that we consider ap-
pealing:

• It has strong type system. Implicit conversion in weakly typed languages
(PHP, JavaScript, Perl) are considered error-prone.

9http://www.ruby-lang.org/
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• It is object-oriented. Despite multiple inheritance the object model is
simple and will be familiar for average Java developers.

• It has explicit support for exception handling.

• Powerful syntax that allows short but readable code, for instance list com-
prehensions.

There are naturally some risks. The PyPy compiler is a single-purpose pro-
gram. Its mission is to translate the PyPy interpreter from Python to more
efficient code, usually C. The compiler has to be modified in order to translate a
general multi-threaded embedded program. The PyPy compiler also introduces
some limitations to the language, or, more precisely, to the structure of the com-
piled program’s object space. The set of these limitations is called Restricted
Python, or RPython. RPython properties have to be evaluated in order to deter-
mine impact of the restrictions to our development approach. And finally, PyPy
is relatively mature project with more than seven years of history; however, it
is a research project that does not necessarily meet industry quality standards.

PyPy is still in active development. This work is based on PyPy development
snapshot from August 2008.

5.3.3 Generating Target Code

We have defined that the final program has to be in the form of native machine
code. There are many machine codes, each for every CPU family; we do not
want to limit our development approach to any particular platform.

An obvious solution of this issue is not to directly generate the platform
specific assembly code but to generate some platform independent intermediate
code. Natural candidate for this portable assembly code is C language. It is
cross platform but sufficiently low-level to provide precise control over the final
machine code.

With standard C as an intermediate code, we also gain entire ecosystem of
tools developed for this language. The most important is that we can utilize
optimizations that are provided by contemporary C compilers.

Standard C is the primary output code of the PyPy compiler so we get the
support for various platforms for free. It is, however, important to note that
the generated C code is hardly human readable. It is really just a platform
independent version of the machine code: bodies of functions are unstructured,
blocks of code are interconnected by labels and jumps (gotos).

Notable part of the generated C code is reimplementation of some features of
Python interpreter. These features fill the gap between the high-level RPython
code and the low-level C code.
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Python has exceptions, C does not. PyPy compiler has to generate equivalent
code by utilizing labels and jumps.

Python is object oriented, C is not. Instead of classes, PyPy compiler gen-
erates structures with explicit virtual method tables.

Python interpreter provides garbage collection; C code manages memory
manually. PyPy compiler addresses this issue by custom garbage collectors for
C code.

We will describe and analyze the PyPy compilation process to specify the
exact properties of the generated C code. Chapter 6 is dedicated for such an
analysis.

5.3.4 Support for Formal Verification

Only a negligible portion of real software is suitable for direct formal verification.
Also specification of requirements is rarely given as a set of formulae. The
mathematical proof of correctness of the whole program is not the only goal
that is worth reaching.

We view formal methods as an advanced testing tool. It is really hard to
prove that a program is ultimately correct; it is, however, not so hard to prove
that some particular thread interaction scheme is deadlock free. Moreover, the
effort to formally prove even some trivial properties leads to a better structure of
the code as the developers have to separate individual aspects of the application
more precisely in order to make the verification feasible. The positive influence
of the formal methods should work in the same way as in the case of test-driven
development [58].

Examining Possibilities

There are plenty of ways how to support formal methods and every way has its
own pros and cons; there is not any universal verification process. Selection of
the verification process depends on the set of properties that needs to be verified.

Thus we can do nothing better than to evaluate some possibilities and choose
the most promising one. We are especially interested in explicit model checking
because it can be applied to real programs.

First, it does not seem promising to verify the final output code, i.e., C or
machine code. This code is full of low-level implementation details. The more
abstract the code is, the better.

The process of translation from RPython to C is about adding implementa-
tion details. The input high level code is rather abstract, it relies on a garbage
collector, assumes objects and exception handling as native features. Contrary,
the generated C code explicitly implements these features on the lower level of

67



Chapter 5. The Proposed Development Approach

abstraction. Thus verification of the RPython source code is easier than verifi-
cation of the C code.

The second possibility is to generate some special version of the final C code.
Instead of sequential run, the generated program would enumerate all possible
states. This is patterned after the SPIN model checker. SPIN translates a formal
model specified in Promela language to C code. The C code is a one-purpose
model checker that solves the model checking problem for the specified formal
model. So this approach is feasible; however, it would require a tremendous
amount of work to implement it.

The third possibility is to add some verification facility to the PyPy compiler
itself. During the compilation, PyPy uses a technique called abstract interpreta-
tion in order to create a data structure called flow-graph from the Python byte-
code. The abstract interpreter can be possibly tweaked into a model-checker
that enumerates the program’s state space. The result would be an explicit
model checker patterned after Java Pathfinder. We believe that this approach
is also possible; however, also requires amount of of work we can not afford.

The fourth possibility relies on a simpler PyPy modification. Instead of
generating C code, we would generate an input code for some verification tool,
such as the SPIN model checker. The main disadvantage is that Promela is
not a general purpose programming language. It lacks some features such as
floating point computations and synchronization primitives based on channels
differ significantly from common locks and semaphores.

The Selected Tool: Java Pathfinder

We finally decided for the fifth way. We let the PyPy compiler to generate
Java byte-code, then we verify the code by explicit model checker called Java
Pathfinder.

Java Pathfinder is one of the most known verification tools, see also section
3.1.3. Its main advantage is that it does not verify any special purpose modeling
language but the real program code, literally, Java byte-code.

Java byte-code can be generated by the PyPy compiler more straightfor-
wardly than C code because RPython and Java are similar in many ways. Both
languages are object-oriented, garbage collected, have exception handling.

We use the Java byte-code as a modeling language. It is slightly more ab-
stract than the C code we intend to deploy. On the other hand, the abstraction
gap between C and Java-byte-code is not so wide as in the case of, say, Promela,
because Java byte-code is a binary representation of general-purpose program-
ming language.

To make the verification process meaningful, we have to guarantee that the
C code and the Java byte-code are equivalent. It is obvious that the two codes
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that are run on different platforms can not behave exactly equally. However,
there are also many properties that are the same in both codes. For instance,
the deadlock found by Java Pathfinder in the Java byte-code means that there
is certainly a deadlock in the C code—under the condition that the semantics
of synchronization objects is equal.

Our verification process also can take advantage of dynamic approach. The
Java Pathfinder verifies a real program code. However, in practice, one often
have to build a simplified version of the program to make the verification feasible,
e.g., extract the critical part. The dynamic nature of Python—the dynamic
creation of program’s object space—may help here. As object interconnections
in dynamic languages are more loose, it is easier to generate a version of the
program that contains some mockup objects instead of full-featured objects.

5.3.5 Refining the Development Approach

After we have selected some concrete tools, we can describe the development
approach in more detail. We propose an iterative development process. There
are three types of iteration, every type has a different cost and different purpose,
see figure 5.2.

The first type of iteration exclusively uses the standard Python interpreter.
A developer applies a change in a RPython source code of the application, runs
the modified code in the Python interpreter and instantly sees how the change
work. This type of iteration is very fast as there is no compilation. This approach
perfectly fits test-driven development.

The second type of iteration deals with a testing based on formal methods.
A Java byte-code is generated by PyPy from RPython sources and the generated
byte-code is investigated by Java Pathfinder. This iteration is more expensive
than the first one. First, one have to precisely formulate the formal properties
the investigated code should meet; second, the investigation itself may consume
significant computation time.

The third type of iteration deals with the final code. The C code is generated
by PyPy from RPython sources and is subsequently compiled into the machine
code. The machine code can be deployed to the intended target embedded
device. The final code on the final hardware can be subject of various tests, for
instance performance test.

The first type of iteration is very cheap and can be performed with high
frequency. The second and the third type tend to be costly. However, their
particular cost depends on the nature of the application and conditions. One
can have a cheap set of semi-formal tests that can be performed frequently and
a very complicated way how to test on the target hardware. And vice versa, one
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can have a very costly set of formal tests that require hours of computing and
an efficient way how to test on the target hardware.
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Figure 5.2: Refined Scheme of the Proposed Development Approach

5.4 Conclusion

We have specified a domain for our development approach: the software and
hardware platform and the range of applications it is suitable for. We have also
selected the verification tool.

Real results of our development approach heavily depend on the PyPy com-
piler. PyPy defines a set of limitations of the source code (RPython), it is
responsible for efficiency of the output code and finally, it generates code that
is an input for the model checker. That is why we have to seriously analyze
this tool and the compilation process. Chapter 6 describes the relation between
generated C and Java byte-code, chapter 8 describes the verification procedure
in details.
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Chapter 6

Analysis of the PyPy Compilation
Process

This chapter is based mostly on two sources, the first is a technical report
Compiling Dynamic Language Implementations [49], the second is an analysis
of the PyPy source codes. Properties of the PyPy compilation process have
crucial impact on usefulness of the proposed development process.

The compilation process is a bit unusual so we first provide a short overview.
Then we describe the subset of Python that makes the compilation feasible.
Then we dive deeper into the technical details of the compilation process: ab-
stract interpretation, flow graph, type inference, flow graph transformations.

The main achievement of the chapter is a formal definition of the flow graph
and formally described flow graph transformation.

Last, but not least, we deal with generation of the output code (C or Java
byte-code).

6.1 Translation Process Overview

Input of the translation process is a source code in the form of Python language.
The source code has to meet some guidelines that are called Restricted Python,
or, RPython. The output of the translation process is, for our purposes, C code
Java byte-code.

In section 4.3.2, we mentioned the two-stage design. The PyPy compiler not
only embraces this idea but actually enforces it. The first stage that contains
definitions of data structures, classes, methods, and standalone functions is exe-
cuted by the PyPy interpreter as a standard Python program. The result of this
step is an initialized program’s object space, i.e., all classes and their methods
are defined. Object construction is not limited by RPython constrains; one can
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build classes and methods with the help of all dynamic features, including eval,
which is crucial for adoption of paradigms such as AOP and DbC.

Execution of the "second stage" would follow after the object space initial-
ization. If the Python program is run by an ordinary interpreter (CPython), the
code after the initialization part is simply executed.

As the PyPy compiler tries to compile the program, not to run it, the "second
stage" processing is slightly different. Instead of ordinary interpretation, the
abstract interpretation is used. The PyPy abstract interpreter does not execute
Python byte-code instructions but instead records them into a data structure
called flow graph. A set of flow graphs—one for each function—can be viewed
an alternative representation of the program’s object space.

To make the abstract interpretation feasible (finite), it has to run only over
frozen program’s object space. When the abstract interpretation is in progress,
no new classes or methods can be introduced. From this point on, RPython
guarantees that the program code is as static as for instance in Java.

When the abstract interpretation is finished, then several flow graph transfor-
mations are performed. The first transformation adds a type annotation: static
data types are inferred and type information is added to every data field in the
flow graph. From this point on, the program is completely statically typed. To
make the type inference feasible, RPython imposes another set of constrains to
the code, for instance a single variable can not change types over time.

Up to this point, the compilation process is independent of any target plat-
form; the ongoing step depends on the selected target platform. The data types
inferred are rather abstract, i.e., do not define the binary representation. In
order to generate some real target code, the abstract types have to be mapped
to the real data types of the target platform: for instance, an abstract integer
becomes C’s or Java’s int.

Subsequent transformations deal with limitations of target platforms. In the
case that the target platform lacks an explicit exception handling or garbage
collection, these aspects are added to the flow graph. For instance, exceptions
can be implemented by additional jumps and labels; garbage collection can be
implemented by adding of reference counters.

When the flow graph is at the level of abstraction of the target platform, the
final code is generated.

Overall compilation scheme is depicted in figure 6.1

6.2 Restricted Python

Restricted Python (RPython) is a subset of the Python programming language.
Every RPython program is also a valid Python program. Goal of the restrictions
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Figure 6.1: Overall Compilation Scheme

defined by RPython is to enable translation of RPython to a lower level static
code.

The restrictions are not defined on the syntax level. The restriction is rather
temporal: during the construction of the program’s object space (that we call
"the first stage") the usage of the Python constructs is unlimited. Code of the
"second stage" can only use the classes and methods that were build in the "the
first stage".

The main difference between RPython and general Python is that the first
and second stages are strictly separated in RPython. In general Python, bits of
the "first stage code" and the "second stage code" can interleave, i.e., the object
space can be altered at any point during the execution.

The structure of the program’s object space has to comply with another set
of restrictions because we have to assign a static data type to every variable.
Also some more exotic language constructs such as iterators or generators are
either limited or not allowed during "the second stage" because the authors of
the PyPy compiler did not feel the need to support them.

This work is based on the PyPy interpreter that implements the version 2.4
[59] of the Python language. So RPython is subset of Python 2.4.

The following sections describe the limitations of the code that is the result
of the first stage.

6.2.1 Primitive Data Types

In dynamic languages, the type information is connected with a value rather
than with a variable. Therefore, a single variable can contain values of different
types over time. Contrary, RPython requires that the type of a variable has to
be static. So the following code is valid Python code but not valid RPython
code:

1a = 42
2a = " a s t r i n g "

It is important to note that the type of a variable is never explicitly defined
by a programmer in RPython, he or she only defines it implicitly by values
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that are assigned to the variable. Static data types are inferred by the PyPy
compiler.

Numeric Data Representation

Integers

Python has two integer data types: int and long. The size of the first type
equals the size of the machine integer; that is 32 bits if we assume 32-bit target
platform. This type is straightforwardly rendered as a 32-bit long in C and as
32-bit int in Java byte-code.

Python’s long is an infinite size integer and this type is unsupported by
RPython. In the CPython interpreter every int can be silently converted to
long if it would overflow. Contrary, int in a RPython program translated to C
or Java byte-code overflows silently. So this is a point in which the compiled and
the interpreted RPython programs may differ in behavior and programmers have
to be careful. Integer arithmetic error handling is consistent on all platforms;
when dividing an integer by zero, ZeroDivisionError exception is always raised.

Floats

Python has one floating point type called float that is implemented by the double
precision format as specified by IEEE 754 and therefore by double data type as
specified by C and Java. RPython also supports computations with special
values such as NaN and INF ; however, there is one notable difference between
interpreted and compiled RPython. When dividing a float by zero, CPython
interpreter raises ZeroDivisionError whereas after translation to C or Java byte-
code the expression is evaluated as INF or NaN. So this corner case have to be
carefully handled by programmers.

Booleans

Python has a type called bool with the domain {True, False}. In Java byte-code,
this type is represented by Java’s boolean data type whose bit size depends on
JVM implementation (usually 8 bits). In the generated C code, this type is
declared as bool_t whose bit size usually equals the bit size of int.

Strings

Python strings are internally represented as arrays of bytes. There is no special
data type for a single character; a character is simply a string of length one.
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RPython does not impose any limitation on strings; however, the internal
representation on target platforms may differ. In C, the string is represented
as an array of 8-bit chars; in the case of Java, native String is used, i.e., every
character is converted to 16-bit Java’s char.

Python also provides Unicode strings in UCS-2 encoding, i.e., every character
is represented by a 16-bit value. If translated to Java byte-code, the native String
can still be used1. For C, the PyPy translator uses an array of 32-bit integers,
i.e., it encodes strings by UCS-4/UTF-32.

6.2.2 Compound Data Types

The standard Python list—more precisely resizable arrays—can contain items
of various types. RPython requires that all items of a particular list have to
be of one type. Statement a = [1,2,"three"] is valid in Python but invalid in
RPython.

Tuples—immutable lists—are not type restricted, thus b = (1,2,"three") is
valid in RPython. There is, however, one limitation of tuples in RPython: tuples
can be indexed only by a constant value and therefore elements of a tuple can
not be iterated by a for-cycle.

Dictionaries—associative arrays—are also restricted. All keys have to be of
one type and also all values have to be of one type. Again, the following code is
valid in Python but invalid in RPython:

1d = {}
2d [ 1 ] = 42
3d [ " two " ] = " a s t r i n g "

6.2.3 Classes

In standard Python, a class definition is never closed, i.e., it is possible to ar-
bitrary add or remove data fields and methods at any time. RPython class
definitions are closed as, for instance, in Java.

Class hierarchy in standard Python can use multiple inheritance. RPython
allows only simple inheritance.

However, RPyhon supports one object-oriented feature that goes beyond
standard single-inheritance: mixins. Mixins are, for instance, used in Ruby.
The basic principle is that a class can import, i.e., mix-in, a set of methods that
are syntactically defined in some other class.

1Java uses UTF-16 which is a superset of UCS-2.
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1c l a s s Prov ide s In fo :
2_mixin_ = True
3de f g e t I n f o ( s e l f ) :
4return s e l f . i n f o
5
6c l a s s Shape :
7pass
8
9c l a s s C i r c l e ( Shape , Prov ide s In fo ) :
10de f __init__( s e l f , r ) :
11s e l f . r = r
12s e l f . i n f o = "A C i r c l e "
13
14c l a s s Constant4 ( Prov ide s In fo ) :
15de f __init__( s e l f ) :
16s e l f . va lue = 4
17s e l f . i n f o = 4
18
19c i r c l e = C i r c l e ( )
20constant4 = Constant4 ( )
21pr in t c i r c l e . g e t I n f o ( )
22pr in t constant4 . g e t I n f o ( )

Figure 6.2: Two Unrelated Classes Use Mixin

Unlike methods, class data fields are not mixed-in. However, a mixed-in
method can access data fields of the class it was mixed into.

It is important to note that mixins are fundamentally different from Java-
style interfaces. When two unrelated classes mix-in methods from a third class,
the two classes will remain without any relation. In the contrary, when two
unrelated Java classes implement one interface, they gain a relationship. Usage
of mixins is equivalent of pasting the source code of the mixed-in methods into
the target class’s source code. At run-time, a class does not have a notion about
which methods were defined directly and which were mixed-in. See example in
figure 6.2.

If the RPython program runs in standard Python interpreter, mixing-in is
implemented through multiple inheritance. The example piece of code is valid
in RPython and thus also in Python.

6.2.4 Memory Model

In Python, all data fields are accessed through references. The consequence of
this fact is that it is possible to use special object None as a value for every
variable. It is similar to Java’s null.
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In PyPy, however, some types do not use references, i.e., they are always
passed by value. Literally, they are: integers, floats and tuples.

If we use Java terminology: while in Python integers behave as instances of
the Integer class, in PyPy, integers behave as the primitive type int.

Thus the following code is not valid RPython code:

1de f inc (n ) :
2i f n i s None :
3return 1
4e l s e :
5return n + 1
6
7a s s e r t 1 == inc (0 )
8a s s e r t 1 == inc ( None ) # Type i n f e r e n c e f a i l s .

The reason for this change of the memory model is code efficiency. Opti-
mization also stands behind Java’s Integer/int ambivalence.

6.2.5 Functions

Default Argument Values

Python has the ability to provide default values of function arguments; these
arguments can be omitted when the function is called. RPython supports this
feature. Thus the following code is valid RPython code.

1de f compute (n , add i t i on =0, s u b s t r a c t i o n =0):
2return n + add i t i on − s u b s t r a c t i o n
3
4a s s e r t 10 == compute (10)
5a s s e r t 15 == compute (10 , 5)
6a s s e r t 14 == compute (10 , 5 , 1)
7a s s e r t 6 == compute (10 , s u b s t r a c t i o n =4)

Variable Number of Arguments

Python functions can have variable number of arguments; inside the function,
the arguments are accessed via a sequence, i.e., list or tuple, or via a dictionary.
RPython limits this feature, the arguments can be stored only in tuple. Recall
that RPython tuples can be indexed only by a constant which is at this point
really limiting.

The code in figure 6.3 demonstrates variable number of arguments in RPython.
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1de f sum(∗ args ) :
2l = l en ( args )
3i f l == 1 :
4return args [ 0 ]
5e l i f l == 2 :
6return args [ 0 ] + args [ 1 ]
7e l s e :
8r a i s e Exception ( ) ;
9
10a s s e r t 2 == sum (2 )
11a s s e r t 5 == sum (2 ,3 )
12a_tuple = (2 ,3 )
13a s s e r t 5 == sum(∗ a_tuple )

Figure 6.3: Variable Number of Function’s Arguments

6.2.6 Advanced Language Constructs

Python provides some language constructs that are only for convenience, i.e., it
is only a "syntactic sugar"; equivalent functionality can be expressed by a longer
code.

List Comprehensions

List comprehensions are supported by RPython. List comprehensions enable a
list to be build by a for-cycle. For instance, list of squares of even numbers up
to 10 can be denoted as.

1numbers = [ i ∗ i f o r i in range (0 , 10) i f i % 2 == 0 ]
2# The r e s u l t i s [ 0 , 4 , 16 , 36 , 6 4 ] .

Iterators

Objects that support iterator protocol [60], i.e., implement certain methods, are
iterable. Iterable objects can be directly used as a data source in for-cycles. All
Python compound data types are iterable.

In RPython, only built-in compound data types, e.g., a list, can be directly
used in for-cycles. For user-defined iterable objects, one have to use less elegant
code.

Generators

Generators [61] are a convenient way how to implement iterable objects. Gen-
erators are not supported in RPython.
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Decorators

Decorator [62] is a construct for wrapping-up a code of a function into another
function. They are supported in RPython.

It can be viewed as a kind of support for aspect oriented programming. The
following code defines a decorator for tracing and decorates function foo.

1de f trace_decorator ( func ) :
2de f body ( ) :
3pr in t " be fo r e "
4func ( )
5pr in t " a f t e r "
6return body
7
8@trace_decorator
9de f foo ( ) :
10pr in t " foo "

6.2.7 Evaluation of Restrictions

The "second stage" code that must obey RPython rules does not lose much
of its expressiveness. During our experiments regarding this work, we ported
some programs from general Python to RPython without troubles. Properly
designed programs seldom need data containers that store items of unrelated
data types; true multiple class inheritance is also often considered as a bad
practice. Occurrence of more advanced features such as generators is rare in
real programs and it can be always easily avoided.

6.3 Abstract Interpretation

Abstract interpretation is a method that PyPy utilizes to convert an initialized
program’s object space to a structure called flow graph. Program’s object space is
a Python-specific in-memory data structure that represents the entire program.
It is de-facto defined by CPython and reimplemented by the PyPy interpreter.
It consists mainly of hash maps that map identifiers (symbols) to pieces of code
and other objects. The code itself is in the form of Python byte-code.

For better illustration, see the conversation in Python interactive console in
figure 6.4. The conversation starts with a definition of a function myfunc, then
the function is used with an argument of value five. Subsequently, we investigate
two self-descriptive attributes of the function: __name__ and func_code. The
byte-code is listed with the help of the disassembler from the Python standard
library. The last statement (locals) demonstrates that the defined function itself
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>>> def myfunc(n):

... return n+1

...

>>> myfunc(5)

6

>>> myfunc.__name__

’myfunc’

>>> myfunc.func_code

<code object myfunc at 0x8623650, file "<stdin>", line 1>

>>> import dis # Import the module for disassembling.

>>> dis.disassemble(myfunc.func_code) # Print the byte-code.

2 0 LOAD_FAST 0 (n)

3 LOAD_CONST 1 (1)

6 BINARY_ADD

7 RETURN_VALUE

>>> locals()

{’myfunc’: <function myfunc at 0x862f3e4>,

’__builtins__’: <module ’__builtin__’ (built-in)>,

’__name__’: ’__main__’,

’__doc__’: None,

’dis’: <module ’dis’ from ’/usr/lib/python2.5/dis.pyc’>}

Figure 6.4: Conversation in Python Interactive Console

is contained in the hash-map that maps local symbols to objects. The object
space that is a result of the definition of one function (my_func) and import of
one module (dis) is depicted in figure 6.5.

Another example: an object space that is the result of the code from section
4.3.2 is depicted in figure 6.6. The first stage part of the code builds classes C
and D.

The abstract interpretation starts from a selected entry point; it is an equiv-
alent of the main function known from C. In RPython, the entry point is a
function that is returned by the function target. The code in figure 6.7 is a Hello
world program directly compilable by the PyPy compiler.

myfunc

dis

...

<dictionary>

__name__

func_code

...

<function>

<code object>

"myfunc"

<string>

...

disassemble

...

<module>

__name__

func_code

...

<function>

Figure 6.5: Objects Space Built in Interactive Console
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C

f

D

<dictionary>

__name__

func_code

...

<function>

returnOne

...

<class>

__name__

func_code

...

<function>

returnOne

...

<class>

Figure 6.6: Object Space of Example from Section 4.3.2

1de f my_entry_point ( argv ) :
2pr in t " Hel lo , world ! "
3return 0
4
5de f t a r g e t (∗ args ) :
6return my_entry_point , None

Figure 6.7: A Program Compilable by PyPy
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The start of execution of the entry point function is exactly the point from
which the dynamic features are restricted; it is the start of the "second stage"
that goes after the "first", i.e., initialization, stage.

The PyPy abstract interpreter starts to interpret the entry point function.
It fetches a byte-code instruction but instead of executing it, it records an equiv-
alent action to the flow graph. The abstract interpreter also maintains the state
of the current stack frame. Thus not every abstractly interpreted byte-code in-
struction results in a new record in the flow graph: if the abstract interpreter
sees that the state was already seen, it only adds appropriate link to the graph.
This procedure is used mainly for loop detection, so a loop in the source code is
naturally represented by a loop in the flow graph.

There is another important point in which the abstract interpretation dif-
fers from the ordinary interpretation: program branching, or, more technically,
conditional jumps. The ordinary interpreter always selects only one code path
according to the actual result of the condition test; the abstract interpreter has
to go through both code paths. Thus every time the abstract interpreter reaches
a conditional jump, both possible code paths are scheduled for subsequent in-
terpretation.

We stated that the program’s objects space has to be frozen when it is
abstractly interpreted. It is not exactly true, in fact, the object space can be
altered during the "second" stage in some cases. However, this alteration can
occur only bounded number of times. For our purposes, we assume program’s
object space to be always frozen after its initialization.

The PyPy compilation process fails if

• the first, i.e., initialization, stage does not terminate, or

• abstract interpretation itself results in a new code in the object space that
needs to be abstractly interpreted, unbounded number of times.

These two pathological cases can be reached only intentionally.

6.4 Flow Graph

In the previous sections, we mentioned the term flow graph many times. It is the
key data structure of the translation process and thus worth a precise definition.
We extracted the formal definition by precise analysis of the PyPy source code.

Flow graphs are built by the PyPy abstract interpreter. There is one flow
graph per function. Note that methods of objects are handled as plain functions;
methods are just functions whose first argument is an object instance. Thus a set
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of flow graphs GRAPHS is an alternative representation of initialized program’s
object space.

GRAPHS = {G1, G2, ..., GN}

When the flow graph is created, it does not depend on the selected target
code—C or Java byte-code. Later we will introduce a set of flow graph trans-
formations. The information that is added by a transformation may depend on
the selected target back-end. There is also one flow graph transformation that
changes the graph topology.

6.4.1 Syntax

Graph

Flow graph is an oriented graph with some additional attributes. Formally, we
define it as

G = 〈V,E, start, return,EXC ,CONST〉,

where:

• V is a set of vertexes; a vertex denotes a block of code,

• E is a set of edges; an edge denotes a jump from one block to another,

• start ∈ V is a start block, i.e., an entry point of the function,

• return ∈ V is a return block, i.e., an ordinary exit point of the function,

• EXC is either an empty set or {vexc}, where vexc ∈ V is an exception
block, i.e., the exit block of the function in which en exception is thrown
out of the function,

• CONST is a set all constants used in the graph.

Every flow graph has exactly one start block and exactly one return block. If
the function may raise an exception, there is one exception block. If the function
can not raise an exception, EXC is empty. Constants are just literals of any
type, variables are also untyped.
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Blocks

A block of code v ∈ V is defined in the following way:

v = 〈VAR, last_exception, IN ,OP, SWITCH〉,

where:

• VAR is a set of block’s variables,

• last_exception ∈ VAR is a variable dedicated for storing a raised excep-
tion object instance,

• IN = 〈in1, in2, ...inn〉, ini ∈ VAR is a n-tuple of block arguments,

• OP is an n-tuple of block’s operations,

• SWITCH is a set containing an optional exit switch variable. SWITCH
is {var}, var ∈ VAR or an empty set if the exit switch is not defined. Exit
switch variable serves as the condition in the conditional jump. According
to the value of this set, an outgoing block’s edge is selected. For blocks
that end with unconditional jump the set is empty.

Blocks can use every constant defined in the graph. Variables are used for
storing intermediate results. They are defined locally and are not shared among
multiple blocks. Variables may contain either a direct value or a reference to an
object. The variables that contain references may also have special value None
that denotes an undefined reference; it is an equivalent of null from Java.

Then, there is an n-tuple of block’s operations

OP = 〈op1, op2, ..., opm〉,

opi = 〈name,ARG, result, last_exception〉,

where

• name is the name of the operation,

• ARG = 〈arg1, arg2, ..., argk〉, argi ∈ CONST ∪ VAR is a n-tuple of opera-
tion’s arguments,

• result ∈ VAR for storing ordinary result of the operation

• last_exception ∈ VAR for storing exceptional result of the operation.
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Edges

An edge e ∈ E is defined as a n-tuple

e = 〈v1, v2,CASE ,EARG〉,

where

• v1, v2 ∈ V are the source and the target block,

• CASE is either {const}, const ∈ CONST , or an empty set,

• EARGS = 〈val1, ..., valk〉, vali ∈ CONST ∪ VAR(v1) is a tuple of edge’s
arguments. These arguments are used for the data transfer from one block
to another.

6.4.2 Semantics

We described the syntax of flow graph; to make the definition complete, we
provide a description of its semantics.

A flow graph represents a single function in a program written in RPython.
The semantics of the flow graph is defined by the rules of its interpretation.

First, we describe the interpretation in a situation without occurrence of
exceptions. Then we describe how exceptions are raised and handled.

Ordinary Interpretation

The interpretation starts in block start ∈ V . The arguments of the function
that the flow graph represents are assigned to the tuple of block’s input variables
IN . Then the block’s operations are interpreted.

Every operation takes a n-tuple of arguments. An argument is either a
constant or a variable. An operation saves the result to the variable result.
Every variable can be assigned only once within a block, i.e., every variable
from VAR can be used at most once as the result of an operation. The list of all
possible operations that abstract interpreter can emit is in tables 6.1 and 6.2.

When the block’s code is finished, an outgoing edge has to be selected in order
to perform a jump to another block. The selection is based on the SWITCH set
defined by the block and the CASE set defined for every outgoing edge. The
selection is defined by two rules:

1. if SWITCH = ∅ then there is only one edge, an edge with empty CASE ;
so this edge is followed,
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Operation Name Description Special method

abs Absolute value __abs__
add + operator (adding, concatenating) __add__
and & operator (bit and) __and__
call_args call a function with default arguments
contains search an object in a container __contains__
delitem removes an object from a container __delitem__
floordiv // operator (dividing with floor) __floordiv__
div / operator (dividing) __div__
eq == operator (equivalence of objects) __eq__
ge >= operator __ge__
gatattr get attribute of an object __getattribute__
getitem get item from a container __getitem__
gt > operator __gt__
hash object hash code __hash__
hex hexadecimal representation of integer __hex__
inplace_add += operator __iadd__
inplace_and &= operator __iand__
inplace_div /= operator __idiv__
inplace_floordiv //= operator (inplace division, result floored) __ifloordiv__
inplace_lshift <<= operator __ilshift__
inplace_mod %= operator __imod__
inplace_mul *= operator __imul__
inplace_or |= operator __ior__
inplace_pow **= operator __ipow__
inplace_rshift >>= operator __irshift__
inplace_sub -= operator __isub__
inplace_xor ^= operator __ixor__
invert ~ operator (bitwise invert) __invert__
is_ object identity
is_subtype inheritance test
is_true boolean representation of an object
iter get object’s iterator __iter__
le <= operator __le__
len get object’s length __len__
lshift << operator __lshift__
lt < operator __lt__

Table 6.1: Flow Graph Operations, Part 1
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Operation Name Description Python special method

mod % operator (modulo) __mod__
mul * operator (multiplication) __mul__
ne != operator __ne__
neg - unary operator __neg__
newdict create a new dictionary
newlist create a new list
newslice create a new slice
newtuple create a new tuple
next moves iterator forward
oct octal representation of integer __oct__
or | operator (bitwise or) __or__
ord integer ordinal of a character
pos + unary operator __pos__
pow ** operator (power) __pow__
rshift >> operator __rshift__
setattr set attribute of an object __setattr__
setitem set item of a container __setitem__
simple_call call a function
str string representation of an object __str__
sub - operator (substracting) __sub__
type object’s type
xor ^ operator (bitwise xor) __xor__

Table 6.2: Flow Graph Operations, Part 2
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2. else SWITCH = {varswitch}. Then all edges have nonempty CASE e =
{conste}. An edge is selected if the values of varswitch and conste equal.

When an outgoing edge is selected, execution moves to the target block of
the selected edge. The target block’s arguments IN are initialized by values of
edge’s arguments EARG. Both IN of the target block and EARG that leads to
the target block are n-tuples of the same size.

There is always one block that has no outgoing edge, it is block return ∈ V .
The return block does not have any operations. Return block’s argument IN is
the return value of the function that the flow graph represents.

Exception Raising

Exception can be explicitly raised by reaching an exception block vexc ∈ EXC .
There is zero or one exception block per flow graph. The exception block does
not have any operations. Input arguments of the exception block IN(vexc) are
exception’s data, i.e., exception instance and exception class. After executing
the exception block, the exception is thrown out of the function. Note that
explicit exception are instantiated by the Python keyword raise.

The second situation in which an exception is thrown out of the function is
unhandled exception. Some operations can end with an exception. If so, then the
exception instance is stored in last_exception ∈ VAR. If the exception is not
handled, then execution of the function is immediately terminated and control
is returned to the caller function.

Exception Handling

The exception is handled if the variable that contains the exception object in-
stance, i.e., last_exception, is immediately used as a block exit switch, i.e.,
last_exception ∈ SWITCH . This also means, that only an exception of the last
block’s operation can be handled.

For exception handling, the outgoing edges are arranged in the following way:

• The first edge is for the situation when no exception occurred, i.e.,
CASE(e1) = None.

• Every other edge handles a specific class of exceptions, i.e., CASE(ei), i =
2, 3, ..., N contain an exception class object such as IndexError or Aritmet-
icError. The order of the edges is the same as the order of except blocks
in the source code.
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1de f f a c t o r i a l (n ) :
2i f n < 0 :
3r a i s e Ar i thmet icError
4
5r e s u l t = 1
6
7whi le n > 0 :
8r e s u l t ∗= n
9n −= 1
10
11return r e s u l t

Figure 6.8: Factorial, Exception Raising

Formally, we define a function edgeorder that assigns a natural number to
each edge, that is:

edgeorder : E → N.

For all edges leading from a particular block v ∈ V the edgeorder defines
a sequence 1, 2, ..., N where N is the number of outgoing edges from v while
maintaining the ordering form source code as mentioned above.

The outgoing edge is then selected by the following rules:

1. if the last_exception is None then the first edge is selected,

2. else last_exception is an exception instance. Edges ei, i = 2, 3, ..., N are
examined in the order given by edgeorder. En edge ei is selected if the
type of last_exception is subclass2 of CASE(ei).

Example: Factorial Flow Graph

For better understanding, see figure 6.9 in which the flow-graph of a function that
calculates factorial is depicted. The functions raises ArithmeticError if its argu-
ment is illegal. The computation itself is exception free because RPython does
not check integer overflows—thus last_exception is never assigned or checked.
Therefore, instead of 〈resutl, last_exception〉 = operation(arg1, ...), we write
only result = operation(arg1, ...).

The exact RPython code of the function is in figure 6.8.
The while-loop is represented by a loop in the graph. Interpretation of the

flow graph starts in the start block and ends either in the return block or in the

2There is a class hierarchy of exception types.
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exception block. Note that we named all variables of the graph by hand; these
variables are generated by the compiler.

[start block]

IN = <var_n1>

var_lesser1 = ���var_n1, 0)

var_lesser2 = is_true(var_lesser1)

����CH = {var_lesser2}

CASE = {�rue}

EARG = <>

CASE = {Fa�se}

EARG = <var_n, ��

IN = <var_n2, var_result1>

var_greater1 = gt(var_n2, 0)

var_greater2 = is_true(var_greater1)

SWITCH = {var_greater2}

IN = <>

var_exc_inst1 = simple_call(type_ArithmeticError)

var_exc_type1 = type(var_exc_inst1)

SWITCH = {}

EARG = <var_exc_type1, 

             var_exc_inst1>

[exception block]

IN = <var_exc_type2, var_exc_inst2>

SWITCH = {}

IN = <var_n3, var_result3>

var_result4 = inplace_mul(var_result3, var_n3)

var_n4 = inplace_sub(var_n3, 1)

SWITCH = {}

[return block]

IN = <var_result2>

SWITCH = {}

CASE = {False}

EARG = <var_result1>

CASE = {True}

EARG = <var_n2, 

             var_result1>

EARG = <var_n4, 

             var_result4>

Figure 6.9: Flowg Graph of Factorial

6.5 Type Inference

When the flow graphs are created, they have no notion of the types of the data
fields. In order to generate statically typed target code, static types have to be
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inferred.
PyPy defines a set of abstract, i.e., platform independent, types. These types

are called annotations. We will use this term in order to distinguish the abstract
types from the native types of a particular target platform. The component that
performs type inference is internally called annotator.

The annotator takes a set of flow graphs representing the entire program as
an input and assigns a type annotation to every data field. Formally, we define
a function that assigns annotations to variables and constants of all flow graphs:

VAL =
⋃

Gi∈GRAPHS

CONSTGi ∪ VARGi

annotation : VAL → ANNOTATION

A type annotation can be viewed as a set of values that a data field can
contain.

Basic hierarchy of annotations is depicted in figure 6.10.

Figure 6.10: Type Annotations Hierarchy

The basic hierarchy is simplified; in fact there is some additional information
for every "basic" annotation. For instance, the integer annotation also bears the
information whether it can contain negative values. Object instance and string
annotation have the variant that can contain None and the variant that can not.
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Lists can be either fixed- or variable-sized. There is a partial ordering defined
for annotations. The ordering denotes generality, for instance:

• Bool ≤ NonNegInteger ≤ Integer

• Char ≤ String

• Instance(subclass) ≤ Instance(class), for any class and subclass

• a ≤ b, for any annotation a with a nullable twin b

The annotation process works as follows. First, the straightforward type
annotations of constants are determined. Then the annotator traverses the flow
graphs and transitively determines annotations of values created from the val-
ues with already known annotation. Because of loops, annotations can not be
determined in one pass. The type annotation algorithm is actually a fix-point
search. In [49], there is provided a proof of termination and soundness of the
annotation algorithm.

The annotator always tries to assign the most precise type annotation; how-
ever, if it later learns that a particular annotation is too restrictive, it assigns a
more general annotation.

More precise annotations enable better optimizations of the output code.
The most general annotation is Object; if some data field obtains this annotation,
the program cannot be translated to the output static code, the compilation fails.

6.6 Native Operations and Types

Up to this point, the flow graph was completely independent of any properties
of the selected output code. Now comes the time for transformations that brings
the level of abstraction closer to a particular output code.

6.6.1 RTyper

PyPy has a component called RTyper that takes an annotated flow graph as the
input and produces a flow graph with native data types and operations of the
selected platform (for our purposes, C or Java byte-code). Thus there are two
PyPy "lower level" type systems we are interested in; one is simply called Low
Level Type System and the second is Object-Oriented Type System.

RTyper never changes a flow graph’s topology, i.e., the number and the
structure of vertexes and edges remain always the same. RTyper works only
with constants, variables and block’s operations.
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1de f main ( s e l f , argv ) :
2r e s1 = Resource ( )
3w1 = Worker( r e s1 )
4w1 . s t a r t ( )
5w1 . j o i n ( )
6return 0

Figure 6.11: RTyping - Method Source Code

RTyper assigns a low-level type to every constant or variable. Formally, we
define a function

lltype : VAL → LLTYPE .

Some annotations have a straightforward low level representation. For in-
stance the Integer annotation is naturally represented by C or Java int type.

More complicated annotations such as List can have multiple low-level rep-
resentations. The selection of a particular low level type is based on additional
information that the annotation bears. The annotator can possibly determine
whether a list is modified at run-time. Another special case are lists that are the
result of the Python’s range function. These lists contain an ordered sequence
of integers—range is often used by for-cycles.

The ordinary low level representation of List is an array. However, for an
unmodified list created by range, the low level representation can be a special
range object that contains only the lower and upper bound of the sequence
and values of list’s items are computed at run-time. It is obvious that this
representation saves memory.

RTyper also replaces all high level operations by equivalent low level oper-
ations. More precisely, every single high level operation is replaced by one or
more low level operations. As every flow graph’s variable can be assigned only
once, RTyper can also add block’s variables to store intermediate results of the
low level operations.

Let us illustrate the translation from high level operations to low level opera-
tions on an example. In figure 6.11, you can see a method that is first translated
by the abstract interpreter to a block containing operations that you can see in
figure 6.12. These high level operations can be translated by RTyper to either
low level operations for the C backend (see figure 6.13) or for the Java byte-code
backend (figure 6.14).
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1v14 = s imp l e_ca l l ( ( c l a s s o b j Resource ) )
2v15 = s imp l e_ca l l ( ( c l a s s o b j Worker ) , v14 )
3v16 = g e t a t t r ( v15 , ( ’ s ta r t ’ ) )
4v17 = s imp l e_ca l l ( v16 )
5v18 = g e t a t t r ( v15 , ( ’ j o in ’ ) )
6v19 = s imp l e_ca l l ( v18 )

Figure 6.12: RTyping - High Level Operations

1v20 = malloc ( ( GcStruct r e sour c e . Resource ) , ({ ’ f l avo r ’ : ’ gc ’ } ) )
2v21 = cast_po inter ( v20 )
3v22 = s e t f i e l d ( v21 , ( ’ typeptr ’ ) ,
4(<∗ s t r u c t object_vtable { subclassrange_mi . . . = . . . }>))
5v23 = d i r e c t _ c a l l ((<∗ fn Resource . __init__ >) , v20 )
6v24 = malloc ( ( GcStruct worker . Worker ) , ({ ’ f l avo r ’ : ’ gc ’ } ) )
7v25 = cast_po inter ( v24 )
8v26 = s e t f i e l d ( v25 , ( ’ typeptr ’ ) ,
9(<∗ s t r u c t object_vtable { subclassrange_mi . . . = . . . }>))
10v27 = d i r e c t _ c a l l ((<∗ fn Worker . __init__ >) , v24 , v14 )
11v16 = same_as ( v15 )
12v28 = cast_po inter ( v16 )
13v29 = g e t f i e l d ( v28 , ( ’ typeptr ’ ) )
14v30 = cast_po inter ( v29 )
15v31 = g e t f i e l d ( v30 , ( ’ c l s_s ta r t ’ ) )
16v32 = d i r e c t _ c a l l ((<∗ fn Thread . s ta r t >) , v16 )
17v18 = same_as ( v15 )
18v33 = cast_po inter ( v18 )
19v34 = g e t f i e l d ( v33 , ( ’ typeptr ’ ) )
20v35 = cast_po inter ( v34 )
21v36 = g e t f i e l d ( v35 , ( ’ c l s_jo in ’ ) )
22v37 = d i r e c t _ c a l l ((<∗ fn Thread . j o in >) , v18 )

Figure 6.13: RTyping - Low Level Operations for C

1v6 = new((< Ins tance ( r e sour c e . Resource ) >))
2v7 = d i r e c t _ c a l l ( ( sm Resource . __init__ ) , v6 )
3v8 = new((< Ins tance ( worker . Worker) >))
4v9 = d i r e c t _ c a l l ( ( sm Worker . __init__ ) , v8 , v0 )
5v2 = same_as ( v1 )
6v10 = oosend ( ( ’ o s ta r t ’ ) , v2 )
7v4 = same_as ( v1 )
8v11 = oosend ( ( ’ o jo in ’ ) , v4 )

Figure 6.14: RTyping - Low Level Operations for Java Byte-code
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6.6.2 Low Level Type System

The type system that is used for the C backend is called Low Level Type System.
The type system hierarchy depicted in figure 6.15 is richer than the hierarchy of
annotations—figure 6.10—because it deals with some implementation details.

Types Array and Struct have twins called GcArray and GcStruct. The types
with Gc- prefix are allocated on the heap and managed by the garbage collector;
they may have some additional data fields such as reference counters. Contrary,
types without the support for garbage collection can be allocated only on the
stack.

RPython is an object oriented language; however, the Low Level Type Sys-
tem does not have explicit support for objects and classes. All the OOP related
stuff have to be expressed by some low level primitives. For instance a class is
just a structure with a virtual method table stored as an array of pointers to
functions.

Figure 6.15: Hierarchy of Low Level Types
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6.6.3 Object-Oriented Type System

For object-oriented output code—such as Java byte-code, PyPy uses Object-
Oriented Type System. It is not a replacement for Low Level Type System—it
is an addition. Primitive types such as integers and floating-point numbers are
reused from Low Level Type System.

What Object-Oriented Type System brings is direct mapping of RPython’s
compound types to compound types of the selected object backedn, i.e., JVM.
For instance the List annotation can be most straightforwardly implemented by
Java’s ArrayList container. More or less direct mapping from Python to Java is
also available for strings, classes, dictionaries, exceptions.

The hierarchy of the type system is depicted in figure 6.16.

Figure 6.16: Hierarchy of Object Types

6.7 Flow Graph Transformations for C Code

After "RTyping" the flow graphs contain native operations and data types of the
selected target code.

However, there can still be some aspects of flow graphs that can not be easily
expressed in low level code. In order to eliminate these too high level aspects,
there are two flow graph transformations needed: Exception transformation and
Garbage collection transformation. Java byte-code back-end does not need these
transformations because it has native exception handling and built-in garbage
collector.
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We devote extraordinary attention to these transformations because they
define the difference between output C and Java byte-code. We need to be sure
that the differences will not make usage of our formal verification approach built
on Java Pathfinder infeasible.

6.7.1 Exception Transformation

After the flow graph operations and types were transformed to the lower level,
there are still two situations connected with exceptions in which the flow graph
interpretation relies on some high level features that are not available at the
lower level, i.e., the level of C language.

The first is stack unwinding. Even if a function neither raises nor handles
an exception, it uses exceptions implicitly when an exception is raised by some
function deeper on the stack. When such a situation occurs, an exception handler
is searched through the stack. This process is called stack unwinding. During
this process, for each function on the stack, it has to be decided whether the
function handles the exception or just passes it away (which is exactly what we
mean by the implicit use of en exception). Stack unwinding is supported by
JVM, but there is not a direct support at neither C nor machine code and thus
it have to be explicitly implemented in software.

The second situation is exception handling. As was described in section
6.4.2, the exception handling relies on examining whether a particular instance
of exception is subclass of some exception class. Again, this process is supported
only by JVM and have to be implemented in the case of C code.

Implemetation of Exceptions in C

In order to understand the goal of exception transformation, we have to describe
what is the actual PyPy’s approach to exceptions in C.

In the flow graph, every block has a dedicated variable for storing a raised
exception, usually called last_exception. On the C level, instead of these in-
dividual variables, there is one global variable, let us call it c_last_exception3.
This variable is NULL when the program runs without an exception. If an excep-
tion is raised, pointer to the exception instance is assigned to c_last_exception.
When the exception is handled, c_last_exception is set back to NULL.

Stack unwinding is done by checking c_last_exception after every opera-
tion that may raise an exception and exiting the function—jumping into the
return block—when it is not NULL. These checks and jumps are created by the
exception transformation.

3Note that when Java byte-code is generated, instead of variables that hold exception
instance, native JVM exception implementation is used
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Exception handling is done by setting c_last_exception back to NULL. The
exception transformation has to create some new blocks that explicitly perform
the is subclass examination.

Exception Transformation Algorithm

Input of the algorithm is a flow graph G whose operations use Low Level Type
System. The graph contains all implementation details needed in order to gen-
erate C output code except two aspects:

• Stack unwinding

• Exception handling

Output of the Exception transformation algorithm is a modified flow graph
G that:

• Explicitly implements stack unwinding. It is done by splitting some code
blocks, adding low-level operations that check presence of an exception,
and adding edges that exit the function when an exception is raised. See
also figure 6.17 where the transformation for a block that uses exceptions
implicitly is depicted.

• Explicitly implements exception handling. It is done by adding new code
blocks (an appropriate edges) that examine exceptions’ classes.

The algorithm is formally defined by three procedures. Top level procedure
traverses blocks of the graph and generates exception checks. The top level pro-
cedure calls exception matching procedure whenever it needs to handle exception
matching (the is subclass operation). Both procedures call split block procedure
for block splitting.

Top Level Procedure: performs entire exception transformation.

• Input: Flow graph G with unimplemented stack unwinding an exception
handling.

• Output: Flow graph G with explicit implementation of stack unwinding
and exception handling.

1. Prepare

(a) Create a copy of V (G), that is Vcopy = V (G).
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2. Transform ordinary blocks:

• For each block v ∈ Vcopy, v /∈ EXC (G), v 6= return(G) do:

(a) Let m0 be the number of operations in v. Let Vmatching = {} be a
set that contains zero or one block that needs exception matching
transformation. Let m = m0

(b) If SWITCH (v) = {last_exception} then:

i. Let Vmatching = {v}.

ii. Let m = m0 − 1

(c) For each opi ∈ OP(v), i = m,m− 1, ..., 1

– If opi can raise an exception4 then:

i. Perform the split block procedure on graph G: split the
v block at position opi. Let the newly created block be
vnew and the newly created edge that leads from v to vnew
be enew. Recall that after split block procedure the oper-
ations are divided between v and vnew, that is OP (v) =
〈op1, op2, ..., opi〉 and OP (vnew) = 〈opi+1, opi+2, ..., opm0

〉.

ii. Remove the newly created edge enew = 〈v, vnew, ∅,EARG〉
from E(G).

iii. Add k low-level operations into the block v. These opera-
tions check whether opi ended with an exception. So that
OP (v) = 〈op1, op2, ..., opi, opcheck1

, opcheck2
, ..., opcheckk〉. In-

sert into VAR(v) new variables that are used by opcheckj , j =
1, 2, ..., k. The result of the check is stored in a variable
varcheck that is used as exit switch SWITCH (v) = {varcheck}.
The value of the varcheck is False if the exception did not
occur, True otherwise.

iv. Construct an ordinary link
eordinary = 〈v, vnew, {False},EARG(enew)〉, add eordinary
into E(G).

v. Construct an exception link
eexc = 〈v, return, {True}, 〈〉〉, add eexc into E(G).

vi. If i = m and Vmatching 6= ∅ then Vmatching = {vnew}.

(d) If Vmathing is not empty then perform exception matching trans-
formation on w ∈ Vmatching.

3. Transform exception block:

4Most operations can potentially raise an exception; however, there are some that are safe
such as comparison of two numbers.
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• If there is an exception block vexc ∈ EXC (G) then:

(a) Add low-level operations that explicitely raises an exception.

(b) Construct a new edge from exception block to return block, that
is eret = 〈vexc, return(G), {}, 〈〉〉, add eret into E

[start block]

[return block]

unsafe operation

safe operation

unsafe operation

unsafe operation

[start block]

unsafe operation

safe operation

unsafe operation

unsafe operation

[return block]

exceptional codepath

Figure 6.17: Flow Graph before and after Exception Transformation, Implicit
Use of Exceptions

Exception Matching Procedure: generates low level exception handling for
a single block that ends with an instruction that can raise an exception. If the
operation can raise multiple exception types (there are multiple outgoing edges),
the exception matching is implemented by inserting new blocks that contain only
low level operations.

• Input: Flow graph G, vs ∈ V (G) that has an operation opf on the last
position. Operation opf may raise an exception and there is no explicit
low level exception handling implemented.

• Output: Flow graph G with explicit low level implementation of handling
of exceptions that may be raised by operation f called in block vs.
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[start block G]

[return block G]

safe operation 1

safe operation 2

unsafe operation

EXIT = {last_exception}

CASE = {ExceptionType1}

EARG = <ExceptionType1, instance>

CASE = {ExceptionType2}

EARG = <ExceptionType2, instance>

[start block G, ws]

[return block G]

safe operation 1

safe operation 2

...

handle ExceptionType1

...

[block w2]

[block w2]

...

is instance of ExceptionType1?

...

...

handle ExceptionType2

...

[block w3]

[block w3]

...

is instance of ExceptionType2?

...

[return block F]  [exception block F]

[start block F]

unsafe operation

[empty block wa]

...

handle ExceptionType1

...

[block w2]

...

handle ExceptionType3

...

[block w3]

Figure 6.18: Flow Graph before and after Exception Matching Procedure, Ex-
plicit Exception Handling
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1. Create a new flow graph F that only performs the operation opf . If
opf does not raise an exception, the result of opf is returned; other-
wise, the exception is reraised. Graph F has only three blocks, V (F ) =
{start, return, except}, except ∈ EXC (F ) and two links so that:

• IN (start) contains arguments of operation opf ,

• OP(start) contains the operation opf , and low level operations that
check whether an exception occurred. The result of the check is stored
in a variable varcheck that is used as an exit switch SWITCH (start) =
{varcheck}. The value of the varcheck is False if the exception did not
occur, True otherwise.

• An ordinary link
eordinary = 〈start, return, {False}, {result(opf)}〉, add eordinary into
E(F ).

• An exception link
eexc = 〈start, except, {True}, 〈〉〉, add eexc into E(F ).

2. Let V (G) = V (G) ∪ V (F ).

3. Let E(G) = E(G) ∪ E(F ).

4. Perform split block transformation onG splitting block vs at position opf−1.
Let the newly created block be va and the newly created edge that leads
from vs to va be esa.

5. Block va now contains only one operation, opf . It is because exception
matching is performed for the last operation of the block. Remove this
operation so that OP (va) = 〈〉.

6. Having an edge esa = 〈vs, va,CASEsa,EARGsa〉. Construct an edge esf =
〈vs, start(F ),CASEsa,EARGsa〉. Add esf into E(G) and remove esa from
E(G).

7. Construct edge efs = 〈return(F ), va, ∅, 〈result(opf)〉〉, add efs into E(G).

8. For edges ei ∈ E(G), ei = 〈va, wi,CASE i,EARGi〉, wi ∈ V (G) that goes
from va excet the first one, i.e., i = 2, ..., N where N is the number of
outgoing edges of va5:

(a) Create a new block vi, so that

5The ordering is defined by edgeorder function, see 6.4.2. Recall that the first edge is for
the case without an exception.
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• IN (vi) = EARG(ei),

• OP(vi) contains a test whether an exception instance that is
stored in IN is a subclass of class stored in CASE(ei). The result
is stored in the variable is_subclass.

• SWITCH = {is_subclass},

• VAR(vi) contains all items from IN(vi) together with variables
needed by the is subclass check.

(b) If i = 2:

• Create an edge 〈excF , v2, ∅, IN (excF )〉, excF ∈ EXC (F ), add this
edge into E(G).

(c) If i > 2:

• Construct an edge 〈vi−1, vi, {False}, IN(vi−1)〉, add this edge
into E(G).

(d) If i 6= n:

• Construct an edge 〈vi, wi, {True}〉,EARG(ei)〉, add this edge
into E(G).

(e) If i = n:

i. Let OP(vi) = 〈〉.

ii. Let SWITCH (vi) = ∅.

iii. Construct an edge 〈vi, wi, {}〉,EARG(ei)〉, add this edge into
E(G).

(f) Remove ei from E(G).

Split Block Procedure: splits given flow graph block at given operation.

• Input: Flow graph G, block v ∈ V (G), an operation ops ∈ OP(v).

• Output: A modified G with one additional block, the block v ∈ V (G)
is divided into two blocks after the operation ops. The semantics of the
graph is unchanged.

1. Create a new block vnew and add it into V (G). The vnew is defined as
follows:

• OP(vnew) = 〈ops+1, ops+2, ..., opm〉, where opi ∈ OP(v) and m is the
number of operations in OP(v).

• last_exception(vnew) = last_exception(v),
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• SWITCH (vnew) = SWITCH (v).

• VAR(vnew) ⊂ VAR(v), VAR(vnew) contains only variables used by
OP(vnew),

• IN (vnew) is arbitrarily ordered VAR(vnew),

2. Alter block v so that:

• OP(v) = 〈op1, op2, ..., ops〉, i.e., remove all operations that were moved
to vnew.

• SWITCH (v) = ∅.

3. For each edge that leads from v, i.e., e = 〈v, u,CASE,EARG〉, u ∈ V ,
construct a new edge emoved = 〈vnew, u,CASE,EARG〉. Add emoved into
E(G) and remove e from E(G).

4. Construct a new edge enew = 〈v, vnew, ∅, IN (vnew)〉, Add enew into E(G).

6.7.2 Garbage Collection Transformations

Python—and also RPython—requires automatic memory management. JVM
has its own garbage collector that is used by PyPy generated Java byte-code
without any problem. However, automatic memory reclamation must be ad-
dressed in PyPy generated C code.

Basic Garbage Collection Approaches

One of the most simple GC is based on counting active references for every
object; an object can be reclaimed if the counter reaches zero. Just for curiosity,
standard Python interpreter (CPython) uses this algorithm. There are two issues
connected with this approach. First, this algorithm never frees an object that
has a (transitive) reference to itself; CPython solves the problem by additional
cycle detector. Second, it has poor performance in multi-threaded environment
since every operation with the reference counter of every object has to be guarded
by mutual exclusion; CPython contains global interpreter lock (GIL) that causes
that only one thread is executed at once, therefore additional mutual exclusion
is not needed. An advantage of the reference counting GC is that it releases the
resources deterministically.

The most widely used family of GCs is based on the mark-and-sweep algo-
rithm. In short, it works as follows: when there is not enough free memory,
the program is stopped for a while and all reachable objects are marked. The
marking goes transitively from so called GC roots that are the data in CPU
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registers, variables on the stack(s), and global variables. Then all objects that
were not marked, i.e., are inaccessible, are reclaimed (swept). Then the program
is resumed.

Mark-and-sweep algorithms can work in multi-threaded environment; how-
ever, they produce (possibly unbounded) program pauses and from the point of
view of the program are nondeterministic.

The third popular GC approach is based on copying. Briefly, the heap is
divided into two halves. All new allocations are performed in the first half;
individual objects are never deallocated. If the first half is full, all live (accessible
from GC roots) objects are copied into the second half of the heap and the first
half is then declared as "free". Then the two halves are switched. This family
of GCs eliminates memory fragmentation; on the other hand, it needs at least
twice as much memory as the sum of the memory occupied by all live objects.

In practice, a combination of mark-and-sweep and copying is quite common.

Garbage Collectors in PyPy

The PyPy compiler has a framework that eases implementation of various GC
algorithms. There is a conventional reference-counting GC as well as several
mark-and-sweep and copying (and also hybrid) GCs implemented with the help
of the framework.

Unfortunately, none of the framework-based GC implementations can run in
multi-threaded environment as they are. Adaptation for multi-threaded appli-
cations should be possible; nevertheless, it is beyond the scope of this work.

There is one GC that fits our purposes, though. The PyPy-generated C code
can employ Boehm GC6 that is available as a third-party library. Boehm GC is
a conservative mark-and-sweep algorithm for programs written in C.

Boehm GC is fast and its functionality is proven by practice (GNU Java
Compiler7, Mono8, etc.). The therm conservative means that it does not pre-
cisely know which peace of data is a pointer and which is not; therefore, a piece
of data can be misinterpreted as a pointer. This may lead to the situation in
which an object is considered as accessible even if it is not. Real programs
can routinely live with this behavior, deeper analysis of conservative GCs with
bounding of space usage can be found in [63].

Note that all other PyPy GCs are so called type-accurate; that means, they
always know which peace of data is an actual pointer.

A standard C program can use Boehm GC by just redirecting calls of malloc
from standard C library to Boehm GC library.

6http://www.hpl.hp.com/personal/Hans_Boehm/gc/
7http://gcc.gnu.org/java/
8http://www.mono-project.com/Main_Page
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We would conclude the section about GC transformations as follows. For the
JVM backend, we get memory management completely for free. For subsequent
experiments with generated C code, we will employ the Boehm GC library.
Therefore, the GC transformation is trivial and we do not need to document it.

However, for the sake of determination of lower bound of memory consump-
tion, we will make also some experiments with reference counting GC.

We also note, that adapting some of the type-accurate GCs provided by the
framework for multi-threaded applications would be excellent choice for extend-
ing this work.

6.8 Generating the Output Source Code

6.8.1 Generating the C code

A flow-graph that contains all necessary low-level details is then used by the
PyPy code generator to emit the final C source code. The structure of the
generated code is pretty flat. There is a single C function for every flow-graph
and all functions are serialized into one huge file called implement.c. Classes are
represented by C structures.

The names of the generated functions are derived from fully qualified method
names in the original RPython source code. For instance a method myMethod
of a class MyClass that is located in a module pkg_a.pkg_b.my_filename is
represented by a function with the following prototype:

long pypy_g_MyClass_myMethod(

struct pypy_pkg_a_pkg_b_my_filename_MyClass0 *l_self_5,

long l_x_2)

The name of the function does not take a package name into account. If
there is a class and a method of the same name in a different package, a unique
integer is added as a filename suffix. For instance, a method MyClass.myMethod
from a package pkg_a.pkg_b2.my_filename is rendered as:

long pypy_g_MyClass_myMethod_1(

struct pypy_pkg_a_pkg_b2_my_filename_MyClass0 *l_self_5,

long l_x_2)

The bodies of the generated functions are directly derived from the flow-
graphs; there is a block of statements for every graph vertex and goto statements
that represent graph edges.
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6.8.2 Generating the Java byte-code

Generation of Java byte-code is more straightforward because Python is far
closer to Java than to C.

The PyPy translator does not directly generate the binary representation of
the byte-code, i.e., the .class files. It generates a human readable assembly code
for JVM. These assembly files (with .j extension) are converted do the binary
form of .class files by a JVM assembler called jasmin9.

Both Java and Python support source code organization based on hierarchi-
cal entities. These entities are called modules in Python and packages in Java.
RPython modules can be translated to Java packages without any problem;
however, there is one difference worth mentioning. Java packages are filesystem
directories and every (public) Java class is a standalone file placed in a partic-
ular directory. In Python, module hierarchy is expressed through directories as
well; however, bottom level modules are ordinary files that may contain several
publicly accessible classes (and other entities).

For instance, a Python class with a fully qualified name pkg_a.pkg_b.my_fi-
lename.MyClass is saved in a file pkg_a/pkg_b/my_filename.py. The PyPy code
generator has to create a package structure that conforms to Java standards;
therefore, the Java assembly code is saved in file pypy/pkg_a/pkg_b/my_file-
name/MyClass_22.j (PyPy adds a unique integer as a suffix to every class
name). Note that all the generated classes are placed in a top level package
called pypy. When the Java assembly files are compiled to Java class files, we
obtain a program runnable on the top of JVM.

6.9 Conclusion

We went deep into the PyPy compiler design; we described its main data struc-
ture called flow graph in detail. We also precisely described the transformations
of the flow graph. These transformations are used to overcome the abstraction
gap between Java byte-code and C code.

For the sake of our testing based on formal methods, we now can say what
is the relation between C and Java byte-code generated by the PyPy compiler.
Both back-ends use the same initial flow graph; the type inference (also called
annotation) is also the same. The first point in which the flow-graph becomes
back-end specific is the assignment of a platform-specific data type to every
type annotation and replacement of every high-level operation by one or more
platform-specific operations. This is just a substitution and therefore it is ver-
ifiable. For C code, two additional transformations have to be performed: to

9http://jasmin.sourceforge.net/
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implement exceptions and automatic memory management. The first one was
precisely described in this chapter and the second one is trivial in our case.

We did not deal with multi-threaded programs yet because the original PyPy
tool-chain does not deal with it either. See the next chapter for our approach
to multi-threaded programs.
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Customization of the PyPy
Compiler

As mentioned in section 3.5.2, the PyPy compiler was originally created in order
to compile one program: the PyPy interpreter. Features of the PyPy Python
interpreter, e.g., Python thread semantics, have some impact on the capabili-
ties of the PyPy compiler. To use PyPy compiler for general multi-threaded
embedded programs as specified in section 5.2, we have to customize the PyPy
compiler.

7.1 Threading and Locking Models

In order to make our development approach feasible, we have to run an intended
embedded application in three different modes:

• Interpreted by the Python interpreter.

• C code translated to machine code run by bare CPU.

• Translated to Java byte-code run by JVM.

Every of the environments has its own approach to threads and synchroniza-
tion.

7.1.1 Python Interpreter Threads

Python standard library offers synchronization objects patterned after POSIX
threads. However, there are some special rules how the threads run.
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Standard Python interpreter, CPython, guarantees that byte-code instruc-
tions are serialized, i.e., only one instruction is executed at once. Python pro-
grams can run multiple native operating system threads; however, the conse-
quence of this guarantee is that only one thread is executed at once, even on
hardware with multiple CPU cores. In CPython, it is implemented via so called
global interpreter lock (GIL) that has to be acquired by every thread prior a
byte-code instruction is executed. The GIL is usually released back after sev-
eral instructions. Because many Python programs depend on the instruction
serialization, the PyPy interpreter embraces GIL in the same way as CPython.

7.1.2 POSIX Threads

For threading in C code, we use POSIX threads. POSIX threads (or just
pthreads) is the standard interface for multi-threaded programming in Unix-like
operating systems. There is also a pthread implementation for contemporary
Windows operating system available. Interface is defined in the form of a set of
C functions.

POSIX threads provide functions for thread starting and synchronization.
There are two main synchronization objects: the mutex (possibly recursive) and
the condition.

Our primary target platform is Linux 2.6.x and 3.x. POSIX threads are
implemented by library called NPTL (Native POSIX Thread Library) which
provides 1:1 mapping to the kernel-level threads.

7.1.3 Java Threads

Java has its own platform independent abstraction for threading. New threads
are started by a special predefined class called Thread. The mapping from the
Java threads to the system threads is defined by JVM; the Java threads are
mapped to the kernel-level threads in standard Oracle JVM version 6.

Java’s native synchronization object is the monitor as defined by C. A. R.
Hoare [64]. In fact, every single object instance may act as a monitor in Java.
There is a lock associated with every object instance. Object’s methods can
acquire and release the associated lock. A method or a block of code can be
marked by the synchronized keyword. Java then guarantees that the lock is
acquired prior the execution of the code.

The monitor’s capability of waiting and being signaled is implemented by
methods wait and notify that are inherited by all user-defined classes.
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7.2 Unified Threading and Locking Model

We need to have one unified threading and locking semantics in order to guaran-
tee that the program’s behavior is as similar as possible in all three environments.
The behavior should be identical in the C and JVM environments because oth-
erwise our verification process would be weakened. On the other hand, we have
to accept that the Python interpreter defines thread serialization and make sure
that we never rely on this behavior. Recall that we use Python interpreter mode
in order to create "unsimplified model" of the final application.

First of all, we have to create a unified threading and locking model for C and
Java byte-code that we then try to use in the Python interpreter. We have two
choices; the first one is to create POSIX-compatible locks on the top of Java’s
monitors. The second one is to create monitors built on the POSIX locking
objects.

For several reasons, we decided for creation of monitors that will be used in
all three environments. Although monitors and simple locks have equal express-
ing power, monitors fit better with object-oriented programming. Monitors are
seamlessly incorporated not only into Java but also into C#, there is no reason
why monitors could not be elegantly used in RPython.

The second reason why we decided for Java’s native synchronization is Java
Pahtfinder and its state-space optimizations. The optimization algorithms are
designed for Java threading semantics. If we implemented POSIX-like locks as
a layer over native monitors, it it would complicate the Java Pathfinder’s fight
with state-space explosion. In [65], we show that using POSIX-like locks in
Java leads to unbearable growth of time and memory needed for checking by
Pathfinder. We also show that Java byte-code generated from RPython that
uses native Java synchronization brings no significant overhead in comparison
with hand written program in pure Java.

It is important to note that native Java’s monitors are built on the top of
recursive locks. Once a thread acquires the lock, i.e., enters the synchronized
method or block, it also succeeds in all subsequent tries to acquire the lock again,
until the lock is released. Therefore our monitors for C will be built on the top
recursive POSIX mutexes.

7.2.1 Usage in RPython

Python has no direct support for synchronized methods or blocks. So we have
to create such a block by manually acquiring a lock at the beginning of the block
and manually releasing it when we are done.

We developed a library with synchronization objects for all three environ-
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ments. The library is internally called parlib, see figure 7.1 for the position of
parlib in the code generation scheme. There is a class Monitor defined in the
library.

Application (RPython)

parlib (Python)

Python Interpreter

OS

PyPy

Compiler

Application (C)

parlib (C)

OS/HW

Application (Byte-code)

parlib (Java)

Java VM

OS

Figure 7.1: Detailed Compilation Scheme with Parlib

If the program runs in the standard Python interpreter, the Monitor class
encapsulates a reentrant (recursive) lock from the standard Python library. The
class has two methods, MONITOR_ENTER and MONITOR_EXIT, that en-
capsulate the calls to acquire and release methods of the reentrant lock.

To achieve the compatibility with Java monitors, the method MONITOR_EN-
TER is supposed to be called at the very beginning of the method that is aspires
to be synchronized. Similarly, MONITOR_EXIT is supposed to be called as the
last command of the method.

The class Monitor also provides methods for waiting and notification: WAIT,
NOTIFY, and NOTIFYALL that behaves like Java methods wait, notify, and
notifyAll.

The internal implementation of the wait/notify mechanism is patterned after
the Condition1 class from the Python standard library. There is a list of locks
containing one lock for each blocked thread. If a thread wants to wait for a
notification, it is blocked on a newly created lock. The lock is then stored in
the list. If the notification occurs, the lock is released (releasing the thread) and
removed from the list.

The code in figure 7.2 demonstrates a usage of our monitor. It is a thread-
safe box that contains zero or one item inside. It provides a classical solution

1http://docs.python.org/release/2.4.4/lib/condition-objects.html

112



Chapter 7. Customization of the PyPy Compiler

1from p a r l i b u t i l . l o c k i n g import Monitor
2
3c l a s s Box( Monitor ) :
4de f __init__ ( s e l f ) :
5Monitor . __init__( s e l f )
6s e l f . item = None ;
7
8de f getItem ( s e l f ) :
9try :
10s e l f .MONITOR_ENTER( )
11whi l e s e l f . item i s None :
12s e l f .WAIT( )
13
14r e s u l t = s e l f . item
15s e l f . item = None
16s e l f .NOTIFY( )
17return r e s u l t
18f i n a l l y :
19s e l f .MONITOR_EXIT( )
20
21de f putItem ( s e l f , item ) :
22s e l f .MONITOR_ENTER( )
23whi l e not ( s e l f . item i s None ) :
24s e l f .WAIT( )
25
26s e l f . item = item
27s e l f .NOTIFY( )
28s e l f .MONITOR_EXIT( )

Figure 7.2: Thread-safe Box

for the producer-consumer problem. Method putItem inserts the item into the
box and blocks if it is already full; method getItem removes the item from the
box and blocks if it is empty. Both methods notify each other if the state of the
box changes.

One can see that calling MONITOR_ENTER and MONITOR_EXIT at the
right places is not very comfortable and even error-prone in comparison with use
of the Java’s synchronized keyword. Fortunately, in Python we can gain similar
elegance by creating a decorator; see figure 7.3.

After utilizing this decorator, the code of the Box class looks much cleaner,
see figure 7.4.
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1de f synchronized ( meth ) :
2de f synchronized_meth ( s e l f , ∗ args ) :
3try :
4s e l f .MONITOR_ENTER( )
5return meth ( s e l f , ∗ args )
6f i n a l l y :
7s e l f .MONITOR_EXIT( )
8return synchronized_meth

Figure 7.3: Definition of decorator @synchronized

1from p a r l i b u t i l . l o c k i n g import Monitor , synchronized
2
3c l a s s Box( Monitor ) :
4de f __init__( s e l f ) :
5Monitor . __init__ ( s e l f )
6s e l f . item = None ;
7
8@synchronized
9de f getItem ( s e l f ) :
10whi l e s e l f . item i s None :
11s e l f .WAIT( )
12
13r e s u l t = s e l f . item
14s e l f . item = None
15s e l f .NOTIFY( )
16return r e s u l t
17
18@synchronized
19de f putItem ( s e l f , item ) :
20whi l e not ( s e l f . item i s None ) :
21s e l f .WAIT( )
22
23s e l f . item = item
24s e l f .NOTIFY( )

Figure 7.4: Thread-safe Box with decorator @synchronized
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7.2.2 Implementation in C

The parlib variant suitable for the C backend is built on the POSIX synchro-
nization objects. The Monitor class contains one mutex that is configured as
recursive because Java monitors have also recursive semantics. Call of MONI-
TOR_ENTER results in acquiring the mutex; the method MONITOR_EXIT
releases the mutex.

The wait/notify mechanism works the same way as described above. Note
that the list contains non-recursive POSIX mutexes.

7.2.3 Implementation in Java Byte-code

The implementation of parlib’s monitor for C the backend is based on encapsulat-
ing the POSIX synchronization objects. Implementation for Python interpreter
is done in the same way, with the difference that it encapsulates the synchro-
nization objects defined in the Python standard library.

In the case of Java byte-code backend, we use a different approach. Instead of
encapsulating JVM monitors by parlib’s monitors, we use the Java native mon-
itors directly. The absence of the encapsulating layer will help Java Pathfinder
to perform state-space optimizations such as partial order reduction.

We customized the translation to the Java byte-code in the following way. If
a particular object’s method contains call of MONITOR_ENTER, the method
is marked as synchronized in the generated Java byte-code. The actual imple-
mentation of the MONITOR_ENTER method is empty. The implementation
of the MONITOR_EXIT is empty as well.

Calls to WAIT, NOTIFY, and NOTIFYALL are rewritten as calls to wait,
notify, and notifyAll methods of the Java’s Object class.

The only way how to create a new Java thread is to use java.lang.Thread
class. If a user class defines a thread, it inherits from Thread class defined in par-
lib. The RPython classes do not have direct access to the standard Java library.
In order to access native Java API, we can change (rewrite) the inheritance chain
during the translation so that the user class inherits from our custom Thread-
Starter class implemented in pure Java. The ThreadStarter inherits directly
from java.lang.Thread class and thus can start a new thread.

7.3 Multi-threaded C

As mentioned in section 6.7.1, exception object instances are stored in a global
variable. This approach is insufficient in multi-threaded program because we
have to distinguish between exceptions in various threads.
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We solved the issue by making the global variable, i.e., c_last_exception,
thread specific. We use the thread local storage (TLS) so every thread has
its own instance of the variable. In GCC, this can be achieved by adding the
__thread modifier to the variable definition in the C source code.

Another potential issue is multi-threaded memory management. We utilize
Boehm Garbage Collector that is able to work in such an environment; see also
section 6.7.2.

7.4 Conclusion

The achievement of this chapter is the design of primitives for thread synchro-
nization. These primitives behave exactly the same in pure Python, C and
Java byte-code instances of a program. This design enables utilization of Java
Pathfinder; in our previous publication [65], we have already shown it is the best
solution for the model checker’s performance.

Last but not least, our synchronization primitives are very elegant to use
thanks to Python decorators.
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Chapter 8

Testing Based on Formal Methods

Our development process benefits from the strengths of high level dynamic lan-
guages and generative programming. The development process should also ben-
efit from formal methods as much as possible.

In this chapter, we present how to employ a tool for formal verification for
discovering bugs in a program code. We first define a class of bugs that might
be efficiently discovered by the tool then we show how to trace tool’s findings
(reports) back to RPython source code of the program.

Finally, we demonstrate this approach on a set of test cases: a deadlock, a
race condition, an uncaught exception, an LTL formula violation and testing
with random data. In every test case, we present a simple program with a bug
injected. The bug is then discovered by the tool for formal verification and fixed.

See [70] in order to get the source codes of the experiments.

8.1 Tools

8.1.1 Java Pathfinder

As we mentioned earlier in this work (sections 3.1.3 and 5.3.4), we use Java
Pathfinder model checker as an advanced tool for discovering bugs. Recall that
Java Pathfinder (JPF) is actually a special-purpose reimplementation of the
Java virtual machine, see figure 8.1 for the placement of JPF in the software
stack; compare with detailed compilation scheme in figure 7.1.

JPF has a plug-in architecture; the properties of the program are verified
by independent modules. Among basic modules that we utilize are deadlock
detector and condition race detector.
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Application (Byte-code)

parlib (Java)

Java VM

OS

JPF

Figure 8.1: Sofware Stack with Java Pathfinder

Operator Meaning

G Temporal operator G
F Temporal operator F
X Temporal operator X
U Temporal operator U
v Logical or
^ Logical and
~ Logical negation
-> Implication

Table 8.1: Operators in LTL Module

8.1.2 Module for Linear Temporal Logic

JPF does not deal with LTL on its own; however, there exist LTL verifiers as
third party modules. We use the LTL verifier developed by Nguyen and Khoo
[66].

This verifier uses method calls as atomic propositions. A particular proposi-
tion is true if the method mentioned in the proposition is called.

The module also defines a notation for LTL formulae specification; it uses
only ASCII characters and thus is slightly different from the standard notation
described in section 3.1.2. Atomic propositions start by the keyword method:
that is followed by a class name and a method name, separated by a dot; a
proposition is also enclosed by curly braces. For instance: {method:Worker.run}
is an atomic proposition that denotes a call of the method run of the class
Worker.

The language also defines how temporal and logical operators are expressed,
see table 8.1.

For instance, a popular LTL pattern that ensures that every call to the
Server.request method is inevitably followed by an execution of the Server.respon-
se method looks as follows:
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G{{method:Server.request}->{X{F{method:Server.response}}}}

For comparison, the formula in the standard notation would look like this:

G((method_Server_request)⇒ (X(F (method_Server_response))))

8.2 Aiming the Tests

There are plenty of testing methods used. Now, we have to decide what is the
main goal of our testing procedure.

Java Pathfinder analyzes the generated Java byte-code; however, the code
intended for deployment is the generated C. Recall that according to our analysis
in chapter 6 and our threading and locking model designed in chapter 7 we can
consider these codes as identical.

Threading Issues

The main advantage of the formal approach is that it can reliably discover
threading issues. Simple testing methods such as unit tests are not appropriate
for this class of issues; unit tests by definition do not deal with component
interaction. Tests that employ simulation can deal with threading; however,
this kind of testing is probabilistic.

Linear Temporal Logic

Apart from threading issues, checking of scenarios defined as LTL formulae is a
promising approach. The used LTL verifier uses method calls as atomic propo-
sitions. Since every method call on RPython level is translated as a function
call in C or a method call in Java byte-code, the validity of an LTL formula is
never hurt by the translation process.

8.3 Traceability

One of the key advantages of model checking is that it can provide counterex-
amples, i.e., a program trace that leads to a violation of a formal property. As
we work with several codes (Python, C, Java byte-code), we have to translate
these counterexamples from one code to another.
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thread index=0,name=main,status=WAITING,

this=java.lang.Thread@0,target=null,priority=5,lockCount=1

waiting on: pypy.worker.Worker_59@728

call stack:

at pypy.worker.Worker_59.ojoin(Worker_59.j:403)

at pypy.application.Application_55.omain(Application_55.j:138)

at pypy.main_54.invoke(main_54.j:33)

at pypy.entry_point_50.invoke(entry_point_50.j:22)

at pypy.Main.main(Main.j:40)

thread index=1,name=Thread-0,status=BLOCKED,

this=pypy.worker.Worker_59@728,priority=5,lockCount=0

owned locks:pypy.resource.Resource_56@711

blocked on: pypy.resource.Resource_56@715

call stack:

at pypy.cascadeLock_66.invoke(cascadeLock_66.j:49)

at pypy.resource.Resource_56.ocascadeLock(Resource_56.j:52)

at pypy.worker.Worker_59.orun(Worker_59.j:109)

at pypy.worker.Worker_59.oRUN(Worker_59.j:163)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

thread index=2,name=Thread-1,status=BLOCKED,

this=pypy.worker.Worker_59@755,priority=5,lockCount=0

owned locks:pypy.resource.Resource_56@715

blocked on: pypy.resource.Resource_56@711

call stack:

at pypy.cascadeLock_66.invoke(cascadeLock_66.j:49)

at pypy.resource.Resource_56.ocascadeLock(Resource_56.j:52)

at pypy.worker.Worker_59.orun(Worker_59.j:109)

at pypy.worker.Worker_59.oRUN(Worker_59.j:163)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

====================================================== results

error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty

"deadlock encountered: thread index=0,name=main,s..."

Figure 8.2: JPF Report: Stack Trace of a Deadlock

8.3.1 Reports of Java Pathfinder

Every module of Java Pathfinder can provide its own way how to report a prop-
erty violation. For instance, a report of the module that checks the deadlock-free
property consists of a set of deadlocked threads; for every thread there is a stack-
trace, list of locks it has acquired and the lock it is blocked on. See figure 8.2
for an example of such a report.

For another example, a report from the module that checks an LTL formula
violation provides full log of executed methods, see figure 8.3. You can see that
together with bare method names, there are also links to some sort of source
code. These .j files are a human readable representation of .class files. See
section 6.8.2 for more information about these Java assembly files.
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STEP invokestatic pypy.entry_point_50.invoke(Ljava/util/ArrayList;)I

--pypy/Main.j:40--

STEP invokestatic pypy.main_54.invoke(Ljava/util/ArrayList;)V

--pypy/entry_point_50.j:22--

STEP invokespecial pypy.application.Application_55.<init>()V

--pypy/main_54.j:24--

STEP invokespecial java.lang.Object.<init>()V

--pypy/application/Application_55.j:8--

STEP invokevirtual

pypy.application.Application_55.omain(Ljava/util/ArrayList;)V

--pypy/main_54.j:33--

STEP invokespecial pypy.files.File_56.<init>()V

--pypy/application/Application_55.j:56--

STEP invokespecial java.lang.Object.<init>()V

--pypy/files/File_56.j:8--

STEP invokevirtual pypy.files.File_56.oopen()V

--pypy/application/Application_55.j:63--

STEP invokevirtual pypy.files.File_56.owrite()V

--pypy/application/Application_55.j:68--

====================================================== results

error #1: res.min.verifier.LTLVerifier

"The property G{{method:File_56.oopen}->{X{F{method..."

Figure 8.3: JPF Report: A Method-call Trace of a LTL Formula Violation

8.3.2 Mapping of Identifiers

As we perform a testing driven by formal methods on a generated Java byte-
code, the discovered bugs are always described in the terms of this generated
code. But the only place where a bug can be fixed is the original source code
written in RPython from which the Java byte-code was generated. Therefore,
we have to be able to map the identifiers from JPF reports and traces back to
the original RPython source code.

The C and Java byte-code codes are generated from the flow graphs and the
flow graphs are the result of abstract interpretation of the RPython source code.
Therefore, the mapping is rather limited; however, it is till feasible.

Every flow graph bears an RPython method’s name it was created from.
This name is also kept in the generated C or Java byte-code. So there is in
principal a straightforward relation between the methods in RPython source
and the methods in Java byte-code/functions in C code. The generated Java
classes also bear the name of corresponding RPython classes; the C structures
that implement OOP support for the low level code are also named appropriately.

In contrast, bodies of the generated methods/functions are only loosely cou-
pled with the original code. The bodies are serialized flow graphs: the code
blocks can be mapped to the flow graph vertexes. However, the flow graph ver-
texes can not be straightforwardly mapped back to the RPython code constructs.
Moreover, there are many auxiliary variables without meaningful names.
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So for more effective work, we recommend to write rather shorter methods
which is generally considered as a good practice.

As mentioned above, a flow graph can be in principle always mapped to a
corresponding entity in the generated source code (and vice versa). However,
we currently provide only limited tools for this task, development of comfortable
developer tools is not the aim of this work. The following paragraphs show how
one can achieve such a mapping with the help of elementary tools.

Mapping from Java byte-code to RPython

This mapping is needed in order to apply the information from the Java Pahtfinder
reports and traces to the original RPython source code.

The structure of the generated Java byte-code is described in section 6.8.2.
The generated Java packages can be easily mapped to the RPython modules.

Because of some internal reasons (the names of the flow graphs are note
necessarily unique because they do not take module names into account), PyPy
adds a unique integer as a suffix to every class name. To avoid collisions with
methods from the standard Java library, PyPy also adds prefix o to every method
name.

For instance, the fully qualified method name pypy.files.File_56.owrite men-
tioned on the second last line in figure 8.3 can be found as method write of the
class File in the module (file) files.py.

Mapping from RPython to Java byte-code

We also need to map RPython identifiers to the generated Java byte-code iden-
tifiers in order to construct LTL formulae to be used by JPF.

As mentioned earlier, PyPy translator adds a unique integer as a suffix to
the RPython class names. The only way how to get this integer is to search
through the generated Java byte-code assembly files. We have developed a set
of scripts for this task. The most useful script is called findclassandmethod.sh;
it takes two parameters: a class name (either with or without a module name)
and a method name.

For example, if we want to find class MyClass with method myMethod as-
suming that the class is in module pkg_a.pkg_b.my_filename, we use the script
as follows (a dollar sign states for the command prompt):

$ findclassandmethod.sh pkg_a.pkg_b.my_filename.MyClass myMethod

pypy/pkg_a/pkg_b/my_filename/MyClass_56.j:.method public omyMethod(I)I

For this example, the result of the script is the file name from which we can
see that the actual generated class name is MyClass_56. After the semicolon
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there is the method name that was actually generated (omyMethod) and also
the method signature (it is public, takes one integer as an argument and returns
an integer as a result).

The script can be used by a preprocessor that translates LTL formulae from
the RPython identifiers to the Java byte-code identifiers.

Mapping from C Code to RPython

If we are debugging a machine code compiled form a PyPy generated C code
by a low level system debugger such as GDB1, we need to find an appropriate
RPython code eventually.

As described in section 6.8.1, entities of the generated C code bear identifiers
from the original RPython code. We do not have a reliable tool that would map
the C functions back to the RPython methods; however, it is usually not a
problem for a human to do so. The main issue is that C code is not organized
into any packages or modules.

A generated C function that represents MyClass.myMethod method looks
like this:

long pypy_g_MyClass_myMethod(

struct pypy_pkg_a_pkg_b_my_filename_MyClass0 *l_self_5,

long l_x_2)

The function name leads clearly to the appropriate RPython method name;
though, it does not contain a package name. However, the type of the pointer
to the self object is of type struct pypy_pkg_a_pkg_b_my_filename_MyClass0
from which we can infer that the appropriate module is pkg_a.pkg_b.my_file-
name.

In the future, we might improve the C code generator in order to provide an
automatic mapping from the low level functions to the RPython entities.

Mapping from RPython to C Code

This mapping is useful when we want to make sure that the generated C code
is according to our expectations.

Currently the easiest way how to find the appropriate function for a particular
RPython method is to search through the generated C files. We have a small
script for this task called findfunc.sh that takes a class name and a method name
as arguments. For instance, if we are looking for the MyClass.myMethod, we use
it as follows:

1The GNU Debugger Project
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$ findfunc.sh MyClass myMethod

testing_1/forwarddecl.h:104:extern long pypy_g_MyClass_myMethod(

struct pypy_pkg_a_pkg_b_my_filename_MyClass0 *l_self_2, long l_x_0);

testing_1/implement.c:734:long pypy_g_MyClass_myMethod(

struct pypy_pkg_a_pkg_b_my_filename_MyClass0 *l_self_2, long l_x_0) {

The result states that the appropriate function is declared at line 104 of file
forwarddecl.h and its implementation starts at line 734 of file implement.c.

8.4 Test Cases

We will demonstrate the testing driven by formal methods on several test cases.
We first write a simple program with an intentional bug. Then we show how the
bug is affecting all three representations of the program (interpreted RPython,
C code, Java byte-code) and how Java Pathfinder discovers the bug in the Java
byte-code version. Then we fix the bug and ensure that all three representations
of the program work correctly and that JPF considers the program bug-free.

8.4.1 Deadlock

Deadlock is a program state in which two or more threads are waiting to each
other and thus neither ever finishes. In our case, we have a program that has
two worker threads that are locking two resources, resA and resB. A deadlock is
possible if the first thread has locked resA and is trying to lock resB meanwhile
the second thread has locked resB and is trying to lock resA.

As we do not use plain locks but structured monitors, we connected the re-
sources into a chain so that locking of the first resource causes locking of the
second resource and vice versa. See the Resource class listing in figure 8.4:
the synchronized method cascadeLock calls the synchronized method lockSec-
ondLevel. Note that there is a one second sleep between the acquisition of the
first and the second resource.

Another component of the testing program is the worker thread. This class
is rather simple; it has one resource associated and calls its cascadeLock method,
see figure 8.5.

The entry point of our program is a method called main of the Application
class, see figure 8.6. The method creates the resources, makes the chain of them,
creates and starts the worker threads, and waits until they are finished.

Now we can run the program. Because of the sleep in the worker thread,
the deadlock will occur with very high probability. If we run the program in all
three environments, we always see, that the program hangs, the output of the
native version is like this:
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1c l a s s Resource ( Monitor ) :
2de f __init__ ( s e l f ) :
3Monitor . __init__( s e l f )
4s e l f . s econdLeve l = None
5
6de f se tSecondLeve l ( s e l f , s econdLeve l ) :
7s e l f . s econdLeve l = secondLeve l
8
9@synchronized
10de f cascadeLock ( s e l f ) :
11pr in t " F i r s t l e v e l locked "
12s l e e p ( 1 . 0 )
13s e l f . s econdLeve l . lockSecondLeve l ( )
14
15@synchronized
16de f lockSecondLeve l ( s e l f ) :
17pr in t " Second l e v e l locked "

Figure 8.4: Deadlock Test Case: Class Resource

1c l a s s Worker ( Thread ) :
2de f __init__ ( s e l f , r e s our c e ) :
3Thread . __init__ ( s e l f )
4s e l f . r e s our c e = re sour ce
5
6de f run ( s e l f , ∗ args ) :
7s e l f . r e s our c e . cascadeLock ( )
8pr in t " Thread f i n i s h e d without deadlock ing . "

Figure 8.5: Deadlock Test Case: Class Worker
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1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3resA = Resource ( )
4resB = Resource ( )
5resA . setSecondLeve l ( resB )
6resB . setSecondLeve l ( resA )
7
8w1 = Worker ( resA )
9w2 = Worker ( resB )
10
11w1 . s t a r t ( )
12w2 . s t a r t ( )
13
14w1 . j o i n ( )
15w2 . j o i n ( )
16return 0

Figure 8.6: Deadlock Test Case: Class Application (with a bug)

$ par_run_c.sh

First level locked

First level locked

Both threads just lock the first resource (from their perspective) and then
fail to lock the other. The program never terminates.

If the test program is run by JPF, the bug is quickly discovered and a report
is produced, see figure 8.2. The report shows that the first worker thread owns
the lock of the resource object with id 711 and is blocked on the lock of the
resource object with id 715. The other worker thread owns resource 715 and is
blocked on resource 711.

One of the ways how to avoid a deadlock is to add a global order of the
locked objects. In our case, the deadlock can not occur if both threads first
lock resA and then resB. You can see the fixed method main in figure 8.7; both
constructors of the worker threads take resA as a parameter.

With this modification, the output of the program is as follows:

$ par_run_c.sh

First level locked

Second level locked

Thread finished without deadlocking.

First level locked

Second level locked

Thread finished without deadlocking.

The program works properly in all three environments. However, to prove
that the fix is correct, we utilize JPF again, see report in figure 8.8.
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1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3resA = Resource ( )
4resB = Resource ( )
5resA . setSecondLeve l ( resB )
6resB . setSecondLeve l ( resA )
7
8w1 = Worker ( resA )
9w2 = Worker ( resA )
10
11w1 . s t a r t ( )
12w2 . s t a r t ( )
13
14w1 . j o i n ( )
15w2 . j o i n ( )
16return 0

Figure 8.7: Deadlock Test Case: Class Application (fixed)

====================================================== results

no errors detected

====================================================== statistics

elapsed time: 0:00:01

states: new=191, visited=210, backtracked=400, end=5

search: maxDepth=18, constraints=0

choice generators: thread=191, data=0

heap: gc=484, new=1534, free=119

instructions: 52790

max memory: 9MB

loaded code: classes=130, methods=1682

Figure 8.8: JPF Report: No Deadlock after the Fix
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1c l a s s Worker ( Thread ) :
2de f __init__( s e l f , counter , n ) :
3Thread . __init__( s e l f )
4s e l f . counter = counter
5s e l f . n = n
6
7de f run ( s e l f , ∗ args ) :
8f o r i in range ( s e l f . n ) :
9s e l f . counter . i nc ( )
10
11c l a s s Counter ( Monitor ) :
12de f __init__( s e l f ) :
13Monitor . __init__ ( s e l f )
14s e l f . va lue = 0
15
16# no synchronized here
17de f inc ( s e l f ) :
18s e l f . va lue += 1
19
20@synchronized
21de f getValue ( s e l f ) :
22return s e l f . va lue

Figure 8.9: Race Condition Test Case: Classes Worker and Counter (with a
bug)

8.4.2 Race Condition

A race condition is a situation in which two threads or processes alter some
shared data at the same time and the result of the alteration depends on the
timing or ordering of particular operations on the data. The usual way how to
avoid this undesired behavior is to add some synchronization mechanism that
enforces mutual exclusion of operations coming from different threads.

To demonstrate discovering of such a bug, we have written a test program
that consists of two worker threads that increment a shared counter. The thread
and the counter is depicted in figure 8.9. The Counter class inherits from Mon-
itor class; however, the only synchronized method is getValue. Therefore, calls
to non-synchronized method inc from different threads may lead to unexpected
values of the counter.

As mentioned above, the application consists from two instances of the
worker thread and one counter that is shared among them, see figure 8.10.
The program accepts one argument from the command line that is the number
of incrementations of the shared counter performed by each thread. When the
worker threads are finished, the final value of the counter is printed.
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1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3n = i n t ( argv [ 1 ] )
4
5counter = Counter ( )
6
7w1 = Worker ( counter , n)
8w2 = Worker ( counter , n)
9
10w1 . s t a r t ( )
11w2 . s t a r t ( )
12
13w1 . j o i n ( )
14w2 . j o i n ( )
15pr in t counter . getValue ( )
16return 0

Figure 8.10: Race Condition Test Case: Class Application

The program, however, seems to work correctly if every thread increments
the counter only several times. For instance, the native version compiled from
the generated C files behaves as follows:

$ par_run_c.sh 100

200

The bug comes to the light only if the execution time is long enough for
thread preemption. See the incorrect result 1881421 in the following listing:

$ par_run_c.sh 1000000

1881421

Note that also Java byte-code and CPython interpreted versions of the pro-
gram produce wrong results.

Now we will use JPF to discover and locate the bug. For this task, we
activate the precise race detector module. In order to make the investigation
fast enough, we analyze the behavior of the program for 5 increments. The
produced report is very clear: the race is for the value field of the Counter class
and the race is accomplished by the method inc. See figure 8.11.

The obvious fix of the bug is to add synchronization to the inc method, see
listing 8.12. After this correction, the program really appears to work:

$ par_run_c.sh 1000000

1000000

To prove that the fix is really correct, we run the JPF with the race detector
again. The result is as expected: no errors detected. See figure 8.13.
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====================================================== snapshot #1

thread index=0,name=main,status=WAITING,

this=java.lang.Thread@0,target=null,priority=5,lockCount=1

waiting on: pypy.worker.Worker_60@730

call stack:

at pypy.worker.Worker_60.ojoin(Worker_60.j:465)

at pypy.application.Application_55.omain(Application_55.j:139)

at pypy.main_54.invoke(main_54.j:33)

at pypy.entry_point_50.invoke(entry_point_50.j:22)

at pypy.Main.main(Main.j:40)

thread index=1,name=Thread-0,status=RUNNING,

this=pypy.worker.Worker_60@730,priority=5,lockCount=0

call stack:

at pypy.counter.Counter_57.oinc(Counter_57.j:44)

at pypy.worker.Worker_60.orun(Worker_60.j:245)

at pypy.worker.Worker_60.oRUN(Worker_60.j:115)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

thread index=2,name=Thread-1,status=RUNNING,

this=pypy.worker.Worker_60@757,priority=5,lockCount=0

call stack:

at pypy.counter.Counter_57.oinc(Counter_57.j:29)

at pypy.worker.Worker_60.orun(Worker_60.j:245)

at pypy.worker.Worker_60.oRUN(Worker_60.j:115)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

====================================================== results

error #1: gov.nasa.jpf.tools.PreciseRaceDetector

"race for: "int pypy.counter.Counter_57.ovalue" T..."

Figure 8.11: JPF Report: Stack Trace of a Race Condition

1c l a s s Counter ( Monitor ) :
2de f __init__( s e l f ) :
3Monitor . __init__ ( s e l f )
4s e l f . va lue = 0
5
6@synchronized
7de f inc ( s e l f ) :
8s e l f . va lue += 1
9
10@synchronized
11de f getValue ( s e l f ) :
12return s e l f . va lue

Figure 8.12: Race Condition Test Case: Class Counter (fixed)
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====================================================== results

no errors detected

====================================================== statistics

elapsed time: 0:00:03

states: new=1315, visited=1906, backtracked=3220, end=5

search: maxDepth=46, constraints=0

choice generators: thread=1315, data=0

heap: gc=3453, new=1361, free=476

instructions: 97629

max memory: 9MB

loaded code: classes=137, methods=1699

Figure 8.13: JPF report: Fixed Race Condition

1c l a s s Resu l t ( Monitor ) :
2de f __init__ ( s e l f ) :
3Monitor . __init__( s e l f )
4s e l f . va lue = 0
5
6@synchronized
7de f put ( s e l f , va lue ) :
8i f va lue <= s e l f . va lue :
9r a i s e ValueError
10s e l f . va lue = va lue
11
12@synchronized
13de f get ( s e l f ) :
14return s e l f . va lue

Figure 8.14: Uncaught Exception Test Case: Class Result

8.4.3 Uncaught Exception

Java Pathfinder also checks that none of the program threads ends by an un-
caught exception. We demonstrate this unwanted behavior by a simple program
that relies on thread execution speed, which is considered as a bad practice.

The heart of the program is a class named Result. The result has some inner
value that is updated by a method named put. This method guarantees, that the
value can be only increased; if it is called with a parameter with lesser or equal
value than the value already stored in the instance, the ValueError exception is
raised. See the listing in figure 8.14.

The Result class is used by two worker threads. Every thread sleeps for a
given amount of time, then puts a new value into the result and finishes. The
worker class listing is in figure 8.15.

An application object creates one instance of Result and two instances of
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1c l a s s Worker ( Thread ) :
2
3de f __init__( s e l f , s l eep_per iod , value , r e s u l t ) :
4Thread . __init__( s e l f )
5s e l f . s l eep_per iod = s leep_per iod
6s e l f . va lue = va lue
7s e l f . r e s u l t = r e s u l t
8
9de f run ( s e l f , ∗ args ) :
10s l e e p ( s e l f . s l eep_per iod )
11s e l f . r e s u l t . put ( s e l f . va lue )

Figure 8.15: Uncaught Exception Test Case: Class Worker

1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3r e s u l t = Resu l t ( )
4
5w1 = Worker ( 0 . 1 , 100 , r e s u l t )
6w1 . s t a r t ( )
7
8w2 = Worker ( 0 . 2 , 200 , r e s u l t )
9w2 . s t a r t ( )
10
11w1 . j o i n ( )
12w2 . j o i n ( )
13pr in t r e s u l t . get ( )
14return 0

Figure 8.16: Uncaught Exception Test Case: Class Application (with a bug)

Worker. The first worker sleeps for 0.1 seconds and then puts 100 into the result,
the second worker sleeps for 0.2 seconds and then puts 200 into the result; see
listing in figure 8.16.

The program seems to work in all our environments; here is the output of
the C (native) version:

$ par_run_c.sh

200

Done.

The reason is that the sleep intervals are in order of magnitude longer than
time intervals of execution of other parts of the program. However, it is not guar-
anteed, that the first thread is executed before the second one. JPF discovers
this bug; see the report in figure 8.17.

132



Chapter 8. Testing Based on Formal Methods

====================================================== snapshot #1

thread index=0,name=main,status=UNBLOCKED,

this=java.lang.Thread@0,target=null,priority=5,lockCount=1

blocked on: pypy.worker.Worker_59@727

call stack:

at pypy.worker.Worker_59.ojoin(Worker_59.j:464)

at pypy.application.Application_55.omain(Application_55.j:118)

at pypy.main_54.invoke(main_54.j:33)

at pypy.entry_point_50.invoke(entry_point_50.j:22)

at pypy.Main.main(Main.j:40)

thread index=2,name=Thread-1,status=RUNNING,

this=pypy.worker.Worker_59@757,priority=5,lockCount=0

blocked on: pypy.worker.Worker_59@757

call stack:

at pypy.worker.Worker_59.oRUN(Worker_59.j:143)

at parlibutil.ThreadStarter.run(ThreadStarter.java:17)

====================================================== results

error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty

"pypy.exceptions.ValueError_28 at pypy.ConstantIni..."

Figure 8.17: JPF Report: Uncaught Exception

The report shows stack traces of the active threads and the type of the
unexpected exception. In this case, JPF can not provide precise location of the
creation of the exception because PyPy exceptions do not carry valid stack trace
(unlike in pure Java).

This bug can be fixed by making sure that the first thread finishes before
the second thread starts. See the fixed listing in figure 8.18.

The JPF report in figure 8.19 proves that the fix is correct.

8.4.4 LTL Formula Violation

In this section, we check a simple linear temporal logic property on a trivial
demo program. We will check whether the program works correctly with a file,
i.e., whether a file is correctly closed after it was opened.

See the listing of the application that does not correctly close the file in figure
8.20.

We investigate the program by JPF with LTL module. We check whether it
does or does not violate the following LTL formula:

G{{method:File_56.oopen}->{X{F{method:File_56.oclose}}}}

The bug is discovered and a report with a method call trace is produced, see
the listing in figure 8.3 earlier in this chapter (page 121).

If we add the call that closes the file, see listing 8.21, JPF reports that the
program satisfies the LTL formula, see listing 8.22.
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1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3r e s u l t = Resu l t ( )
4
5w1 = Worker ( 0 . 1 , 100 , r e s u l t )
6w1 . s t a r t ( )
7
8w2 = Worker ( 0 . 2 , 200 , r e s u l t )
9w1 . j o i n ( )
10w2 . s t a r t ( )
11
12w2 . j o i n ( )
13pr in t r e s u l t . get ( )
14return 0

Figure 8.18: Uncaught Exception Test Case: Class Application (fixed)

====================================================== results

no errors detected

====================================================== statistics

elapsed time: 0:00:01

states: new=61, visited=37, backtracked=97, end=2

search: maxDepth=14, constraints=0

choice generators: thread=61, data=0

heap: gc=129, new=870, free=69

instructions: 14162

max memory: 9MB

loaded code: classes=132, methods=1685

Figure 8.19: JPF report: Fixed Uncaught Exception

1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3f = F i l e ( )
4f . open ( )
5f . wr i t e ( )
6# miss ing f . c l o s e ( )
7return 0

Figure 8.20: LTL Violation Test Case: Class Application (with a bug)
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1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3f = F i l e ( )
4f . open ( )
5f . wr i t e ( )
6f . c l o s e ( )
7return 0

Figure 8.21: LTL Violation Test Case: Class Application (fixed)

====================================================== LTL Report2:

trace 0

all ok

====================================================== results

no errors detected

====================================================== statistics

elapsed time: 0:00:01

states: new=1, visited=0, backtracked=0, end=1

search: maxDepth=0, constraints=0

choice generators: thread=1, data=0

heap: gc=1, new=707, free=18

instructions: 10127

max memory: 6MB

loaded code: classes=115, methods=1489

Figure 8.22: JPF Report: Fixed LTL Violation
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1c l a s s Appl i ca t ion :
2de f main ( s e l f , argv ) :
3low_bit = random (1 )
4high_bit = random (1 )
5
6r e s u l t = ( high_bit << 1) | low_bit
7
8a s s e r t r e s u l t != 0 #wrong assumption
9
10pr in t r e s u l t
11return 0

Figure 8.23: Random Test Case: Class Application (with a bug)

====================================================== results

error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty

"pypy.exceptions.AssertionError_57 at pypy.Constan..."

Figure 8.24: JPF Report: Wrong Assumption About Random Data

Another example of utilization of LTL formulae can be found in [67] or in
section 10.1.

8.4.5 Testing with Random Data

There are two sources that make programs behave differently upon each run.
The first one is the thread scheduling that is a competence of an underlying
operating system. The second one, even more obvious and common, is the
input data.

Java Pathfinder has a tool for simulating "nondeterministic" input data. JPF
defines a set of functions that return a "random" piece of data from a predefined
data set. The subsequent formal verification guarantees that all possible results
of, i.e., all possible choices from the set, are examined. In the parlib library
implementation for Java, we can utilize the JPF interface of this feature.

Our test program uses two random bits that are combined into an integer
value. The program, however, wrongly assumes that the resulting integer never
equals zero. See listing 8.23. The program in one of four cases ends with an
assertion error.

Java Pathfinder deterministically discovers the bug, see listing 8.24.
If we remove the assert, JPF systematically prints all possible program out-

puts and then states that the program is without errors; see listing 8.25.
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0

2

1

3

====================================================== results

no errors detected

====================================================== statistics

elapsed time: 0:00:01

states: new=4, visited=3, backtracked=6, end=4

search: maxDepth=2, constraints=0

choice generators: thread=1, data=3

heap: gc=7, new=757, free=61

instructions: 10921

max memory: 6MB

loaded code: classes=116, methods=1490

Figure 8.25: JPF report: removed wrond assumption about random data

8.5 Conclusion

In this chapter, we have demonstrated our testing approach based on formal
methods, more precisely on Java Pathfinder explicit model checker. We used
our approach to found a typical set of defects that a multi-threaded program
may contain and that are very hard to discover by more conventional testing.
We also dealt with traceability, i.e., how the Java Pathfinder report can be used
to fix the defect in the source code. We also showed that using of our approach
is easy.

In chapter 10, we will use the approach for realistic programs.
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Chapter 9

Benchmarks

Every time you start to talk about a new programming language or a compiler,
one of the first questions of the audience is about the performance. One might
think that with exponential growth of computer performance the efficiency of
programs is no longer important, but that is not true for several reasons. First,
we demand more from contemporary programs: HD video, pattern recognition,
semantic analysis, etc. Second, we can build performance-constrained embedded
devices to be employed in new areas; and these constrained devices require
efficient programs. See the battery-free devices in [3].

The natural answer for the performance questions are benchmarks. Our
benchmarks are synthetic and rather trivial. We compare programs that re-
sulted from our development approach to programs that resulted from more
conventional technologies, such as plain C. Fair benchmarking of different com-
putational environments is always difficult as one can always design a test cases
that favors one of the environment. Our set of trivial benchmarks have only one
goal: to find out whether the performance of RPython and PyPy is reasonable,
i.e., whether it is comparable to more conventional approaches.

All benchmarks are run on Intel Core Duo T2300 processor at 1.66 GHz with
1 GiB RAM. The system runs on Ubuntu Linux 8.10 with kernel 2.6.35. GCC
is in version 4.3.2, Python is 2.5.2, Sun Java SE is 1.6.

9.1 Variants of Benchmarked Programs

For every benchmark, we typically test several variants of the executable form.
From RPython source, we can generate two kinds of output code (C and Java
byte-code). In the case of generated C, we can use various switches of GCC and
use couple of implementations of the standard C library.
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The conventional approach is represented by a program in handwritten C or
C++.

Here is the list of the variants:

• PyPy-C, BoehmGC is written in RPython, compiled by PyPy to C, uses
Boehm garbage collector (mark-and-sweep) and glibc1 implementation of
the standard C library. This is the most universal and promising variant
and this form is intended for deployment.

• PyPy-C, refGC is written in RPython, compiled by PyPy to C, uses PyPy
reference counting garbage collector and glibc.

• PyPy-C, refGC uClibc is written in RPython, compiled by PyPy to C, uses
PyPy reference counting garbage collector. Linked with uClibc2. This
library is optimized for embedded applications, it is much smaller than
glibc. Note that uClibc is not compatible with Boehm GC.

• C is a handwritten implementation in C, manual memory management,
linked with glibc.

• C, uClibc is a handwritten implementation in C, manual memory manage-
ment, linked with uClibc.

• C, BoehmGC is a handwritten implementation in C, linked with glibc. It
uses Boehm GC for memory management.

• CPP is a handwritten implementation in C++, manual memory manage-
ment, linked with standard C++ libraries.

• PyPy-JVM is the same RPython code as in PyPy-C cases, compiled by
PyPy to Java byte-code.

• CPython is the same RPython code as in PyPy-C and PyPy-JVM, inter-
preted by the standard Python interpreter.

For the computational benchmarks, we recognize several additional attributes
of the tested programs. Instances denoted as backendopt were compiled with
aggressive optimizations of PyPy compiler (function inlining, some memory op-
erations are moved from the heap to the stack). We do not recommend this
optimizations for our development approach for two reasons. First, we did not
investigate them in chapter 6 and therefore we are not sure whether they are safe

1http://www.gnu.org/s/libc/
2http://uclibc.org
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enough. Second, they affect traceability needed for formal testing described in
chapter 8. However, the reader should be informed that this kind of optimization
is possible and is able to improve the performance.

Another additional attribute is the level of GCC optimization; we usually
use -O6 switch that enables the most aggressive optimization, though GCC
currently implements only 3 levels of optimization. We consider this level of
optimization as safe.

The third case are JVM parameters. The -Xms200M parameter sets the
initial heap space to 200 MiB which may substantially affect the behavior of the
garbage collector.

9.2 Memory Footprint

Reasonable memory consumption is a critical factor of success for embedded
software because it determines a class of hardware that can run the software. In
comparison, unreasonable consumption of CPU cycles does not prevent the pro-
gram to run on a given piece of hardware; of course, the run might be unbearably
slow.

Measurement of memory consumption is not straightforward in contempo-
rary operating systems with virtual memory and shared libraries. As our pri-
mary target platform is Linux, let us provide a short introduction to memory
measurement on this platform.

The source of information on memory consumption of every process is the
status file that is stored in the /proc directory. In this file, there are memory
areas named as follows.

• VmSize is the total amount of virtual memory allocated for the process.
It is just an address space that is not necessarily used for actual data.
Address space is usually not a scarce resource; on 32-bit x86 systems there
are about 3 GiB of virtual memory available per process.

• VmExe is the size of the segment that is used for mapping of the program
code from persistent storage into the operation memory. If the program is
run by several processes, this segment is shared among them.

• VmLib is very similar to VmExe, it contains the code of shared dynamically
loaded libraries (DLLs). If a certain DLL is used by several processes, the
appropriate part of the memory is shared among them.

• VmStk is the size of the system stack of the process. Size of this segment is
relatively small for most programs; however, it may grow when a program
contains deep recursion.
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• VmData is the size of the virtual memory segment dedicated for dynami-
cally allocated memory, usually called heap. Size of the segment grows as
program allocates new memory, for instance via malloc from the standard
C library. The size also may grow due to the heap fragmentation.

• VmRSS is the real amount of physical memory, i.e., not just address space,
that a process actually uses. It is called resident set. Memory in this set
is on addresses from the VmExe, VmLib, VmData and VmStk segments.

• VmSwap is the amount of memory that was removed from VmRSS and
was written to the external memory (disk) because the operating system
had a shortage of physical memory.

A simple memory map of a process is depicted in figure 9.1.

Code (exe)

Code (lib)

Heap

Stack

Figure 9.1: Memory Map

In the memory benchmarks, we measure the VmRSS value as we consider it
as the most relevant. We also make sure that VmSwap is always zero.

9.2.1 Static Memory Allocation

In this test, we try to estimate the static memory allocation overhead of run-time
environments in order to find out whether our C code generated from RPython
is able to compete with handwritten C/C++.

For every programming language/programming environment, there is some
infrastructure that allows the program to run. For instance, for a C program,
the standard C library has to be loaded in the memory and some data structures
instantiated. The standard Java environment does not contain only a huge and
powerful standard library, but also the byte-code interpreter and JIT compiler.
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Program\List Length 100 1000 10000 100000

PyPy-C, BoehmGC 663 663 881 3043
PyPy-C, refGC, uClibc 82 82 348 1696
C 279 279 541 1892
C, uClibc 74 74 336 1688
C, BoehmGC 598 598 602 2208
CPP 807 811 811 2159
PyPy-JVM 11694 11690 11989 13476
CPython 2781 2748 4579 21586

Table 9.1: VmRSS Memory Consumed by a Process with a Linked List, in KiB.

There may also be a significant language-dependent overhead connected with
the dynamic objects allocation, i.e., allocation on the heap. Overhead of plain
C consists only of data structures needed for the heap management itself. The
support for object-oriented programming needs an additional infrastructure such
as virtual method tables and data for run-time type identification. The objects in
fully dynamic languages such as Python or JavaScript are usually implemented
as hash-tables that allow flexibility but are much more memory-hungry than C
structs.

The PyPy compiler generates C code; however, it also adds a significant
amount of infrastructure: the support for OOP, exceptions, garbage collection,
and functions from the standard Python library.

In this benchmark, we have a test program whose data structures consist
merely of one dynamically allocated linked-list. Items of the list are "native"
objects of the particular environment and contain only one integer as a payload,
see figure 9.2.

We let the program allocate a single list of certain length and observe the
memory consumption. The lengths of the lists are 100, 1000, 10000 and 100000.
The memory consumed by the shortest list is rather negligible so in this case the
overall memory consumption goes on the account of mandatory data structures
of the particular programming environment.

After the program allocates the list, it starts to infinitely iterate through the
list. This kind of infinite loop prevents GC from releasing the data structure;
moreover, this steady state allows us to reliably measure the amount of consumed
memory.

The amount of really consumed memory (VmRss) for various number of
allocated objects and various execution environments can be seen in table 9.1,
figures 9.3 and 9.4.
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1# Python
2c l a s s Item :
3de f __init__ ( s e l f , n , next ) :
4s e l f . n = n
5s e l f . next = next
6// C
7s t r u c t Item {
8i n t n ;
9s t r u c t Item∗ next ;
10} ;
11
12s t r u c t Item∗ Item_init ( i n t n , s t r u c t Item∗ next ) {
13s t r u c t Item∗ r e s u l t = XMALLOC( s i z e o f ( s t r u c t Item ) ) ;
14r e s u l t−>n = n ;
15r e s u l t−>next = next ;
16return r e s u l t ;
17}
18
19// C++
20c l a s s Item {
21pub l i c :
22i n t n ;
23Item∗ next ;
24Item ( i n t n , Item∗ next ) ;
25} ;
26
27Item : : Item ( i n t n , Item∗ next ) {
28th i s−>n = n ;
29th i s−>next = next ;
30}

Figure 9.2: Item of Linked-list in Various Environments
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Figure 9.3: Memory Consumption

Analysis of the Results

First see the graph in figure 9.3. The main variant for our intentions is PyPy-
C-BoehmGC. For the lists of lengths 100 and 1000 the memory consumption is
almost the same as for C-BoehmGC so we can say that the PyPy-C-BoehmGC
run-time environment is quite compact. However, for the lengths of 10000 and
100000 there is obvious that allocation of a single object is more expensive in
PyPy-C-BoehmGC.

Variant denoted as C that manages memory manually consumes less memory
than an equivalent program that utilizes garbage collector: C-BoehmGC. There
is a static overhead caused by the Boehm GC library code; on the other hand,
we can not surely say whether the allocation of a single object is more expensive
when Boehm GC is used.

Apart from libgc that implements Boehm GC, there is another library with
significant memory requirements, the standard C library implementation: GNU
C Library (glibc). The variant denoted as C-uClibc that uses a more compact
implementation of the standard library consumes less memory. The saving is
only in the terms of the code size; the heap object allocation expense is the same
as in the case of glibc.

We can utilize uClibc also for the C code generated by PyPy. The pit-
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Figure 9.4: Memory Consumption (with Java and CPython)

fall is that Boehm GC is not compatible with this library so we have to use
reference-counting GC that can be generated by PyPy itself. It is sufficient for
our single-threaded test program. The memory consumption of PyPy-C-refGC-
uClibc variant is almost identical as the memory requirements of C-uClibc. It
seems that the overhead of the object-oriented support is negligible which is not
surprising as we do not really employ OOP features in this program. In contrast,
there was a measurable difference between C-BoehmGC and PyPy-C-BoehmGC
which means that Boehm GC is less efficient for C code generated by PyPy.

Now see the graph in figure 9.4. We have also C++ implementation of the
test. We just see that standard C++ library is slightly bigger than standard C
library.

The more interesting is the PyPy-JVM variant. It is run by the standard
Sun/Oracle Java 6. We can see that the static overhead is enormous as the Java
run-time environment is powerful and apart from a huge standard library also
contains an interpreter and a JIT compiler. On the other hand, the memory
consumed by the list itself is comparable to C environment.
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Program Consumed Memory [MiB]

PyPy-C, BoehmGC 22.2
PyPy-C, refGC 16.0
C 15.6
C, BoehmGC 31.0

Table 9.2: VmRSS memory consumed by repeated allocation cycles, in MiB.

The last variant is the RPython source run by the standard Python inter-
preter. The interpreter itself is much more compact than JVM but also much
more memory consuming than compiled C. Allocation of objects is extremely
expensive. It is due to the fact that every object instance contains a hash table
in order to provide fully dynamic behavior.

9.2.2 Repeated Memory Allocation

The memory allocation pattern of most real world programs consists of repeated
allocation and release of variable-sized blocks. This pattern may cause additional
and inappropriate memory requirements due to the heap fragmentation.

To make sure that programs produced by our development tools behave rea-
sonably, we have written another benchmarking program. The program works
as follows. It has an array of length 100 called history. Every element of his-
tory is an array of length 1, 1000 or 100000 that contains integers. Since the
distribution of the lengths is regular, the lower bound of program working set is
(1 + 1000 + 100000) · 100/3 · 4 .= 12 MiB.

The program repeatedly iterates through history and reallocates each field.
Note that 3 and 100 are coprime numbers; therefore, a particular element of
history is always reallocated to a different size. Every allocated array of integers
is filled by a sequence in order to make sure that the memory is really committed.

We iterate the history array 1000 times which means we make 100000 indi-
vidual reallocations, allocating at least 12 GiB in total. Results are in table 9.2
and in figure 9.5.

Analysis of the Results

It is obvious that our simple allocation pattern did not cause any visible heap
fragmentation. PyPy-C-refGC and plain C versions are only 4 megabytes above
the lower bound. The reference-counting garbage collector and manual memory
management release memory immediately after an array is destroyed.
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Figure 9.5: Memory Consumption After Allocation Cycles

However, there is a significant overhead caused by the mark-and-sweep Boehm
garbage collector. It is because this kind of collecting algorithm waits some time
and then releases the unreferenced objects in a batch mode. This overhead is
at least 40 %. As this benchmark enormously stresses the GC, we consider this
overhead reasonable.

9.3 Speed of Execution

Apart from memory consumption that determines the set of target devices, there
is also execution speed. In spite of the fact that there is a non-negligible class
of applications that can live with 20 times slowdown caused by naive byte-code
interpretation (for instance), computational performance usually matters a lot.
Therefore we need to investigate whether the C code generated by PyPy is at
least in order of magnitude as fast as handwritten C code.

We measure the consumed time by the standard unix time utility. We mea-
sure the total run time of a program which may handicap environments that
perform JIT compilation, in our case, JVM. However, our test programs are
very small and their compilation should be just a fraction of total run time.

We always repeat each experiment at least five times and take median as the
result. The dispersion was in all cases negligible.

9.3.1 Computation of a Polynomial

The task of the program is as simple as follows. To numerically compute

∫ 1

0

x2 + 7x+ 1
3

dx
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Program Consumed Time [s]

PyPy-C 32.24
PyPy-C backendopt 30.20
PyPy-C -O6 24.26
PyPy-C backendopt -O6 24.23
PyPy-JVM 20.55
C 22.40
C -O6 24.20
CPython 1857.40

Table 9.3: Numeric Integration of a Polynomial

using a naive algorithm with step 10−9. See table 9.3 (and figure 9.6 that
excludes CPython) for the consumed times.
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Figure 9.6: Numeric Integration of a Polynomial

Analysis of the Results

The fastest variant in this test is the Java byte-code one. It is a bit surprising
because the measured time also includes the time spent by JIT itself; on the
other hand, it is known that contemporary JVM JIT can produce very efficient
code.

It is also obvious that the default PyPy-C variant is as much as one third
slower than handwritten C; however, if we switch on optimizations, we can match
the pure C results. It is interesting that GCC-level optimizations for PyPy
generated C are very successful regardless whether the PyPy level optimizations
(backendopt) were activated.
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Program Consumed Time [s]

PyPy-C 9.55
PyPy-C backendopt 4.99
PyPy-C -O6 1.25
PyPy-C backendopt -O6 1.23
PyPy-JVM 2.21
C 1.75
C -O6 0.57
CPython 71.28

Table 9.4: Fannkuch Benchmark

Just for curiosity we measured also CPython interpretation which is naturally
in two orders of magnitude slower. It is also interesting that in this particular
case the -O6 option actually hurt the performance of handwritten C.

9.3.2 Fannkuch

This benchmark intensively works with arrays/lists. The implementations were
taken from The Computer Language Benchmarks Game [68]. The algorithm
itself was initially published in [69]; fannkuch is an abbreviation for the German
word Pfannkuchen, or pancakes, in analogy to flipping pancakes. It works as
follows:

1. Take a permutation of 〈1, ..., n〉, for example: 〈4, 2, 1, 5, 3〉.

2. Take the first element, here 4, and reverse the order of the first 4 elements:
〈5, 1, 2, 4, 3〉.

3. Repeat this until the first element is a 1, so flipping won’t change anything
more: 〈3, 4, 2, 1, 5〉, 〈2, 4, 3, 1, 5〉, 〈4, 2, 3, 1, 5〉, 〈1, 3, 2, 4, 5〉.

4. Count the number of flips, here 5.

5. Do this for all n! permutations, and record the maximum number of flips
needed for any permutation.

In table 9.4 and figure 9.7 you can see the time consumed by fannkuch
algorithm for n = 10.
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Figure 9.7: Fannkuch Benchmark

Analysis of the Results

What we can see in the results is that PyPy-C variant without any additional
optimizations is at least 5 times slower than pure C without optimizations. With
GCC-level optimizations, the C code generated by PyPy is as fast as handwritten
unoptimized C.

9.3.3 Repeated Memory Allocation

In section 9.2.2, we have investigated the memory consumption of a program
that cyclically allocates and releases three types of memory blocks.

In this section, we investigate the execution speed of the same program. The
time consumed by the 10000 reallocations is in table 9.5 and figure 9.8.

Analysis of the Results

The handwritten C version with GCC optimizations enabled is much faster
than the rest. Without the GCC-level optimizations, the result is about 3 times
slower. The handwritten C with Boehm GC is about two times slower than un-
optimized C. The PyPy-C runs with GCC-level optimizations are about the same
speed as unoptimized handwritten C. The backendopt switch without GCC-level
optimizations have only moderate impact; however, the GCC-level optimizations
help PyPy-C a lot.

Performance of Java byte-code version can be significantly improved if the
initial heap size is 200 MiB; that probably enables the GC to run in more efficient
"batch" mode.

The version that runs on the top of Python interpreter is not much slower
than the compiled counterparts. It is due to the fact that memory management
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Program Consumed Time [s]

PyPy-C 8.37
PyPy-C backendopt 7.43
PyPy-C -O6 3.59
PyPy-C backendopt -O6 3.60
PyPy-JVM 7.90
PyPy-JVM -Xms200M 3.40
C 3.12
C -O6 1.08
C, BoehmGC 6.08
CPython 11.04

Table 9.5: Time Consumed for Allocation Cycles

as well as the way in which we initialize the array (by the built-in range()
function) is efficiently implemented in the interpreter itself, i.e., it is actually
written in C.

9.4 Conclusion

We have proven that the C code generated by PyPy from the RPython source
code can be generally compared with handwritten C code in both memory con-
sumption and computational performance. However, we admit that the code
generated by PyPy is usually bit slower and consumes more memory.

The memory consumption of the programs that build small data structures
depends also on the size of the standard C library implementation. For programs
with larger data structures the overall memory consumption is significantly af-
fected by the way how the memory is managed: manually, by reference-counting
GC, or by mark-and-sweep GC.

Boehm GC brings some overhead that is in our opinion bearable. The ref-
erence counting GC works without significant memory overhead, i.e., it has the
same efficiency as the manual management.

The computational performance depends on the tool-level optimizations used.
The optimizations that are provided by the C compiler (GCC) can significantly
improve the performance; the benefit for C code generated by PyPy is more sig-
nificant than in the case of handwritten C. We have seen that GCC-optimized
code from PyPy is about the same speed as handwritten C without such opti-
mizations.
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Figure 9.8: Time Consumed for Allocation Cycles

Another information about the performance of the code generated by PyPy
can be found in [65].
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Chapter 10

Case Studies

Let us apply our approach to two examples. The first one is inspired by a real-
world application; however, it is simplified in order to demonstrate formal-based
testing with LTL formulae.

The second example is a real application that can be immediately used by
users, or can be incorporated as a module into a larger software. It was im-
plemented as a part of the project "Methods of development and verification of
component-based applications using natural language specifications"1 sponsored
by Grant Agency of the Czech Republic (GAČR).

10.1 Program for Logging Events

This example is a model of software embeddable into a class of devices called
NVR (network video recorder). NVR is an embedded computer system that
manages IP cameras over a computer network.

10.1.1 Description of the Program

The main goal of the software is to store records from the associated cameras
together with metadata such as whether a camera detected a motion, how many
frames-per-second are in the video record, temperature, etc.

The metadata are stored in a database that acts as a data warehouse. The
metadata are not stored in the raw form but summarized into time intervals.
There is a predefined hierarchy of lengths of intervals: 10 seconds, 3 minutes,
1 hour and 1 day. In the case of the motion detection and similar events, the
value of every interval is the total number of the events that happened within

1GAČR P103/11/1489
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the interval. For physical quantities such as temperature, the value of the longer
interval is computed as an average from the subintervals that are lower in the
hierarchy.

The data warehouse is built on-the-fly by a NVR component called Logger.
It handles incoming metadata from camera drivers. The camera driver runs in
a separate thread and reads a video stream through a network socket; raw video
is saved to the disk and extracted metadata are pushed to the Logger.

The key class of Logger is called Summarizer. It maintains the state of
the current intervals in the memory, i.e., updates the values according to the
events incoming from drivers, and writes the final value into the database when
a particular interval elapses. After the interval is successfully written, its value
in the memory is cleared, i.e., a new interval is started. The process of flushing
interval values from the memory to the database is performed by a thread called
IntervalWriter. It sleeps most of the time, wakes up only when an interval ends
to perform the write & clear operation.

It is important to note that the camera driver runs in soft real-time mode,
i.e., it has to be guaranteed that it is never blocked when interacting with Sum-
marizer. This proposition holds, because the possibly slow operation of inserting
an interval value into the database is performed in IntervalWriter thread.

Apart from standard the events that are summarized, there are special events
called alarms with slightly different policy. Whenever an alarm occurs it has to
be written into a persistent alarm log as soon as possible. For this task, there
is a thread called AlarmWriter that waits for an alarm; when one arrives, the
thread is waken up and writes the alarm into the log. Unlike intervals, the alarm
data are stored in operating memory as shortly as possible.

Figure 10.1: Logger UML Scheme
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10.1.2 Experiments

In order to check the program by Java Pathfinder, we created a simplified version;
simplification is done by replacing the interaction with the real environment
by an interaction with some model of the environment. We have a virtual
camera driver that does not communicate with a real device but only semi-
randomly generates events. The database is replaced by a mockup that simply
does nothing. It is important to emphasize that Summarizer itself and the
thread interaction stays unsimplified. With this setup, the model checker can
enumerate all possible states of Logger.

There are plenty of properties that we can possibly specify by LTL formulae.
For our purpose, we investigate the reaction of the system when an interval
elapses. The following formula denotes that whenever an interval elapses, it has
to be written to the database (see section 8.1.2 for the specification of the syntax
of the formula).

G((method:Summarizer.intervalElapsed)

->(X(F(method:Database.writeInterval)))

)

Java Pathfinder can check that our implementation has this property. If we
inject a bug into Summarizer, i.e., remove the writeInterval method call from
the program, JPF finds this bug and provides a program trace as a proof.

There is also a requirement that when an interval elapses, the intermediate
value for the interval has to be cleared in order to start a new interval. This can
be expressed by a simple modification of the formula mentioned above, that is:

G((method:Summarizer.intervalElapsed)

->(X(F(method:Database.clearInterval)))

)

The order of writeInterval and clearInterval operations has to be always
valid, i.e., the interval is cleared only after it is written. The following formula
denotes that whenever an interval elapses, it is not cleared until it is written to
the database.

G((method:Summarizer.intervalElapsed)

->(X(

(~(method:Summarizer.clearInterval))

U(method:Database.writeInterval)

)

)

)

We can ensure the correctness of the formula by injecting a bug into Sum-
marizer. If we swap the clearInterval and writeInterval method calls in the
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program, the model checker will discover this misbehavior. Note that all these
three methods are executed by one thread, the IntervalWriter thread.

To demonstrate the ability to find bugs in multi-threaded programs, we will
investigate the part of the program dealing with alarms. As mentioned above,
alarms are detected by the camera driver (in the driver thread) and always have
to be written to the alarm log (by AlarmWriter thread). The following LTL
formula holds if every occurrence of an alarm is eventually followed by the write
operation.

G((method:Driver.alarmOccurred)

->(X(F(method:AlarmLog.writeAlarm))))

After we run the verification procedure, we are sure that Logger has this
property. Again, if we inject a bug, i.e., remove a thread notification that wakes
up AlarmWriter from alarmOccurred method, JPF discovers the bug.

10.1.3 Conclusion

The presented program is rather a model of a thread interaction. However, this
executable model can be evolved to the form of real application with the same
scheme of the thread interaction. We earned a set of guarantees that the design
is correct.

Apart from the LTL formulae, we checked that the program code has the
following properties:

• no deadlock occurs,

• none of the threads ends by an uncaught exception,

• there is no unsafe data access among the threads, i.e., there is no race
condition.

10.2 FTP Client

We will develop a simple but fully functional FTP client. It is designed as a
library, that can be easily incorporated into programs that need access to data
via this protocol.

We have two programs utilizing this library: a simple command-line utility,
and a Java OSGi based file manager.

Last but not least, with the help of Java Pathfinder, we provide a set of
guarantees of correctness of our implementation.
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10.2.1 File Transfer Protocol

The File Transfer Protocol (FTP) was defined by Internet Engineering Task
Force’s (EITF) standard RFC 959.

The protocol defines two channels: one for commands and one for data. The
communication in the command channel is text-based. Every client’s command
is a single line of text; server responses consist of one or more lines of text.

A client negotiates the conditions of a data transfer via the command chan-
nel: which file to transfer, direction of the transfer, which side opens the data
connection, etc. When the contract is negotiated, the data channel is opened
and the file content is sent, then the data channel is closed. Subsequently, a
negotiation of another transfer may begin.

Directories are treated as ordinary files, the content of a directory-file is a
list of files present in the directory. Format of the listing is not defined by
the protocol; the most common format is the output of the "ls -l" Unix shell
command.

The protocol is still actively used; however, some parts of the standard are
obsolete. Nowadays, the only relevant code set is ASCII (the standard also deals
with EBCDIC) and the only relevant transfer mode is stream, in which the file
content is sent through the network without any interpretation or transforma-
tion; RFC 959 also defines structured files and compression.

10.2.2 Design of the FTP Library

Our FTP client library implements only a minimal subset of the FTP protocol
necessary for filesystem browsing and file downloading. With these features, the
implementation is still useful because file downloading is the most common use
case.

The selected feature set is fully covered by these FTP commands:

• USER - The user asks for login with a user name.

• PASS - Send user’s password to the server.

• PASV - Sets the server into passive mode; the server starts to listen on a
port whose number is sent back to the client with response to this com-
mand. The client can then open the data channel by connecting to the
port.

• LIST - Obtain directory listing of the working (current) directory.

• CWD - Change the working directory.
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• RETR - Obtain file content of a specified file.

• QUIT - Let the server close the command channel.

The heart of the library is a state machine depicted in figure 10.2. Transitions
from between states generally deal with some network operations such as sending
a command and evaluating the server’s answer; the transitions labeled as error
allow a user to cancel an operation that consists of several transitions.

Every state transition can be also viewed as a transaction: it is either fully
accomplished or not performed at all. The transaction is accomplished if the
associated network interaction is successfully performed: the command is sent,
the response is received and the response is evaluated as a desired one.

ready

data connection

established

logged

connected

waiting

password
waiting

data connection

transfering

connect

USER CWDUSER

PASS

LIST

RETR

PASV

transfer

done error error

error

data connection

established

QUIT

any state except "ready",

"waiting data connection",

and "transfering"

Figure 10.2: FTP Client State Diagram

Particular transitions are relevant only for certain states. When a client
application tries to perform illegal transition a StateException is raised. Such
a situation corresponds with an attempt to violate the protocol; for instance,
an attempt to change a working directory (CWD) before the log in procedure
(USER/PASS) is performed.

The FTP client library is not used directly through the state machine because
it is too low-level; there is a Client class that has a convenient interface and
encapsulates the interaction with the state machine. For instance, it handles
user’s login that consists of one or two state transitions (depending on whether
a password is required by the server). On the other hand, this facade does not
add additional checks; a user can still generate an incorrect chain of commands
that is then refused by the state machine. See figure 10.3 for a UML class
diagram.
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The network interaction is encapsulated into two classes: Network and Net-
workReader. Implementation of this part depends on the selected back-end,
therefore there are three implementations: C, Java and pure Python. The im-
plementations are actually part of the parlib library mentioned in chapter 7
because it is a general infrastructure.

Figure 10.3: FTP Client Classes UML Scheme

Implementation Note: DbC and AOP

We argued that dynamic languages are open for new paradigm in section 4.4. It
is now the right time to show how one can leverage this advantage in practice.

See figure 10.4 for a listing of the password method of the StateMachine class.
The method sends the PASS FTP command and evaluates the response.

First of all, the StateMachine is thread-safe, which means that several meth-
ods must be protected against re-entrance by being implemented as critical sec-
tions. This is done by the @synchronized decorator introduced in section 7.2.1.
The decorator has the same semantics as the Java keyword of the same name.

Every method of the StateMachine also checks whether it can be executed
in the current state. This repetitive aspect can be also implemented as Python
decorator: @precond_state injects a statement that raises StateException if the
machine state is not the expected one.
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1@synchronized
2@precond_state (STATE_WAITING_PASSWORD)
3@postcond_states (STATE_LOGGED, STATE_WAITING_PASSWORD)
4de f password ( s e l f , password_str ) :
5command = Command.PASS( password_str )
6sent = s e l f . net . sendMessage (command . toSt r ing ( ) )
7i f not sent :
8return Fa lse
9
10response = s e l f . r eader . read ( )
11i f r e sponse i s not None and response . i sPo s i t i v eComple t i on ( ) :
12s e l f . _setState (STATE_LOGGED)
13return True
14
15return Fa lse

Figure 10.4: Listing of the StateMachine.password Method.

Additionally, we can provide explicit contract of the method regarding the
machine state after the method is executed. This is done by the @postcond_state
decorator that checks the machine state after the method body is executed.

The explicit contract given by the pre- and post-condition checks makes the
method more readable. For our particular case, it is obvious that the method
is valid only in the state WAITING_PASSWORD and pushes the machine to
the state LOGGED if successful; if unsuccessful, the machine state remains
unchanged.

10.2.3 Testing

In order to earn a set of guarantees of correctness, we need to construct a set of
tests. We demand two behaviors:

• The client library behaves according to the protocol. That means that if
the server also behaves correctly and there is not a network malfunction
and the order of commands is valid, then all the commands are successful.

• The client library reacts reasonably in the case of server or network mal-
function. That means, communication may be interrupted at any point
and server may violate the protocol (send incorrect response). Under these
conditions, some commands may fail, however, fail gracefully, i.e., without
unexpected exception or unexpected state transition.
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1s e r v e r = Server ( ) # mockup s e r v e r
2# mockup network i n t e r f a c e s :
3# (command and data channe l s
4# d i s t i n g u i s h e d by a boolean )
5commandNet = TestNetwork ( server , Fa l se )
6dataNet = TestNetwork ( server , True )
7c l i e n t = Cl i en t (commandNet , dataNet )
8suc = c l i e n t . connect ( " foo " , 21)
9a s s e r t suc
10c l i e n t . l o g i n ( " anonymous " , " o sg i f tp@k iv . zcu . cz " )
11f i l e s = c l i e n t . l i s t F i l e s ( )
12a s s e r t f i l e s i s not None
13f o r i in f i l e s :
14pr in t i . t oSt r ing ( )
15f = c l i e n t . r e t r i e v e F i l e ( " mockup− f i l e " )
16a s s e r t f i s not None

Figure 10.5: Example of a Test Script

Mockup Server Experiment

In order to provide a very basic guarantee of proper functionality, we built a
mockup FTP server. The server is not connected to the FTP client library via
TCP/IP network connection but directly interfaces the Network class, see figure
10.3. This configuration makes our tests self-contained and repeatable; on the
other hand, we do not test the layer of network sockets.

The server contains a simple hardcoded filesystem, i.e., the server can list
the root directory and serve several files.

The test scenarios are "scripts" that contain typical use-cases. For instance:
to connect, to log in, to obtain the root directory listing, and to obtain a file;
see figure 10.5.

The script is correct (contains valid sequence of commands) so it is always
executed successfully (assuming both client and server conform the protocol).

We also can write a script containing an incorrect scenario, for instance a
one that omits log-in, and see whether an exception is raised.

The experiments with a mockup server give us a basic guarantee that the
library implementation works well if the server behaves as expected ("a happy
day scenario").

Failing Mockup Server Experiment

We want our FTP client library to behave reasonably even if the server is experi-
encing failures that may result in violation of the FTP protocol. For this section,
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Code Meaning

1xy Positive Preliminary reply
2xy Positive Completion reply
3xy Positive Intermediate reply
4xy Transient Negative Completion reply
5xy Permanent Negative Completion reply

Table 10.1: FTP Reply Codes

we assume that the server produces incorrect replies, though still syntactically
correct.

With the help of Java Pathfinder we can easily simulate these situations and
make sure that our library handles them correctly.

The communication in the FTP command channel consists of commands
and replies. Every reply starts with a three-digit code and a human readable
message follows. The most significant digit of the code has a meaning defined
by the protocol, see table 10.1.

Now, we can create a failing FTP server that responds by a random code
to every client’s request. That means a particular command either succeeds or
fails. Then we run several test scenarios as mentioned above and evaluate the
behavior of our code.

Recall that with Java Pathfinder we actually execute all possible runs of
the scenarios. A run is defined by actual reply code of every command in the
scenario. Among all the runs, there is one that completely succeeds, i.e., it is
a "happy day scenario" with all reply codes according to client’s expectations.
But wast majority of runs contain one or more unexpected reply code. If an
unexpected reply code is encountered, the particular scenario’s operation (e.g.
a directory listing) is considered unsuccessful; the scenario continues with the
next operation if the failure is not fatal. For instance, log in failure is fatal for
all the subsequent operations.

If none of the runs ends with an unexpected exception, then we have a
guarantee that our FTP client library behaves reasonable even if the server
violates the protocol.

Failing Network Experiment

The FTP client library has to deal with network failures; we have to earn a
guarantee that a network malfunction is handled correctly. Recall the transac-
tional design of the library; a state transition succeeds only if both request and
response are performed without errors.
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1de f sendMessage ( s e l f , message ) :
2
3# I s tampering on?
4i f f a i l u r e _ c o n f i g .WRITE_LEVEL == 1 :
5# This random ( ) method i s de f ined by Java Pathf inder ,
6# so both a l t e r n a t i v e s are eventua l l y examined .
7i f random (1 ) == 0 :
8return Fa lse # sendMessage s i g n a l s f a i l u r e !
9
10# Normally , t h i s method d i r e c t l y d e l i v e r s the message
11# to the s e r v e r mockup .
12s e l f . mockupServer . setCommand( message )
13return True

Figure 10.6: Listing of Network.sendMessage with Injected Unreliability

Simulation of network unreliability can be achieved by tampering the meth-
ods of Network and NetworkReader classes in a such way that these methods
randomly fail to perform a desired action. For some methods, for instance Net-
work.connect the failure is straightforward (the method simply returns False);
on the other hand, NetworkReader.readLine may fail in two different ways:

• Returning None; that represents a network timeout.

• Returning a truncated data.

For better illustration how the error injection is done, see figure 10.6. The
injection utilizes Java Pathfinder’s randomization.

If we inject a potential failure to every network operation, we have a perfectly
unreliable network. With this unreliable network, we run the test scenarios.
Again, if there is no unexpected exception, we have a guarantee that FTP client
library deals well with network errors.

Testing Real Network Layer

The real network layer of the FTP client library can not be tested with the help
of our mockup server. The layer is very thin, it only encapsulates the network
interface of the underlaying platform (Linux operating system, JVM, or Python
standard library).

The guarantee of correctness can be earned by code inspection and by test-
ing a real network interaction with real FTP servers. We have several test
scenarios that interact with public FTP server installations such as ftp.zcu.cz or
ftp.gnu.org.
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client: PASV

server: 227 Entering Passive Mode (140,186,70,20,99,15).

client: RETR readme.txt

server: 150 Opening BINARY mode data connection for readme.txt (1765 bytes).

(client opens data channel, reads file content, and closes data channel)

client: 226 Transfer complete.

Figure 10.7: FTP Communication of a File Download

We inspected the network code to ensure that it can handle acts of a hostile
FTP server such as infinite-length reply. Such an act can not cause a harm
because we limited the size of the input buffer.

Multithreaded Experiment

The FTP protocol is not designed to do tasks in parallel; the control channel
can not manage multiple data channels. However, FTP client library can be
potentially used by several threads. For instance, the application might have
a dedicated thread for reading a file content, other threads can check the FTP
client state at the same time.

In order to make the client library thread-safe, we only need to add @syn-
chronized decorator to every public method of the StateMachine class, see also
figure 10.4. To earn a guarantee that this solution is correct, we have created a
test scenario that utilizes two threads and ran this scenario in Java Pathfinder
with race-condition detector.

Discovered Bugs

We found and fixed many bugs in our FTP client library with the help of our
testing approach. Let us present two examples.

In the figure 10.7, you can see a listing of FTP communication of a download
of one file. The client first sets the server to the passive mode; the server responds
by an IP address and a port that can be used for future data connection. Then
the client makes the file request; the server responds that it is ready to accept
the data connection. Then the file content is transfered and finally, success of
the operation is confirmed by the server.

The first discovered bug was incorrect handling of the response to the PASV
command. Response to this command is expected to be positive completion (see
table 10.1) with an IP address and a port attached to the message. However,
even if the reply code is positive as expected, it does not guarantee that the IP
address can be really obtained from the message. If the message is truncated
and the IP address and the port are unreadable, the client has to signal the
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PASV operation as unsuccessful. The original version of our FTP client library
raised a null-pointer exception in this corner case. This bug was discovered by
the failing network experiment.

The second discovered bug was in handling of the final confirmation of the
transfer operation. In our original version, the client signaled success of a
file download even if the final confirmation was not successful. Moreover, the
StateMachine stuck in the state transfering. After the fix, the client signals
the whole file download operation as unsuccessful and the state is reset back to
logged. This bug was found by the failing mockup server experiment.

With the help of testing driven by formal methods, we tested a wide range
of situations in which the correct function is guaranteed. Some of the found
bugs occur in situations that are highly improbable, however, not impossible;
this makes a discovery by conventional testing unlikely. Some more advanced
methods such as randomized simulation have potential to discover these corner-
case bugs; however, one have only probabilistic (therefore imprecise) definition
of the range of situations that were actually tested.

10.2.4 Programs

We have two programs based on our FTP client library. The first is a simple
utility that is operated via the command prompt; it is similar to the standard ftp
utility from Unix systems. As our development approach suggests, the program
can be run in three ways: interpreted by the standard Python interpreter, as a
native application compiled by C compiler, and on the top of JVM.

The second program that utilizes the FTP client library is an experimen-
tal file manager. The file manager is based on a Java component model called
OSGi. As mentioned before, the file manager is developed as a part the project
sponsored by Grant Agency of the Czech Republic. For this purpose, the gen-
erated class files are packed into an OSGi bundle, which is a Java archive (jar)
with a special manifest. The FTP client library’s interface is patterned after the
FTP client provided by Apache Commons Net library2; therefore, we can inter-
change these two implementations and evaluate functional and non-functional
properties for the sake of the project.

10.3 Conclusion

We have proven that the proposed development approach is perfectly usable and
useful for developing real-world programs. We have written a clean, elegant and

2http://commons.apache.org/net/
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high level code, leveraging dynamic languages’ strengths by easily embracing
paradigms such as AOP.

The FTP client library example also showed how versatile our approach
is: we can generate both very compact native command-line utility and an
"enterprise" OSGi component from the same source code.

Last but not least, we managed to earn a solid set of guarantees of cor-
rectness that can be in our opinion hardly earned by more conventional testing
procedures.
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Conclusion

The motivation of this work is to ease the work of developers that can not
afford to do things easily: they have to cope with constrained computation
power, increased requirements of dependability, etc. This is mainly the case of
embedded devices where a significant amount of code tends to be written in
traditional low level languages such as C. In contrast, mainstream development
of desktop and server applications embraces languages that are memory-safe,
provide automatic memory management and are separated from hardware by
virtual machines. Embedded software development naturally can adopt these
new techniques; however, there are obstacles to be overcome: for instance, it is
able to use Java programming language but you have to compile it ahead-of-time
or use a custom virtual machine.

In this work, we presented a novel development approach that profits from
flexibility of high level dynamically-typed programming languages while allowing
generation of compact and efficient machine code and plays well with formal
methods. It uses mainstream techniques whenever possible to minimize the
technical risks. The approach is aimed at embedded devices; however, it is not
limited to this domain. The main overview of the development approach is given
in chapter 5.

In section 1.1, we set down three main goals, in short they are: selection of
high level programming language and tools for our approach, design a verification
procedure that fits the tools and show that the final code is suitable for embedded
devices.

Selection of language and tools: To fulfill the first objection of this work,
we analyzed the recent trends of both embedded and general software devel-
opment. In the case of embedded development there is a significant effort to
embrace Java as it is modern, portable and widespread language. On the field
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of general desktop/server applications, there is a notable growth of very high
level dynamically-typed languages stimulated by contemporary internet appli-
cations. This is analyzed in chapter 4.

For our development approach, we selected a Python based tool-chain called
PyPy; it is flexible to embrace a broad set of modern paradigms: aspect ori-
ented programming, design by contract, creation of domain-specific languages.
Part of the tool-chain is also a compiler that allows generation of low-level code
for various platforms, mainly the machine code with C as an intermediate lan-
guage, and Java byte-code. The development process also takes advantage of
purely interpreted run, i.e., without compilation; that enables rapid application
prototyping.

We state that the selected tool-chain is more than promising for the future
needs and PyPy can play the role of the "Java+1" for embedded software devel-
opment.

Verification procedure: The second goal of this thesis was to employ formal
methods as dependability of embedded software is crucial. We presented a test-
ing procedure based on explicit model checker called Java Pathfinder. We use
the generated Java byte-code as a model of an intended application. We also
deal with traceability: if Java Pathfinder finds a bug in Java byte-code instance
of the application and provides a report, we are able to translate the program en-
tities mentioned in the report to the appropriate entities in the original program
source code, i.e., the Python code.

To assure that the generated C and Java byte-code are equivalent (for our
purposes) we investigated and documented the PyPy compilation process, see
chapter 6. We also designed thread synchronization objects that work the same
for C, Java byte-code, and for interpretation by Python interpreter, see chapter
7.

We demonstrated the testing procedure based on the formal methods by
finding a set of typical defects in artificial examples, e.g., a deadlock and a race
condition. We also demonstrated the verification against formulae specified in
linear temporal logic. Chapter 8 is dedicated to this topic.

Feasibility: The third goal of the thesis was to prove that the generated C
code is able to run on a constrained embedded device. We made a set of bench-
marks that prove that both memory consumption end computation efficiency
is satisfactory. However, we admit that in comparison with hand-written C,
there is some memory consumption overhead connected with the utilization of
automatic garbage collection. The benchmarks are presented in chapter 9.

Last but not least, we developed a couple of case studies to show that our

170



Chapter 11. Conclusion

development approach is viable for real software development. One of the ex-
amples is a fully operable FTP client that was developed as a part of the project
sponsored by Grant Agency of the Czech Republic.

We state that the code of the case studies is clean and elegant, embraces
modern paradigms. We were also able to earn a fair set of guarantees of cor-
rectness with the help of our testing procedure based on Java Pathfinder. Case
studies are presented in chapter 10.

11.1 Future Work

Improvements of automatic memory management, i.e., the garbage collection,
should be the main goal of the future work. We use Boehm GC for the produc-
tion machine code. This garbage collector is fast; however, it does not have any
real-time guarantees and it is type-inaccurate.

PyPy has a framework for implementation of custom GCs, it also has sev-
eral type-accurate GC implementations that can only work in single-threaded
program.

The first future task should be to port one of these GCs to the multi-
threaded environment; in our opinion, that should be straightforward. The
second and more challenging task is to implement one of the state-of-the-art
real-time garbage collectors on the top of the PyPy GC framework.

The second field with huge potential for improvements is the user friendliness
of our customized PyPy-based tool-chain. As PyPy itself is a research project, it
was used only by the people that know how the tools work inside and therefore
are able to comprehend rather cryptic error messages. For wider adoption of
this tool-chain, the user experience should be better.
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