
Západočeská univerzita v Plzni 
 

Fakulta aplikovaných věd 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Disertační práce 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2012 Mgr. Petr Vrána 
 
 



 



Západočeská univerzita v Plzni 
Fakulta aplikovaných věd 

 
 
 
 
 

THOMASSENOVA HYPOTÉZA A 
SOUVISEJÍCÍ PROBLÉMY 

 
 

Mgr. Petr Vrána 
 
 

disertační práce  
k získání akademického titulu doktor 

v oboru Aplikovaná matematika 
 
 
 
 
 
 
 
 
 
 

 
Školitel: Prof. RNDr. Zdeněk Ryjáček, DrSc. 

Katedra: Katedra matematiky 
 
 
 
 
 

Plzeň 2012 
 
 



 



University of West Bohemia in Pilsen 
Faculty of Applied Sciences 

 
 
 
 
 

THOMASSEN’S CONJECTURE AND 
RELATED PROBLEMS 

 
 

Mgr. Petr Vrána 
 
 

Dissertation thesis in partial fulfillment  
of requirement for the degree of Doctor of Philosophy 

in specialization Applied Mathematics 
 
 
 
 
 
 
 
 
 
 

 
Supervisor of dissertation: Prof. RNDr. Zdeněk Ryjáček, DrSc. 

Department of Mathematics 
 
 
 
 
 

Plzeň 2012 
 
 



 



Prohlášeńı
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ř́ıká, že každý 4-souvislý hranový graf je hamiltonovský. Ukazujeme známé
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potézy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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11 Autorské prohlášeńı 55
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Kapitola 1

Úvod

Hamiltonovské vlastnosti jsou jednou ze základńıch otázek teorie graf̊u. Na-

cházej́ı široké uplatněńı v praxi např́ıklad při plánováńı výroby, v poč́ıtačových

śıt́ıch nebo dopravńıch problémech. Thomassenova hypotéza patř́ı k d̊uležitým

a intenzivně zkoumaným problémům této oblasti. Dokladem této skutečnosti

je např́ıklad i to, že přehledový článek (který je součást́ı této práce) obsa-

huje 67 referenćı. Tématika, která je v práci zkoumána, zahrnuje široké spek-

trum otázek. Za všechny jmenujme konstrukce snark̊u, grafy na plochách, hy-

perkostry, uzávěrové operace a charakterizace grafových tř́ıd. Rozsah těchto

problémů a d̊ukazových technik se neustále rozšǐruje v naději, že nový úhel

pohledu přinese nějaký posun - at’ už d̊ukaz, nebo nalezeńı protipř́ıkladu.

Práce je zpracována formou souboru sedmi praćı, které jsou publikovány

či zaslány k publikaci. V komentáři jsou výsledky, které jsou předmětem diser-

tace, označeny hvězdičkou.
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Kapitola 2

Základńı terminologie

Značeńı použité v této práci vycháźı z knihy [3].

Graf je uspořádaná dvojice G = (V (G), E(G)), kde V (G) je konečná

množina a E(G) je podmnožina množiny všech dvojic vzájemně r̊uzných prvk̊u

z V (G). Povoĺıme-li v́ıce (konečný počet) r̊uzných hran mezi stejnou dvojićı

uzl̊u, ř́ıkáme, že G = (V (G), E(G)) je multigraf. Množinu hran mezi jednou

dvojićı uzl̊u nazveme multihrana. Počet hran v multihraně e nazveme multipli-

citou multihrany e.

Okoĺı uzlu x v grafu G budeme značit NG(x) a dále zavedeme NG[x] =

NG(x) ∪ {x}. Označ́ıme dG(x) = |NG(x)| stupeň uzlu x ∈ V (G) a definujeme

množinu Vk(G) = {x ∈ V (G)|dG(x) = k}. Volná hrana je hrana, která má

jeden uzel stupně 1. Klika je úplný podgraf nikoliv nutně maximálńı. Induko-

vaný podgraf F grafu G je podgraf, pro který každá hrana grafu G mezi uzly

podgrafu F je současně hranou podgrafu F . Podgraf indukovaný množinou

uzl̊u M znač́ıme ⟨M⟩. Grafem bez K1,3 rozumı́me graf, který neobsahuje K1,3

jako indukovaný podgraf. Stejnou vazbu budeme použ́ıvat i pro daľśı podgrafy.

Graf, který se skládá z kružnice Ck s k uzly a uzlu soused́ıćıho se všemi uzly

kružnice Ck (nazveme ho střed), nazveme k-kolo a označ́ıme Wk. Sledem na-

zveme posloupnost uzl̊u takovou, že každé 2 po sobě jdoućı uzly jsou spojené

hranou. Tahem nazveme sled, v němž se žádná hrana nepouž́ıvá dvakrát. Hra-

nový graf H grafu (multigrafu) G, znač́ıme H = L(G), je graf s množinou
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uzl̊u V (H) = E(G), v němž jsou uzly spojené hranou právě tehdy, když

odpov́ıdaj́ıćı hrany v G maj́ı společný uzel. Graf G nazveme hranovým gra-

fem (hranovým grafem multigrafu), jestliže existuje graf (multigraf) H tak, že

G = L(H). Řekneme, že uzel u je simpliciálńı uzel v G, jestliže jeho okoĺı

NG(u) indukuje úplný graf. Řekneme, že graf G je cyklicky hranově k-souvislý,

jestliže neobsahuje hranový řez R takový, že |R| < k a současně alespoň 2 kom-

ponenty G − R obsahuj́ı kružnici. Řekneme, že graf G je esenciálně hranově

k-souvislý, jestliže neobsahuje hranový řez R takový, že |R| < k a současně ale-

spoň 2 komponenty G−R obsahuj́ı hranu. Jestliže {x, y} ⊂ V (G) je uzlový řez

grafu G a K1, K2 jsou komponenty G−{x, y}, pak podgrafy ⟨V (K1)∪{x, y}⟩G
a ⟨V (K2) ∪ {x, y}⟩G nazveme bikomponenty grafu G určené {x, y}.

Kružnici (cestu) v grafuG nazveme hamiltonovskou, jestliže obsahuje všech-

ny uzly grafu G. Graf nazveme hamiltonovským, jestliže má hamiltonovskou

kružnici. Graf G nazveme hamiltonovsky souvislým, jestliže pro každou dvojici

uzl̊u x, y ∈ V (G) existuje hamiltonovská cesta s koncovými uzly x, y. Graf G

nazveme k-hamiltonovsky souvislým, jestliže G−X je hamiltonovsky souvislý

pro každou množinu uzl̊u X ⊂ V (G) s |X| = k. Graf G je 2-hranově hamil-

tonovsky souvislý, jestliže graf G +X má hamiltonovskou kružnici obsahuj́ıćı

všechny hrany z X pro každou X ⊂ E+(G) = {xy|x, y ∈ V (G)} s 1 ≤ |X| ≤ 2.

Řekneme, že uzavřený tah (kružnice) T v grafu G je dominantńı, jestliže každá

hrana v G má alespoň jeden uzel v T . Jestliže kružnice (resp. tah) obsahuje

alespoň jeden uzel dané hrany e, řekneme, že hranu e dominuje. Jestliže tah,

který dostaneme odebráńım prvńı a posledńı hrany tahu T , dominuje všechny

hrany grafu G, řekneme, že tah T je vnitřně dominantńı (znač́ıme IDT z ang-

lického internally dominating trail). Jestliže tah, který dostaneme odebráńım

prvńı hrany tahu T , dominuje všechny hrany grafu G, označ́ıme ho HIDT (z

anglického half internally dominating trail).

Pokud graf G má pro každý uzel x hamiltonovskou cestu P takovou, že

x je jej́ı koncový uzel, nazveme graf G P -souvislým. Pro podmnožiny X a Y

množiny V (G) takové, že X ∩ Y = ∅, označ́ıme EG(X, Y ) množinu hran mezi

X a Y , a dále eG(X, Y ) = |EG(X,Y )|. Kružnici C grafu G nazveme Tutteovou

kružnićı grafu G, jestliže (a) C je hamiltonovská nebo (b) |V (C)| ≥ 4 a každá

komponenta G − C má nejvýše tři sousedńı uzly na C. Graf je k-regulárńı,
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jestliže všechny uzly grafu maj́ı stupeň k. Graf, který je 3-regulárńı, označ́ıme

také jako kubický. Graf je hranově k-obarvitelný, jestliže hrany lze obarvit

k barvami tak, že žádné dvě hrany se společným uzlem nemaj́ı stejnou barvu.

Druhou mocninu grafu G dostaneme spojeńım všech uzl̊u ve vzdálenosti 2 hra-

nami a budeme ji značit G2. Bud’ K konečný systém množin. Pr̊unikový graf

(pr̊unikový multigraf) systému K nazveme graf (multigraf), ve kterém každou

množinu z K reprezentuje jeden uzel a uzly jsou spojené hranou (multihra-

nou s multiplicitou i) právě tehdy, když množiny koresponduj́ıćı uzl̊um maj́ı

neprázdný pr̊unik (s i prvky).
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Kapitola 3

Charakterizace podtř́ıd graf̊u

bez K1,3

3.1 Charakterizace hranových graf̊u multigra-

f̊u

Krausz [38](1943) dokázal následuj́ıćı charakterizaci hranových graf̊u multigraf̊u.

Krauszovým pokryt́ım grafu G nazveme pokryt́ı grafu G klikami, pro které

plat́ı:

(i) každá hrana je v alespoň jedné klice,

(ii) každý uzel je právě ve dvou klikách.

Věta 3.1 [38]. Neprázdný graf G je hranový graf multigrafu právě tehdy,

když existuje Krauszovo pokryt́ı grafu G.

Jestliže G je hranový graf multigrafu a K = {K1, ..., Km} je Krauszovo

pokryt́ı G, pak multigraf H takový, že G = L(H), může být źıskán z K jako

pr̊unikový multigraf systému množin {V (K1), ..., V (Km)}.
Bermond a Meyer [6](1973) dokázali charakterizaci hranových graf̊u mul-

tigraf̊u přes zakázané podgrafy.

Věta 3.2 [6]. Necht’ G je graf. Pak následuj́ıćı podmı́nky jsou ekviva-

lentńı:
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G7

Obrázek 3.1

(a) Graf G je hranový graf multigrafu.

(b) Graf G neobsahuje jako indukovaný podgraf žádný z graf̊u na obrázku

3.1.

(c) Z grafu G dostaneme hranový graf, jestliže nahrad́ıme uzlem každou

maximálńı množinu M , pro kterou plat́ı x, y ∈ M ⇔ (NG[x] = NG[y]).

Bermond a Meyer ve stejném textu uvedli ještě jednu charakterizaci.

Kliku C grafu G nazveme normalizovanou, pokud každý uzel x ∈ V (G) \
V (C) bud’ lež́ı mimoNG(C), nebo existuje rozděleńı C na 3 disjunktńı podkliky

K1, K2, K3 takové, že C − ⟨NG(x)⟩ = K1, a pro uzly y, z z r̊uzných klik Ki

plat́ı, že NG[y] ̸= NG[z].

Věta 3.3 [6]. Graf G je hranový graf multigrafu právě tehdy, když neob-

sahuje jako indukovaný podgraf K1,3 ani G5 na obrázku 3.1 a nav́ıc množina

maximálńıch klik, které nejsou normalizované, pokrývá každý uzel grafu G

nejvýše dvakrát (každý uzel G je v nejvýše dvou takových klikách).

Vzor hranového grafu multigrafu neńı určen jednoznačně. Zverovič [63]

(1997) dokázal následuj́ıćı větu. Obdobnou větu pro hranové grafy dokázal

Whitney již v roce 1932. Základńı graf multigrafu (podle basic graph - Zverovič

[63]) je graf, který vznikne nahrazeńım každé jeho multihrany hranou. Volná
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multihrana je multihrana, které v základńım grafu odpov́ıdá volná hrana. Mul-

tihvězdou nazveme multigraf, jehož základńı graf je izomorfńı s grafemK1,i, i ≥
2. Střed multihvězdy S nazveme uzel x, který je spojen hranami se všemi

ostatńımi uzly S. Ostatńı uzly multihvězdy S nazveme listy. Pokud střed x je

jediný uzel S, pro který plat́ı dG(x) ̸= dS(x), řekneme, že S je volná multihvězda

a uzel x nazveme kořenem. Multigraf, jehož základńı graf je izomorfńı s C3 se

nazývá multitrojúhelńık. Pokud pro právě jeden uzel x v multitrojúhelńıku H

v grafu G plat́ı dG(x) ̸= dH(x), nazveme H volný multitrojúhelńık a uzel x

nazveme kořenem.

Ted’ zavedeme transformaci libovolně zvoleného multigrafu G ([63]).

Operace A. V libovolně zvolené maximálńı (vzhledem k inkluzi) volné mul-

tihvězdě slouč́ıme všechny listy do jednoho uzlu.

Operace B. Pro libovolně zvolený volný multitrojúhelńık H s kořenem v

a množinou uzl̊u V (H) = v, x, y odstrańıme všechny hrany mezi uzly v, x.

Následně doplńıme hrany mezi uzly v, y tak, že stupeň v se při transformaci

nezměńı.

Multigraf, který dostaneme z G opakovaným použit́ım operaćı A,B v libo-

volném pořad́ı, dokud je to možné, označ́ıme AB(G).

Věta 3.4 [63]. Bud’te H a H ′ souvislé multigrafy, jejichž hranové grafy

jsou izomorfńı. Pak multigrafy AB(H) a AB(H ′) jsou vždy izomorfńı, ledaže

jeden z H,H ′ je multitrojúhelńık a druhý neizomorfńı multitrojúhelńık nebo

multihvězda.

Zaj́ımavý d̊usledek Zverovičovy věty je ukázán v [54]∗. Přidáńı velmi při-

rozené podmı́nky, že simpliciálńı uzel v hranovém grafu odpov́ıdá volné hraně

v multigrafu, dává jednoznačný vzor pro hranové grafy multigraf̊u.

Věta 3.5 [54]∗. Bud’ G souvislý hranový graf multigrafu. Pak existuje až

na izomorfismus jednoznačně určený multigraf H takový, že G = L(H) a uzel

e ∈ V (G) je simpliciálńı v G právě tehdy, když koresponduj́ıćı hrana e ∈ E(H)

je volná hrana v H.
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Tento vzor je velmi d̊uležitý pro d̊ukaz věty o uzávěru graf̊u bez K1,3 za-

chovávaj́ıćım 1-hamiltonovskou souvislost, budeme ho značit H = L−1
M (G) a

pro vzor H hranového multigrafu G jednoznačně určený podle věty 3.5 a hranu

a ∈ E(H) odpov́ıdaj́ıćı uzlu a ∈ V (G) označ́ıme a = L−1
M(G)(a).

Důležitou tř́ıdou z hlediska využitelnosti uzávěr̊u jsou hranové grafy mul-

tigraf̊u bez trojúhelńık̊u. Charakterizacemi této tř́ıdy se zabývaj́ı Kloks, Krat-

sch a Müller [34]. Použ́ıvaj́ı značně nestandardńı terminologii. Hranové grafy

multigraf̊u bez trojúhelńık̊u např́ıklad nazývaj́ı domina. Definuj́ı je jako tř́ıdu,

kde každý uzel grafu se nacháźı nejvýše ve dvou maximálńıch klikách. Z Krauz-

sovy charakterizace lze snadno dokázat následuj́ıćı lemma.

Lemma 3.6. Graf G je domino právě tehdy, když existuje multigraf H

bez trojúhelńık̊u takový, že L(H) = G.

Důkaz. Nejprve ukážeme, že každé domino je hranový graf multigrafu bez

trojúhelńık̊u. Označme systém klik v grafu G naplňuj́ıćı definici domina K =

{Ki, i = 1 . . .m}. Systém klik K pokrývá všechny hrany v G, protože jinak

nepokrytá hrana je v maximálńı klice, která dává spor s definićı. Bud’ K ′

systém klik, který dostaneme z Ki doplněńım jednouzlových klik pro všechny

uzly, které jsou v právě jedné maximálńı klice (jsou to simpliciálńı uzly grafu

G). Systém klik K ′ je Krauzsovo pokryt́ı grafu G. Pokud by vzor odpov́ıdaj́ıćı

K ′ obsahoval trojúhelńık T , každá jeho hrana je v G ve dvou klikách K. Obraz

T je v G maximálńı klika a dává spor s definićı K.

Necht’ naopak G je hranový graf multigrafu H bez trojúhelńık̊u. Protože

v grafu H nejsou trojúhelńıky, z definice hranového grafu odpov́ıdaj́ı všechny

kliky L(H) (tedy i maximálńı) multihvězdám v H. Z toho vyplývá, že maxi-

málńı kliky L(H) jsou podmožiny Krauzsových klik L(H) koresponduj́ıćıch

s H. Graf L(H) splňuje definici domina.

Kloks a kol. charakterizuj́ı domina přes zakázané podgrafy.

Věta 3.7 [34]. Graf je domino právě tehdy, když je bez K1,3, bez 4-kola a

bez druhé mocniny cesty s pěti uzly.
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3.2 Charakterizace hranových graf̊u

Pokud existuje Krauzsovo pokryt́ı hranového grafu G multigrafu H takové, že

koresponduj́ıćı vzor H ′ je graf, graf G je podle definice hranový graf a můžeme

takovým pokryt́ım hranové grafy graf̊u dokonce charakterizovat. Jedná se o nej-

starš́ı charakterizaci hranových graf̊u vyslovenou Krauszem [38] již v roce 1943.

Věta 3.8 [38]. Neprázdný graf G je hranový právě tehdy, když existuje

klikové pokryt́ı K grafu G takové, že každá hrana je v právě jedné klice v K

a každý uzel je právě ve dvou klikách v K.

Následuj́ıćı věta (známá jako Whitneyho věta) ukazuje jeden z rozd́ıl̊u mezi

hranovými grafy a hranovými grafy multigraf̊u.

Věta 3.9 [60]. Bud’te G,G′ souvislé grafy, jejichž hranové grafy jsou izo-

morfńı. Pak grafy G,G′ jsou vždy izomorfńı s výjimkou př́ıpadu, kdy jeden je

C3 a druhý K1,3.

Poznamenejme, že dř́ıve uvedená podmı́nka pro jednoznačný vzor hra-

nových graf̊u multigraf̊u neńı rozš́ı̌reńım vzoru z Whitneyho věty na hra-

nové grafy multigraf̊u a existuje nekonečná tř́ıda 2-souvislých hranových graf̊u,

pro které se oba vzory lǐśı. Obrázek 3.2 ukazuje př́ıklad takových graf̊u. Graf

G je hranový graf a grafy H1, H2 dva r̊uzné vzory G. Graf H1 je jediný vzor G

podle věty 3.9, zat́ımco H2 je jediný vzor G podle věty 3.5. Nekonečnou tř́ıdu

snadno dostaneme pokud jeden z trojúhelńık̊u grafu G př́ıslušně nahrad́ıme

libovolně velkou klikou.

•
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G

Obrázek 3.2

Charakterizaci hranových graf̊u pomoćı zakázaných podgraf̊u našel Beineke

[4](1970).
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Věta 3.10 [4]. Graf G je hranový právě tehdy, když neobsahuje indukovaný

podgraf izomorfńı s některým grafem na obrázku 3.3.
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Obrázek 3.3

Doplńıme ještě charakterizaci hranových graf̊u graf̊u bez trojúhelńık̊u. Bod

(iii) pocháźı od A.R. Rao, zbytek dokázali Beineke a Hemminger. Vše je v [5]

(1978).

Věta 3.11 [5]. Následuj́ıćı tvrzeńı jsou ekvivalentńı pro souvislé grafy H

s alespoň čtyřmi uzly:

(i) H je hranový graf grafu bez trojúhelńık̊u,

(ii) dvě r̊uzné maximálńı kliky grafu H maj́ı společný nejvýše jeden uzel a

pr̊unikový graf maximálńıch klik v H je bez trojúhelńık̊u,

(iii) všechny uzly sousedńı k oběma uzl̊um libovolné hrany indukuj́ı v H

kliku a okoĺı každého uzlu lze pokrýt dvěma klikami,

(iv) H neobsahuje indukované podgrafyK1,3 a druhou mocninu cesty se čtyř-

mi uzly.
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Kapitola 4

Uzávěrové operace na grafech

bez K1,3

4.1 Obecný úvod

Uzávěrové operace na grafech jsou velmi d̊uležité, protože umožňuj́ı rozšǐrovat

platnost vět z hranových graf̊u (multigraf̊u) na širš́ı grafové tř́ıdy. Nás zaj́ımaj́ı

předevš́ım hamiltonovské vlastnosti, ale tyto techniky lze využ́ıt také v jiných

oblastech (např. párováńı). Hranové grafy multigraf̊u jsou výhodné zejména

možnost́ı přej́ıt ke vzoru. Často je možné pomoćı uzávěru vzor omezit např́ıklad

na grafy bez trojúhelńık̊u. Uvedeme známé korespondence pro hamiltonov-

skost, hamiltonovskou souvislost, P-souvislost a Tutteovy kružnice.

Souvislost mezi dominantńımi tahy a hamiltonovskými kružnicemi dokázali

Harary a Nash-Williams [28] (1965).

Věta 4.1 [28]. Bud’ G graf s alespoň třemi hranami. Pak L(G) je hamilto-

novský právě tehdy, když G má uzavřený dominantńı tah.

Podobný argument dává analogii pro hamiltonovskou souvislost (viz např.

[46]).
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Věta 4.2 [46]. Bud’ G graf s alespoň třemi hranami. Pak L(G) je hamilto-

novský právě tehdy, když kdyžGmá IDT s koncovými hranami e1, e2 pro každý

pár hran e1, e2 ∈ E(G).

Jen s velmi malou změnou lze ukázat obdobu pro P-souvislost.

Věta 4.3. Bud’ G graf s alespoň třemi hranami. Následuj́ıćı tři podmı́nky

jsou ekvivalentńı:

(i) Graf L(G) je P-souvislý.

(ii) Graf G má IDT s prvńı hranou e pro každou hranu e ∈ E(G).

(iii) Graf G má HIDT s prvńı hranou e pro každou hranu e ∈ E(G).

Čada a kol. [19]∗ dokázali následuj́ıćı korespondenci. Uzavřený tah T v grafu

H nazveme slabý Tutte̊uv uzavřený tah grafu H jestliže (a) EH(T ) = E(H),

nebo (b) |EH(T )| ≥ 4 a eH(F, T ) ≤ 3 pro všechny F ∈ FH(T ) = {F |F je kom-

ponenta H − T pro kterou |V (F )| ≥ 2}. Kružnici C v grafu bez K1,3 nazveme

kružnićı s (∗)-vlastnost́ı, jestliže pro každý simpliciálńı uzel x na kružnici C

kružnice C obsahuje všechny uzly NG(x).

Věta 4.4 [19]∗. Bud’ H graf bez trojúhelńık̊u. Jestliže H má slabý Tutte̊uv

hranově maximálńı uzavřený tah, pak L(H) má Tutteovu maximálńı kružnici

s (∗)-vlastnost́ı.

Z hamiltonovských vlastnost́ı nelze uzávěrové operace použ́ıt př́ımo pro pan-

cyklicitu a silněǰśı vlastnosti, jak bylo ukázáno např. Brandtem a kol. [12](2000).

Pro hamiltonovskou souvislost, P-souvislost, délku nejdeľśı kružnice, hamil-

tonovskost a existenci hamiltonovské cesty jsou známé uzávěrové operace,

při kterých jsou tyto vlastnosti stabilńı.

Necht’ G je tř́ıda graf̊u. Uzávěrem na G budeme rozumět binárńı relaci R

na G takovou, že levý obor R je celá tř́ıda G a pro každou dvojici [G1, G2]

relace R plat́ı V (G1) = V (G2) a E(G1) ⊂ E(G2).
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4.2 Uzávěr se stabilńı hamiltonovskost́ı

Patrně nejpouž́ıvaněǰśı uzávěr v oblasti graf̊u bez K1,3 je Ryjáčk̊uv uzávěr

[52](1997).

Uzel x v grafu G nazveme k-uzav́ıratelný, jestliže jeho okoĺı v G indukuje

k-souvislý neúplný graf. Pro 1-uzav́ıratelné uzly budeme použ́ıvat pouze ozna-

čeńı uzav́ıratelný uzel. Lokálńım zúplněńım uzlu x nazveme graf G∗
x vytvořený

z grafu G doplněńım hran ⟨NG(x)⟩ na kliku. Ryjáčkovým uzávěrem grafu G,

značeno clR(G), rozumı́me graf, který vznikne z grafu G opakovaným lokálńım

zúplňováńım uzav́ıratelných uzl̊u, dokud je toto možné. U grafu clR(G) tedy

každé souvislé okoĺı ⟨NG(x)⟩ je klika.

Označme c(G) délku nejdeľśı kružnice v grafu G. Označme p(G) délku

nejdeľśı cesty v grafu G. Body (i)− (iii) následuj́ıćı věty dokázal Ryjáček [52],

bod (iv) je dokázán Brandtem a kol. [12].

Věta 4.5 [52], [12]. Bud’ G graf bez K1,3. Pak

(i) clR(G) je jednoznačně definován,

(ii) existuje graf H bez trojúhelńık̊u tak, že clR(G) = L(H),

(iii) c(G) = c(clR(G)),

(iv) p(G) = p(clR(G)),

Uzávěr se také velmi dobře chová v̊uči kružnićım s (∗)-vlastnost́ı.
Dále uvedenou větu a jej́ı d̊usledek využili Čada a kol. [19]∗ ke zkoumáńı

hypotéz souvisej́ıćıch s Tutteovými cykly na grafech bez K1,3. Kružnici C

v grafu G nazveme Tutteovou maximálńı kružnićı grafu G, jestliže C je Tu-

tteova kružnice a maximálńı kružnice grafu G.

Věta 4.6 [19]∗. Bud’ G graf bez K1,3 a bud’ v uzav́ıratelný uzel v G. Jestliže

C ′ je kružnice s (∗)-vlastnost́ı v grafu G∗
v, pak G má kružnici C s (∗)-vlastnost́ı

takovou, že V (C) = V (C ′).

Důsledek 4.7 [19]∗. Bud’ G graf bez K1,3 Jestliže clR(G) má Tutteovu

maximálńı kružnici s (∗)-vlastnost́ı, pak G má Tutteovu maximálńı kružnici

s (∗)-vlastnost́ı.
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4.3 Uzávěr se stabilńı hamiltonovskou souvis-

lost́ı

Hlavńı nástroj popsaný v této kapitole bude multigrafový uzávěr (zkráceně

M-uzávěr) graf̊u bez K1,3 zavedený v [54]∗.

Označ́ıme k-uzávěr grafu G, značený clk(G), graf vzniklý z G rekurzivńım

zúplňováńım k-uzav́ıratelných uzl̊u, dokud je toto možné. Graf je k-uzavřený,

jestliže G = clk(G). Pro nás jsou d̊uležité následuj́ıćı vlastnosti.

Věta 4.8. Pro každý graf G bez K1,3,

(i) [9] clk(G) je definován jednoznačně pro každé k ≥ 1,

(ii) [9] cl2(G) je P-souvislý právě tehdy, když G je P-souvislý,

(iii) [53]∗ cl2(G) je hamiltonovsky souvislý právě tehdy, když G je hamilto-

novsky souvislý.

Použit́ım charakterizace hranových graf̊u multigraf̊u od Bermonda a Meye-

ra [6] je snadné ukázat, že cl2(G) neńı hranový graf multigrafu, protože grafy

G2, G4 charakterizace na obrázku 3.1 jsou 2-uzavřené. Ale 2-uzavřený graf

neobsahuje žádný z 5 zbývaj́ıćıch zakázaných podgraf̊u charakterizace [54]∗.

Bud’ J = u0u1...uk+1 sled v G. Řekneme, že J je dobrý v G, jestliže k ≥ 4,

J2 ⊂ G a pro každé i, 0 ≤ i ≤ k−4 podgraf indukovaný ui, ..., ui+5 je izomorfńı

s G2 nebo G4 na obrázku 3.1.

Lemma 4.9 [54]∗. Bud’ G souvislý 2-uzavřený graf bez K1,3, který neńı

mocnina kružnice, a bud’ J = u0...uk+1 dobrý sled v G, k ≥ 5. Pak

(i) dG(ui) = 4, i = 3, ..., k − 2,

(ii) u1...uk je cesta.

Dobrý sled J je maximálńı, jestliže pro každý dobrý sled J ′ v G, J je

část J ′, implikuje J = J ′. Lze ukázat, že jestliže je G souvislý, 2-uzavřený a

neńı druhá mocnina kružnice, pak každý dobrý sled je v nějakém maximálńım
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dobrém sledu a dva r̊uzné maximálńı dobré sledy jsou uzlově disjunktńı (viz

[54]∗).

Ted’ můžeme definovat M-uzávěr následuj́ıćım zp̊usobem.

Bud’ G souvislý graf bez K1,3, který neńı druhá mocnina kružnice.

1. Polož G1 = cl2(G), i := 1.

2. Jestliže Gi obsahuje dobrý sled, pak

(a) vyber maximálńı dobrý sled J = u0u1 . . . uk+1,

(b) polož Gi+1 = cl2(((Gi)
∗
u1
)∗uk

),

(c) i := i+ 1 a jdi na (2).

3. Polož clM(G) = Gi.

Pokud G je druhá mocnina kružnice, definujeme clM(G) jako úplný graf.

Věta 4.10 [54]∗. Bud’ G souvislý graf bez K1,3 a bud’ clM(G) M-uzávěr

grafu G. Pak

(i) clM(G) je jednoznačně definován,

(ii) existuje multigraf H tak, že clM(G) = L(H),

(iii) clM(G) je hamiltonovsky souvislý právě tehdy, když G je hamiltonovsky

souvislý,

(iv) clM(G) je P-souvislý právě tehdy, když G je P-souvislý.

Graf G bez K1,3 nazveme M-uzavřený, pokud G = clM(G). Pokud vez-

meme jednoznačně určený vzor H hranového grafu multigrafu G podle věty

3.5∗ můžeme M-uzavřené grafy snadno charakterizovat. Připomı́náme zave-

dené značeńı takového vzoru H = L−1
M (G), hranu a ∈ E(H) odpov́ıdaj́ıćı uzlu

a ∈ V (G) označ́ıme a = L−1
M(G)(a).

Věta 4.11 [54]∗. Bud’ G graf bez K1,3 a T1, T2, T3 grafy na obrázku 4.1. Pak

G je M-uzavřený právě tehdy, když G je hranový graf multigrafu a L−1
M (G)

neobsahuje podgraf S (ne nutně indukovaný) izomorfńı s některým z graf̊u

T1, T2, nebo T3.
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Obrázek 4.1

Multigrafový uzávěr lze dále ześılit a zachovat při tom stabilitu hamilto-

novské souvislosti a P-souvislosti. Publikován byl uzávěr pro hamiltonovskou

souvislost, ale obdobným zp̊usobem lze ześılit i uzávěr pro P-souvislost. Uvede-

me ho prvńı kv̊uli větš́ı jednoduchosti jako ukázku metody. Základńım nástro-

jem pro výzkum v této oblasti je následuj́ıćı věta.

Věta 4.12 [12]. Bud’ x uzav́ıratelný uzel grafu G bez K1,3 a bud’te a, b dva

r̊uzné uzly grafu G. Pak pro každou nejdeľśı cestu P ′(a, b) s koncovými uzly

a, b v grafu G∗
x existuje v grafu G cesta P taková, že V (P ′) = V (P ) a P má

alespoň jeden koncový uzel z množiny {a,b}. Nav́ıc v grafu G je cesta P (a, b)

s koncovými uzly a, b taková, že V (P ) = V (P ′) kromě možných následuj́ıćıch

dvou situaćı (až na symetrii mezi a, b):

(i) existuje indukovaný podgraf F ⊂ G izomorfńı s grafem S na obrázku 4.2

takový, že uzly a, x maj́ı stupeň 4 v grafu F . V tom př́ıpadě v grafu

G je cesta Pb s koncovým uzlem b, pro kterou V (Pb) = V (P ′). Jestliže

nav́ıc b ∈ V (F ), pak v grafu G je také cesta Pa s koncovým uzlem a

taková, že V (Pa) = V (P ′).

(ii) x = a, ab ∈ E(G). V tom př́ıpadě graf G obsahuje cestu Pa s koncovým

uzlem a, pro kterou V (Pa) = V (P ′) i cestu Pb s koncovým uzlem b,

pro kterou V (Pb) = V (P ′).
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Obrázek 4.2

Nyńı můžeme definovat uzávěr.

Pro daný graf G bez K1,3, zkonstruujeme graf GP následuj́ıćım zp̊usobem.

(i) Jestliže G je P-souvislý, polož́ıme GP = clR(G).

(ii) Jestliže G neńı P-souvislý, rekurzivně provád́ıme lokálńı zúplněńı v ta-

kovém uzav́ıratelném uzlu, pro který výsledný graf stále neńı P-souvislý,

tak dlouho, dokud je to možné. Źıskáme posloupnost graf̊u G1, . . . , Gk

takovou, že

• G1 = G,

• Gi+1 = (Gi)
∗
xi

pro nějaký uzav́ıratelný uzel xi, i = 1, . . . , k − 1,

• Gk neńı P-souvislý,

• pro každý uzav́ıratelný uzel x ∈ V (Gk)
∗
x,(Gk)

∗
x je P-souvislý,

a polož́ıme GP = Gk.

Graf GP źıskaný předchoźı konstrukćı nazveme P-uzávěr grafu G a graf G

rovný svému P-uzávěru nazveme P-uzavřený.

Věta 4.13∗. Bud’ G graf bez K1,3 a bud’ GP jeho P-uzávěr. Pak GP má

následuj́ıćı vlastnosti:

(i) V (G) = V (GP ) a E(G) ⊂ E(GP ),

(ii) GP je źıskán z grafu G posloupnost́ı lokálńıch zúplněńı v uzav́ıratelných

uzlech,

(iii) G je P-souvislý právě když GP je P-souvislý,

(iv) GP = L(H), kde H je hranový graf s nejvýše jedńım trojúhelńıkem,

(v) jestliže P nemá hamiltonovskou cestu s koncovým uzlem a pro nějaký

a ∈ V (G) a X je trojúhelńık v H, pak L−1
M(GP )

(a) ∈ E(X).
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Důkaz. Body (i)−(iii) plynou př́ımo z definice uzávěru. V d̊ukazu nebudeme

použ́ıvat vzor hranových graf̊u odvozený z věty 3.9. Podle věty 4.10 je GP

M-uzavřený a tedy hranový graf multigrafu. Pokud H = L−1
M (GP ) obsahuje

multihranu e1, e2, nejsou hrany e1, e2 v grafu H v trojúhelńıku podle věty 4.11.

Z toho plyne, že L(e1) je uzav́ıratelný uzel v grafu G a neexistuje podgraf S

takový, že dS(L(e1)) = 4. Podle věty 4.12 můžeme L(e1) uzavř́ıt při zachováńı

P-souvislosti a dostáváme spor s P-uzavřenost́ı.

Předpokládejme, že graf H obsahuje trojúhelńık C, pro který neplat́ı tvr-

zeńı v bodu (v) věty. Pak obraz libovolné hrany C v grafu GP je uzav́ıratelný

uzel a podle věty 4.12 ho lze uzavř́ıt při zachováńı P-souvislosti. To je spor s

definićı GP . Jestliže graf H obsahuje dva r̊uzné trojúhelńıky C1, C2, podle věty

4.11 jsou hranově disjunktńı a jeden z nich proto nesplňuje tvrzeńı v bodu (v)

věty. Podle předchoźıho dostáváme spor.

Ted’ ukážeme, že na tř́ıdě graf̊u bezK1,3 neexistuje uzávěr se stabilńı P-sou-

vislost́ı na tř́ıdu hranových graf̊u graf̊u bez trojúhelńık̊u.

Věta 4.14∗. Na tř́ıdě 3-souvislých hranových graf̊u neexistuje uzávěr cl

takový, že každý graf cl(G) je hranový graf bez trojúhelńık̊u a P-souvislost je

stabilńı.

Důkaz. Předpokládejme, že věta neplat́ı a takový uzávěr existuje. Vezměme

graf H na obrázku 4.3 a podle obrázku označme i uzly x1, · · · , x6. Nejprve

ukážeme, že v grafu H neexistuje HIDT s prvńı hranou x3x5 (na obrázku

vyznačena silně pro lepš́ı orientaci) a tedy podle věty 4.3 graf G = L(H)

neńı P-souvislý. Necht’ tedy naopak X je HIDT v grafu H s prvńı hranou

x3x5. V grafu H jsou tři podgrafy izomorfńı s Petersenovým grafem bez hrany.

Označme je P1, P2 (ty na obrázku dole) a P3 (ten na obrázku nahoře). Protože

Petersen̊uv graf nemá hamiltonovskou kružnici, lze snadno odvodit, že poža-

dovaný X konč́ı v P3. Pro P1 (resp. P2) pak existuje jediná možnost pr̊uchodu

- kružnice s uzlem x3 (resp. x5) procházej́ıćı všemi uzly P1 (resp. P2) kromě

uzlu x4 (resp. x6). Tyto podmı́nky nelze splnit současně. Graf G tedy neńı

P-souvislý.
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Obrázek 4.3

Pokud se pokuśıme přej́ıt přidáńım hran do grafu G na hranový graf

grafu bez trojúhelńık̊u, dostaneme podle věty 3.11, že všechny tři kliky hra-

nového grafu G odpov́ıdaj́ıćı uzl̊um trojúhelńıku ve vzoru H je třeba uzavř́ıt

do společné kliky. Takový graf je ale P-souvislý (potřebné cesty lze snadno

naj́ıt, v krajńım př́ıpadě pomoćı poč́ıtače a jen ověřit správnost), což dává

spor.

Nekonečnou tř́ıdu 3-souvislých hranových graf̊u, které nelze převést přidá-

ńım hran na hranové grafy graf̊u bez trojúhelńık̊u při zachováńı P-souvislosti,

dostaneme navýšeńım počtu simpliciálńıch uzl̊u v klikách se simpliciálńımi uzly

grafu G = L(H).

Ted’ uvedeme ześıleńı M-uzávěru pro hamiltonovskou souvislost dokázané

Kuželem a kol. [41]∗.

Pro daný grafG bezK1,3 zkonstruujeme grafGM následuj́ıćı konstrukćı.
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(i) Jestliže G je hamiltonovsky souvislý, polož́ıme GM = clR(G).

(ii) Jestliže G neńı hamiltonovsky souvislý, rekurzivně opakujeme lokálńı

zúplněńı v takových lokálně souvislých uzlech, pro které výsledný graf

stále neńı hamiltonovsky souvislý, dokud je to možné. Źıskáme posloup-

nost graf̊u G1, . . . , Gk takovou, že

• G1 = G,

• Gi+1 = (Gi)
∗
xi

pro nějaký uzav́ıratelný uzel xi, i = 1, . . . , k − 1

• Gk neńı hamiltonovsky souvislý

• pro každý uzav́ıratelný uzel x ∈ V (Gk)
∗
x,(Gk)

∗
x je hamiltonovsky

souvislý,

a polož́ıme GM = Gk.

Graf GM źıskaný předchoźı konstrukćı nazveme silný M-uzávěr (nebo zkráceně

SM-uzávěr) grafu G, a graf G rovný svému SM-uzávěru nazveme SM-uzavřený.

Následuj́ıćı věta dává přehled vlastnost́ı.

Věta 4.15 [41]∗. Bud’ G graf bez K1,3. Pak existuje graf GM takový, že

(i) existuje posloupnost uzl̊u x1, ..., xk−1 ∈ V (G) a grafy G1, ...Gk takové,

že G1 = G,Gi+1 = G∗
xi
, i = 1, ..., k − 1, a Gk = GM ,

(ii) G je hamiltonovsky souvislý právě tehdy, když GM je hamiltonovsky

souvislý,

(iii) existuje multigraf H takový, že

(α) GM = L(H),

(β) H neobsahuje 2 trojúhelńıky se společnou hranou a žádnou multi-

hranu s multiplicitou větš́ı než 2,

(γ) H je bud’ bez multihran a obsahuje nejvýše 2 trojúhelńıky, nebo

neobsahuje žádný trojúhelńık a nejvýše jednu multihranu,

(δ) jestliže H obsahuje trojúhelńık T , pak H má IDT s koncovými

hranami e, f pro každé e, f ∈ E(H) s e, f ∩ T = ∅,

(ε) jestliže H obsahuje multihranu ef , pak (e, f) je jediná dvojice,

pro kterou v H neńı IDT s koncovými hranami e, f .
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Neznáme polynomiálńı algoritmus pro rozhodnut́ı zda je graf SM-uzavřený.

Nev́ıme, zda nějaký SM-uzavřený graf obsahuje alespoň jeden trojúhelńık.

Ryjáček a Vrána ukázali následuj́ıćı větu.

Věta 4.16 [54]∗. Na tř́ıdě 3-souvislých hranových multigraf̊u neexistuje

uzávěr cl takový, že každý graf cl(G) je hranový graf a hamiltonovská souvislost

je stabilńı.

Poznamenejme, že definice uzávěru v článku [54]∗ je sice jiná, ale argu-

ment d̊ukazu (přidáńı hrany do zakázaného podgrafu pro hranové grafy vede

k hamiltonovské souvislosti grafu) projde i pro naši definici. Dále se podařilo

dokázat několik následuj́ıćıch lemmat popisuj́ıćıch strukturu SM-uzavřených

graf̊u.

Lemma 4.17 [54]∗. Bud’ G SM-uzavřený graf a bud’ H = L−1
M (G). Pak H

neobsahuje trojúhelńık s uzlem stupně 2 v H.

Lemma 4.18 [54]∗. Bud’ G SM-uzavřený graf, bud’ H = L−1
M (G). Pak

H neobsahuje podgraf H izomorfńı s kružnićı C5 s uzlem stupně 2 v H a

s chordou.

Lemma 4.19 [54]∗. Bud’ G SM-uzavřený graf a bud’ H = L−1
M (G). Pak

H neobsahuje kružnićı C délky 5 takovou, že některé dva uzly kružnice C

maj́ı stupeň 2 v H a některá hrana C je v multihraně s multiplicitou 2 nebo

v trojúhelńıku v H.

Lemma 4.20 [54]∗. Bud’ G SM-uzavřený graf, bud’ H = L−1
M (G) a bud’ F

graf s množinou uzl̊u V (F ) = {v1, v2, v3, v4, v5, z} a množinou hran E(F ) =

{v1v2, v2v3, v3v4, v4v5, v5v1, v3v5, zv1, zv2} (viz obrázek 4.4). Pak H neobsahuje

podgraf H izomorfńı s grafem F takový, že NH({v1, v2, v3, v5}) ⊂ V (H).

23



•

•

•

•

••

.............................................................................................................................................
............

............
............

............
............

............
............

............
.............
............
............
............
............
............
............
............
............
............
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................

h1

h3

h5

h4

h7

h8

h2 h6

v1

v2

v5

v3

v4z

F

Obrázek 4.4

4.4 Uzávěr se stabilńı 1-hamiltonovskou sou-

vislost́ı

Z uvedných posledńıch dvou uzávěr̊u by se mohlo zdát, že kĺıčová pro celý

postup je snaha uzav́ırat ”co nejv́ıce”. Posledńı uzávěr dokázaný Ryjáčkem a

Vránou [55]∗ ukazuje, že tomu tak zcela neńı.

Bud’ G graf bez K1,3 a bud’ x ∈ V (G) takové, že G−x neńı hamiltonovsky

souvislý. Bud’ G̃x graf źıskaný následuj́ıćı konstrukćı.

(1) Polož G0 := G, i := 0.

(2) Jestliže existuje ui ∈ V (Gi) takové, že ui je uzav́ıratelný v grafu Gi−x a

současně (Gi)
∗
ui
−x neńı hamiltonovsky souvislý, pak polož Gi+1 = (Gi)

∗
ui

a jdi na (3),

jinak polož G̃x := Gi a zastav.

(3) Nastav i := i+ 1 a jdi na (2).

Pak řekneme, že G̃x je částečný x-uzávěr grafu G.

Podle následuj́ıćı věty 4.21∗ je graf G̃x − x hranovým grafem multigrafu, a

tedy v něm existuje jednoznačně určené Krauszovo pokryt́ı K = {K1, . . . , Km}
takové, že pr̊unikový multigraf systému množin {V (K1), . . . , V (Km)} jeH,H =

L−1
M (G). Kdykoliv nadále v souvislosti s G̃x−x hovoř́ıme o Krauszových klikách,

máme vždy na mysli prvky tohoto pokryt́ı K.

Věta 4.21 shrnuje hlavńı vlastnosti částečného x-uzávěru grafu bez K1,3 a

je nezbytně nutná pro oprávněnost konstrukce následuj́ıćıho uzávěru.
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Věta 4.21 [55]∗. Bud’ G graf bez K1,3, bud’ x ∈ V (G) takový, že G−x neńı

hamiltonovsky souvislý a bud’ G̃x částečný x-uzávěr grafu G. Pak G̃x − x je

SM-uzavřený hranový graf a graf G̃x splňuje jeden z následuj́ıćıch bod̊u:

(i) G̃x je hranový graf multigrafu;

(ii) x je střed indukovaného W5 a existuj́ı uzly u1, u2 ∈ NG̃x
(x) takové,

že

(α) {u1, u2} je řez multigrafu G̃x − x,

(β) jedna z bikomponent multigrafu G̃x − x určená {u1, u2} je izo-

morfńı s grafem K3 − e,

(γ) multigraf (G̃x + {u1, u2})− x neobsahuje indukované W5 se stře-

dem x,

(δ) multigraf (G̃x + {u1, u2})− x je SM-uzavřený;

(i) v grafu G̃x − x jsou Krauszovy kliky K1, K2 takové, že

(α) NG̃x
(x) ⊂ K1 ∪K2,

(β) multigraf (V (G̃x), E(G̃x) ∪ {xv|v ∈ K1 ∪ K2}) je hranový graf

multigrafu.

Pokračujeme definićı hlavńıho uzávěru.

Bud’ G graf bez K1,3 a bud’ G graf źıskaný následuj́ıćı konstrukćı:

(1) Jestliže G je 1-hamiltonovsky souvislý, polož G = clR(G).

(2) Jestliže G neńı 1-hamiltonovsky souvislý, vyber uzel x ∈ V (G), pro kte-

rý G − x neńı hamiltonovsky souvislý, a vyber částečný x-uzávěr G̃x

grafu G.

(3) Jestliže G̃x splňuje (ii) věty 4.21 (tzn. x je střed indukovaného W5

v grafu G̃x, vyber řez {u1, u2} grafu G̃x − x, přidej hranu u1u2 do G̃x

(tzn. polož G̃x := G̃x + u1u2) a pokračuj na (4).

(4) Jestliže G̃x je hranový graf multigrafu, polož G = G̃x. Jinak G̃x splňuje

(iii) věty 4.21, tzn. některé dvě Krauszovy kliky K1, K2 v grafu G̃x − x

pokrývaj́ı všechny uzly okoĺı NG(x), a pak polož G = (V (G̃x), E(G̃x) ∪
{xv|v ∈ K1 ∪K2})

Pak řekneme, že výsledný graf G je 1HC-uzávěr grafu G.
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Následuj́ıćı věta ukazuje základńı vlastnosti 1HC-uzávěru grafu G.

Věta 4.22 [55]∗. Bud’ G graf bez K1,3 a bud’ G jeho 1HC-uzávěr. Pak

(i) G je hranový graf multigrafu,

(ii) pro některé x ∈ V (G) je graf G− x SM-uzavřený,

(iii) G je 1-hamiltonovsky souvislý právě tehdy, když G je 1-hamiltonovsky

souvislý.

Důležitá z hlediska podobnosti s clR uzávěrem a tedy i podobných d̊ukaz̊u

je následuj́ıćı věta.

Věta 4.23 [55]∗. Bud’ G graf bez K1,3. Pak existuje posloupnost graf̊u

G0, . . . , Gk taková, že

(i) G0 = G,

(ii) V (Gi) = V (Gi+1) a současně E(Gi) ⊂ E(Gi+1) ⊂ E((Gi)
∗
xi
) pro nějaký

xi ∈ V (Gi) uzav́ıratelný v grafu Gi,

(iii) Gk je 1HC-uzávěr grafu G.
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Kapitola 5

Thomassenova hypotéza

5.1 Ekvivalentńı verze Thomassenovy hypoté-

zy

Už v roce 1981 byla zmı́něna na straně 12 [7] následuj́ıćı hypotéza, která se

v roce 1985 objevila v [57], Thomassen ji vznesl v roce 1986 [58] a jej́ıž platnost

je stále otevřenou otázkou.

Hypotéza 5.1 [57]. (Thomassen (1986)) Každý 4-souvislý hranový graf

je hamiltonovský.

Hypotéza byla soustavně studována a časem se ukázala být ekvivalentńı

s následuj́ıćımi hypotézami.

Hypotéza 5.2 [47]. (Matthews, Sumner (1984)) Každý 4-souvislý graf

bez K1,3 je hamiltonovský.

Hypotéza 5.3 [1]. (Ash, Jackson (1984)) Každý cyklicky hranově

4-souvislý kubický graf má dominantńı kružnici.
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Hypotéza 5.4 [23]. (Fleischner (1984)) Každý cyklicky hranově 4-sou-

vislý kubický graf má hranové 3-obarveńı nebo dominantńı kružnici.

Ekvivalenci hypotézy 5.1 a hypotézy 5.3 dokázali Fleischner a Jackson

[25](1989). Naznač́ıme postup d̊ukazu. Bud’ H multigraf, bud’ v ∈ V (H) ta-

kový, že d(v) ≥ 4. Kubickou inflaćı multigrafu H nazveme graf, který vznikne

z H smazáńım v, přidáńım kružnice k s d(v) uzly a spojeńım nových uzl̊u na

p̊uvodńı sousedy v tak, že všechny nové uzly kružnice k maj́ı stupeň 3 v novém

grafu a ostatńı uzly maj́ı stejný stupeň jako v H. Ekvivalence plyne z věty 4.1

a následuj́ıćı věty.

Lemma 5.5 [25]. Bud’ H esenciálně hranově 4-souvislý graf s minimálńım

stupněm δ(H) ≥ 3. Pak některá kubická inflace H je esenciálně hranově

4-souvislá.

Poznamenejme, že kubická inflace se použ́ıvá i v daľśıch d̊ukazech, např.

[41]∗, [42]∗.

Prvńı krok k ukázáńı ekvivalenćı hypotéz 5.2 a 5.1 udělal Plummer (1993)

[51], když dokázal ekvivalenci hypotézy 5.3 s následuj́ıćımi dvěma hypotézami.

Hypotéza 5.6 [51]. Každý 4-souvislý 4-regulárńı graf bez K1,3 je hamilto-

novský.

Hypotéza 5.7 [51]. Každý 4-souvislý 4-regulárńı graf bez K1,3, ve kterém

každý uzel lež́ı právě ve dvou trojúhelńıćıch, je hamiltonovský.

Ryjáček ukázal [52](1997) ekvivalenci hypotéz 5.2, 5.1. Ekvivalenci hypotéz

5.4, 5.1 ukázal Kochol [35](2000) a později dokázal [37](2002), že hypotézy jsou

ekvivalentńı se zdánlivě slabš́ımi verzemi se sublineárńım defektem. Např́ıklad

hypotéza 5.1 je ekvivalentńı s hypotézou: ”každý 4-souvislý hranový graf G

s počtem uzl̊u n lze uzlově pokrýt n1 cestami s výjimkou n2 uzl̊u tak, že n1, n2

rostou méně než lineárně v závislosti na n.”V současnosti jsou již známé ekviva-

lentńı verze hypotézy, které jsou zdánlivě silněǰśı i zdánlivě slabš́ı. V roce 2004
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se podařilo ukázat ekvivalenci s následuj́ıćı hypotézou Kuželovi a Xiongovi

[43].

Hypotéza 5.8 [43]. Každý 4-souvislý hranový graf multigrafu je hamilto-

novsky souvislý.

Později Ryjáček a Vrána [54]∗ rozš́ı̌rili ekvivalenci až na grafy bez K1,3.

Hypotéza 5.9 [54]∗. Každý 4-souvislý graf bez K1,3 je hamiltonovsky sou-

vislý.

V současnosti jednu ze zdánlivě nejsilněǰśıch ekvivalentńıch verźı ukázali

Kužel, Ryjáček a Vrána [42]∗.

Hypotéza 5.10 [42]∗. Každý 4-souvislý graf multigrafu je 2-hranově ha-

miltonovsky souvislý.

Pomoćı uzávěru 4.22∗ se podařilo Ryjáčkovi a Vránovi rozš́ı̌rit ekvivalentńı

verze z předchoźı.

Hypotéza 5.11 [55]∗. Každý 4-souvislý graf bez K1,3 je 1-hamiltonovsky

souvislý.

Tyto hypotézy naznačuj́ı možnou neplatnost Thomassenovy hypotézy (a

všech ekvivalentńıch verźı), protože v př́ıpadě platnosti je hranový graf s ale-

spoň pěti uzly 2-hranově hamiltonovsky souvislý právě tehdy, když je 4-souvislý.

Následuj́ıćı rozhodovaćı problémy jsou pak polynomiálńı.

1-HCL

Instance: Hranový graf G

Otázka: Je G 1-hamiltonovsky souvislý?

2-E-HCL

Instance: Hranový graf G

Otázka: Je G 2-hranově hamiltonovsky souvislý?
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Je známo, že rozhodnut́ı, zda je hranový graf hamiltonovský, je NP-úplné

[8]. Stejně tak je NP-úplné rozhodnut́ı, zda graf je 1-hamiltonovsky souvislý

[42]∗ (respektive 2-hranově hamiltonovsky souvislý [50]∗).

Pokud by taková situace byla i na hranových grafech, Thomassenova hy-

potéza neplat́ı, ledaže P=NP. Na druhou stranu rozhodnut́ı, zda je rovinný

graf hamiltonovský, je NP-úplné (viz např. [8]) a rovinný graf s alespoň pěti

uzly je 2-hranově hamiltonovsky souvislý právě tehdy, když je 4-souvislý [50]∗.

V roce 1956 Tutte dokázal [59], že každý 4-souvislý rovinný graf má hamil-

tonovskou kružnici. V d̊ukazu poprvé použil Tutteovy cykly (poznamenejme,

že maj́ı na rovinných grafech mı́rně jinou definici). V současné době je metoda

Tutteových struktur hlavńı d̊ukazovou metodou hamiltonovských vlastnost́ı

nejen pro rovinné grafy, ale i pro grafy na daľśıch plochách (např. torus, pro-

jektivńı rovina). Jackson [31] (viz také [22], Hypotéza 2a.5) formuloval v roce

1992 následuj́ıćı hypotézu s ćılem pokusit se dokázat Thomassenovu hypotézu

obdobným zp̊usobem, jaký se použ́ıvá pro grafy na plochách.

Hypotéza 5.12 [31]. Každý 2-souvislý graf bez K1,3 má Tutteovu kružnici.

Přesněji navrhoval pokusit se o d̊ukaz zdánlivě slabš́ı verze hypotézy pro vzo-

ry hranových graf̊u.

Hypotéza 5.13 [31]. Každý hranově 2-souvislý graf G má eulerovský pod-

graf H s alespoň třemi hranami, pro který je každá komponenta grafu G−H

připojena nejvýše třemi hranami k H.

Ekvivalenci předchoźıch dvou hypotéz s hypotézou 5.1 ukázali Čada a kol.

[19]∗. Zdá se tedy, že pokus navrhovaný Jacksonem je oprávněný přinejmenš́ım

ve smyslu nalezeńı protipř́ıkladu.

Zdánlivě nejslabš́ı je následuj́ıćı hypotéza. Ekvivalenci ukázali Broersma

a kol. v [16]∗. Snark je cyklicky hranově 4-souvislý kubický graf, který nemá

hranové 3-obarveńı, s délkou nejkratš́ı kružnice alespoň 5.

Hypotéza 5.14 [16]∗. Každý snark má dominantńı kružnici.
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Na kubických grafech ukázali ekvivalenci se zdánlivým ześıleńım Fouquet

a Thuillier [27].

Hypotéza 5.15 [27]. Libovolná dvojice disjunktńıch hran cyklicky hranově

4-souvislého kubického grafu lež́ı na dominantńı kružnici.

Později ekvivalenci rozš́ı̌rili Fleischner a Kochol [26].

Hypotéza 5.16 [26]. Libovolná dvojice hran cyklicky hranově 4-souvislého

kubického grafu lež́ı na dominantńı kružnici.

Označme Vi(H) = {x ∈ V (H)|dH(x) = i} a bud’ H graf s δ(H) = 2 a

|V2(H)| = 4. Řekneme, žeH je V2(H)-dominovaný, jestliže pro každé dvě hrany

e1 = u1v1, e2 = u2v2 takové, že V2(H) = {u1, v1, u2, v2} graf H + {e1, e2} má

dominantńı uzavřený tah obsahuj́ıćı e1, e2. Graf H nazveme silně V2(H)-domi-

novaný, jestliže H je V2(H)-dominovaný a pro každou hranu e = uv takovou,

že u, v ∈ V2(H) graf H + {e} má dominantńı uzavřený tah obsahuj́ıćı e.

Bud’ F graf a bud’ A ⊂ V (F ). Bud’ A rozděleńı neprázdné sudé X ⊂ A

na dvouprvkové podmnožiny. Označ́ıme E(A) množinu všech hran a1a2 ta-

kových, že a1, a2 jsou ve stejné dvojici v A a FA označ́ıme multigraf s množinou

uzl̊u V (FA) = V (F ) a množinou hran E(FA) = E(F ) ∪ E(A). Graf F na-

zveme slabě A-kontrahovatelný, jestliže pro každou neprázdnou sudou X ⊂ A

a pro každé rozděleńı A multigraf FA má uzavřený dominantńı tah obsahuj́ıćı

všechny hrany E(A).

Daľśıch několik ekvivalentńıch verźı je známo pro podgrafy kubických graf̊u.

Odkazy jsou na články, ve kterých je dokázaná ekvivalence.

Hypotéza 5.17 [40]. Libovolný podgraf H esenciálně hranově 4-souvislého

kubického grafu s δ(H) = 2 a |V2(H)| = 4 je V2(H)-dominovaný.

Hypotéza 5.18 [42]∗. Libovolný podgrafH esenciálně hranově 4-souvislého

kubického grafu s δ(H) = 2 a |V2(H)| = 4 je silně V2(H)-dominovaný.

Hypotéza 5.19 [16]∗. Každý cyklicky hranově 4-souvislý kubický graf ob-

sahuje slabě A-kontrahovatelný podgraf F s δ(F ) = 2.
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5.2 Pozitivńı výsledky dávaj́ıćı částečné řešeńı

Thomassenovy hypotézy

Pokud omeźıme tř́ıdu vzor̊u, je známých několik výsledk̊u. Nejprve probe-

reme konstrukci, která umožňuje převést hamiltonovské výsledky z graf̊u na

plochách na jejich hranové grafy. Konstrukci objevil Lai (1994) [44] a v témže

roce se objevila ještě v daľśım článku [17].

Věta 5.20 [44]. Každý 4-souvislý hranový graf rovinného grafu je hamilto-

novský.

Věta 5.21 [17]. Každý 4-souvislý hranový graf grafu s nakresleńım v pro-

jektivńı rovině je hamiltonovský.

Lze j́ı převést úplně stejným zp̊usobem i daľśı výsledky z graf̊u na plochách

na jejich hranové grafy. Ukážeme jako př́ıklad použit́ı pro 2-hranovou hamilto-

novskou souvislost na rovinných grafech. (Pouze vysvětlujeme známý postup

bez nároku na autorstv́ı.) Zřejmě nebude snadné použ́ıt nějaké rozš́ı̌reńı této

metody pro d̊ukaz celé Thomassenovy hypotézy, protože např́ıklad existuj́ı

grafy s nakresleńım v projektivńı rovině, které jsou 4-souvislé a nejsou 2-hra-

nově hamiltonovsky souvislé (viz [50]∗). Daľśı problém je, že pro kubické grafy

konstrukce vytvoř́ı pouze jejich hranové grafy.

Věta 5.22. Každý 4-souvislý hranový graf rovinného grafu je 2-hranově

hamiltonovsky souvislý.

Důkaz. Necht’ G je 4-souvislý hranový graf rovinného grafu H. Poznamenej-

me, že graf H je esenciálně hranově 4-souvislý. Pro rovinné nakresleńı H se-

stroj́ıme nový graf GP následuj́ıćı konstrukci.

(i) Odstrańıme z grafu H všechny uzly stupně 1, podrozděĺıme všechny

hrany (tzn. každou hranu nahrad́ıme cestou s jedńım vnitřńım uzlem)

a výsledný graf označ́ıme G0.
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(ii) Sestroj́ıme graf G1 tak, že pro každý uzel x takový, že dG0(x) ≥ 3

doplńıme do grafu G0 kružnici s uzly NH(x) tak, že v nakresleńı G1 od-

pov́ıdaj́ıćımu rovinnému nakresleńı H se žádné hrany neprot́ınaj́ı (po-

drobný popis s obrázky viz [44], [17]). Dále pro všechny uzly y grafu

G0 odpov́ıdaj́ıćı uzl̊um stupně 2 grafu H spoj́ıme uzly NG0(y) hranou

a odstrańıme uzel y. Nakonec odstrańıme všechny uzly z, pro které

dG0(z) = 3.

(iii) V grafu G1 pro všechny uzly w stupně alespoň 8 provedeme následuj́ıćı

konstrukci.

(α) Podrozděĺıme všechny hrany s uzlem w v grafu G1, doplńıme

kružnici k se všemi novými uzly tak, že v nakresleńı odpov́ıda-

j́ıćımu rovinnému nakresleńım G1 se žádné hrany neprot́ınaj́ı a

odstrańıme uzel w.

(β) Vezmeme maximálńı párováńı P v kružnici k takové, že pro každý

blok B grafu G0 existuj́ı alespoň dva páry, které maj́ı sousedńı

uzly jen na k nebo v uzlech odpov́ıdaj́ıćıch uzl̊um bloku B.

Pro každý pár pipj v párováńı P odstrańıme hranu pipj a slouč́ıme

uzly pi, pj do jednoho. Pro všechny uzly o na k, které nejsou v P

vybereme jednoho souseda ps uzlu o, odstrańıme hranu ops a

slouč́ıme uzly o, ps.

Z konstrukce je zřejmé, že graf GP je rovinný a lze ho doplnit přidáńım

hran na hranový graf GL, který se od grafu G lǐśı v počtu simpliciálńıch uzl̊u

v některých klikách, ale každá klika s neprázdnou množinou simpliciálńıch uzl̊u

v grafu G má neprázdnou množinu simpliciálńıch uzl̊u i v grafu GL (podrob-

nosti viz [44], [17]).

Ukážeme že GP je 4-souvislý. Všechny uzly GP maj́ı podle konstrukce

stupeň alespoň 4. Hranový graf GL je 4-souvislý, protože se lǐśı od G pouze

počtem simpliciálńıch uzl̊u v klikách a podle konstrukce, každá klika se sim-

pliciálńım uzlem má alespoň 4 uzly, které nejsou simpliciálńı. Všechny podgrafy

odpov́ıdaj́ıćı klikám vGL jsou 2-souvislé, takže řezR grafuGP velikosti nejvýše

3 obsahuje uzly, jejichž odpov́ıdaj́ıćı uzly v GL jsou v jedné klice K. Pokud

2 r̊uzné komponenty K1, K2 grafu GP − R obsahuj́ı uzly, jimž odpov́ıdaj́ıćı

v GL nelež́ı v K, existuj́ı mezi K1, K2 v grafu GP podle konstrukce 4 uzlově
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disjunktńı cesty. (Klika K má alespoň 8 uzl̊u, které nejsou simpliciálńı.) Spor.

Tedy jedna komponenta grafu GP −R obsahuje pouze uzly, jimž odpov́ıdaj́ıćı

uzly v GL lež́ı v klice K. Podle konstrukce snadno nalezneme, jak podgrafy

odpov́ıdaj́ıćı klice K vypadaj́ı, a ověř́ıme spor.

Podle hlavńıho výsledku v [50] je GP 2-hranově hamiltonovsky souvislý a

přidáńı hran na tom nic neměńı.

Obdobný výsledek dokázali Lai, Shao a Zhan pro grafy kvazi bez K1,3 (z an-

glického quasi claw-free) tj. grafy, v nichž každý pár uzl̊u ve vzdálenosti 2 má

společného souseda w soused́ıćıho pouze s uzly v množině N [u] ∪N [v].

Věta 5.23 [45]. Každý 4-souvislý hranový graf grafu kvazi bez K1,3 je

hamiltonovsky souvislý.

Pro hranové grafy a grafy bez K1,3 s vyšš́ı souvislost́ı se podařilo dokázat

postupně následuj́ıćı věty. Existenci hranice pro k-souvislost hranových graf̊u,

která zajǐst’uje hamiltonovskou souvislost stanovil Zhan [62](1991).

Věta 5.24 [62]. Každý 7-souvislý hranový graf multigrafu je hamiltonovsky

souvislý.

Ryjáčk̊uv uzávěr ukázal existenci hranice pro k-souvislost graf̊u bez K1,3,

která zajǐst’uje hamiltonovskost.

Věta 5.25 [52]. Každý 7-souvislý graf bez K1,3 je hamiltonovský.

Předchoźı výsledky ześılili Hu, Tian a Wei [30](2005).

Věta 5.26 [30]. Bud’ G 6-souvislý hranový graf multigrafu s nejvýše 29

uzly stupně 6. Pak G je hamiltonovsky souvislý.

Věta 5.27 [30]. Bud’ G 6-souvislý graf bez K1,3 s nejvýše 29 uzly stupně

6. Pak G je hamiltonovský.
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Prvńı hranice k-souvislosti zaručuj́ıćı hamiltonovskou souvislost pro grafy

bez K1,3 byla stanovena Brandtem [11], který dokázal, že každý 9-souvislý graf

bez K1,3 je hamiltonovsky souvislý.

Výsledek byl později zlepšen Hu, Tian and Wei [30].

Věta 5.28 [30]. Každý 8-souvislý graf bez K1,3 je hamiltonovsky souvislý.

Důsledkem věty 5.26 a M-uzávěru je následuj́ıćı věta.

Věta 5.29 [54]∗. Bud’ G 6-souvislý graf bez K1,3 s nejvýše 29 uzly stupně

6. Pak G je hamiltonovsky souvislý.

Daľśı zlepšeńı pro 6-souvislé grafy hranové grafy s dodatečnou podmı́nkou

(s možnost́ı rozš́ı̌reńı M-uzávěrem) dokázal Zhan [61]. Větš́ı posun přinesla až

práce Kaisera a Vrány [33]∗.

Věta 5.30 [33]∗. Bud’ G 5-souvislý graf bez K1,3 s minimálńım stupněm

alespoň 6. Pak G je hamiltonovsky souvislý.

Mı́rně okrajovou oblast́ı výzkumu jsou zakázané dvojice pro hamiltonovské

vlastnosti vyžaduj́ıćı 4-souvislost. Zmı́ńıme je zde předevš́ım, protože dávaj́ı

určitý vhled pro platnost hypotézy na malých grafech stejně jako posledńı směr

výzkumů v této kapitole, generováńı úplných databáźı malých snark̊u pomoćı

poč́ıtače. Př́ımý výsledek dokázali Ryjáček a Vrána [55] pomoćı 1HC-uzávěru.

Jednoznačně určený graf s uzly stupně 4,2,2,2,2 (anglicky často nazývaný hour-

glass) označ́ıme H0.

Věta 5.31 [55]∗. Každý 4-souvislý graf bezK1,3 a bezH0 je 1-hamiltonovsky

souvislý.

Známé jsou ještě výsledky odvozené od zakázaných dvojic pro hamilto-

novskou souvislost u 3-souvislých graf̊u. Odebráńı uzlu ze 4-souvislého grafu

sńıž́ı stupeň souvislosti nejvýše o jedna a můžeme proto tyto výsledky př́ımo

použ́ıt i pro 1-hamiltonovskou souvislost a 4-souvislé grafy. Označme Pk cestu
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s počtem uzl̊u k. Označme Ni,j,k graf složený trojúhelńıku a tř́ı cest délek i, j, k

po dvou s prázdným pr̊unikem takových, že každá cesta má s trojúhelńıkem

společný právě jeden uzel a to koncový. Označme Hi graf složený ze dvou

trojúhelńık̊u spojených právě jednou cestou délky i. Př́ıklady popsaných graf̊u

jsou na obrázku 5.1.
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Obrázek 5.1

Věta 5.32 [21]∗. Jestliže G je 3-souvislý bez X a Y pro X = K1,3 a Y =

P8, N1,1,3 nebo N1,2,2, pak G je hamiltonovsky souvislý.

Věta 5.33 [15]. Jestliže G je 3-souvislý bez X a Y pro X = K1,3 a Y = H1,

pak G je hamiltonovsky souvislý.

Velmi zaj́ımavý pokus pro testováńı hypotéz jak pozitivně tak negativně

je generováńı databáźı všech malých snark̊u. V současnosti se Brinkmannovi

a kol. [13] podařilo vygenerovat všechny snarky s nejvýše 36 uzly. Slabý snark

je cyklicky hranově 4-souvislý kubický graf, který nemá hranové 3-obarveńı.

Pozorováńı 5.34 [13]. Neexistuj́ı protipř́ıklady na hypotézu 5.16 mezi

snarky s nejvýše 36 uzly, slabými snarky s nejvýše 34 uzly a obecnými ku-

bickými cyklicky hranově 4-souvislými grafy s nejvýše 26 uzly.
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5.3 Vyvrácené hypotézy implikuj́ıćı Thomasse-

novu hypotézu
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Obrázek 5.2

S Thomassenovou hypotézou částečně souviśı následuj́ıćı hypotéza, kterou

vyslovil Chvátal v [18]. Počet komponent grafu G označ́ıme ω(G). Graf G je

t-tuhý (t ∈ R, t ≥ 0), jestliže |S| ≥ t∗ω(G−S) pro každou S ⊂ V (G) takovou,

že ω(G−S) > 1. Tuhost τ(G) grafu G je největš́ı č́ıslo t, pro které je G t-tuhý.

Hypotéza 5.35 [18]. (Chvátal (1973)) Existuje t takové, že každý t-tuhý

graf je hamiltonovský.

V současné době je známo, že hypotéza neplat́ı pro t = 2. Protipř́ıklad

nalezli Bauer a kol. v [2]. Konstrukce je naznačená na obrázku 5.2. Horńı

dva uzly jsou spojené hranami se všemi zbylými uzly grafu. Oblast nakreslená

kolem uzl̊u představuje kliku na všech uzlech uvnitř.

Ačkoliv obecně z̊ustává hypotéza otevřená, pro některé speciálńı tř́ıdy graf̊u

se ji podařilo dokázat. Souvislost κ(G) grafu G je největš́ı č́ıslo k, pro které je

G k-souvislý. Z našeho hlediska je d̊uležitý následuj́ıćı výsledek Matthewse a

Sumnera v [47], který umožňuje převést v grafech bezK1,3 tuhost na souvislost.

Věta 5.36 [47]. Pro každý graf G bez K1,3 plat́ı: τ(G) = 1
2
κ(G).
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Připomeňme, že v současnosti je podle věty 5.30 a předchoźıho věty každý

3-tuhý graf bez K1,3 hamiltonovsky souvislý. Daľśı obdobné výsledky mimo

naši oblast zájmu lze nalézt např́ıklad v [14].

V roce 2002 vyslovil Fleischner v [24] hypotézu BMC (bipartizing matching

conjecture), která se pokouš́ı spojit Thomassenovu hypotézu s daľśımi slavnými

hypotézami. Mějme kubický graf G s dominantńı kružnićı D. Budeme značit

(G,D), abychom vyjádřili, kterou dominantńı kružnici v G máme na mysli.

Označ́ıme {q1, . . . , qk} := V (G) − V (D), a pro uzel v ∈ V (G) označ́ıme Ev

množinu hran obsahuj́ıćıch uzel v. Potlačeńım uzlu u ∈ V (G) stupně 2 budeme

rozumět odstraněńı uzlu u z grafu G a spojeńı sousedńıch uzl̊u u v G hranou.

Bud’ M ⊂ E(G) − E(D) párováńı v grafu (G,D). Definujeme graf GM tak,

že z grafu G odstrańıme M a potlač́ıme vzniklé uzly u stupně 2. Pokud G je

kubický a V (M) = V (G), definujeme GM = ∅.

Bipartizuj́ıćı párováńı pro (G,D) je párováńı M ⊂ E(G) − E(D) takové,

že graf GM je bipartitńı a Eqi ∩M ̸= ∅ pro i = 1, . . . , k. Definujeme GM jako

bipartizuj́ıćı jestliže V (GM) = ∅.

Hypotéza 5.37 [24]. Každý cyklicky 4-souvislý kubický graf G, který neńı

hranově 3-obarvitelný, má pro každou dominantńı kružnici D dvě disjunktńı

bipartizuj́ıćı párováńı.

V článku [29] sestrojil Hoffmann-Ostenhof protipř́ıklad na 5.37 a upravil

hypotézu do následuj́ıćı formy.

Hypotéza 5.38 [29]. Každý cyklicky 4-souvislý kubický graf G má alespoň

jednu dominantńı kružniciD takovou, že (G,D)má dvě disjunktńı bipartizuj́ıćı

párováńı.

Bud’ A podmnožina přirozených č́ısel. Graf G nazveme A-pokrytelný, jestli-

že G má podgraf se všemi uzly sudého stupně, který obsahuje alespoň jednu

hranu každého hranového řezu grafu G, pro který plat́ı |T | ∈ A. Množinu

A nazveme pokrytelnou, jestliže každý graf je A-pokrytelný. V článku [32]

Kaiser a Škrekovski vyslovili hypotézu, že N+ 3 = {4, 5, 6, . . .} je pokrytelná.
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Čada a kol. v [20]∗ sestrojili nekonečnou tř́ıdu protipř́ıklad̊u pro A = {4, 5}
a zmı́něnou hypotézu t́ım vyvrátili. Pro úplnost uvád́ıme, že Thomassenova

hypotéza lze vyjádřit t́ımto jazykem následuj́ıćım zp̊usobem (zmı́něno v [20]∗).

Každý cyklicky 4-souvislý kubický graf G je N+ 3-pokrytelný.

V roce 1967 Kotzig (viz [10]) položil otázku, zda každý 4-regulárńı graf má

dekompozici na dva hamiltonovské cykly. Nezávisle v roce 1969 Nash-Williams

v [49] položil stejnou otázku (jinak formulovanou), zda je každý 4-souvislý

4-regulárńı graf hamiltonovský (po odebráńı hamiltonovské kružnice by pak

ze 4-souvislosti zbyla ve 4-regulárńım grafu druhá). Protipř́ıklad našel Me-

redith [48] již v roce 1973 a je po něm pojmenován - Meredith̊uv graf. Je

na obrázku 5.3.
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Obrázek 5.3
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Kapitola 6

Závěr

Tato práce neńı přehledem výsledk̊u kolem Thomassenovy hypotézy, ale po-

kusem o jej́ı objasněńı. Nejedná se o pokus neúspěšný, pouze neukončený.

Součásti postupu ned́ılně tvoř́ı dokazováńı slabš́ıch hypotéz i vyvraceńı sil-

něǰśıch hypotéz, stejně jako d̊ukazy ekvivalenćı hypotéz zdánlivě slabš́ıch či

silněǰśıch. Důležitou součást́ı práce je i přehled všech dosažených výsledk̊u.

Ukázali jsme jak zdánlivě nejslabš́ı verzi hypotéz, která ř́ıká, že každý snark

má dominantńı kružnici, tak verze zdánlivě velmi silné:

(i) Každý 4-souvislý graf bez K1,3 je 1-hamiltonovsky souvislý.

(ii) Každý 4-souvislý hranový graf multigrafu je 2-hranově hamiltonovsky

souvislý.

(iii) Každý 2-souvislý graf bez K1,3 má Tutteovu kružnici.

(iv) Libovolný podgraf H esenciálně hranově 4-souvislého kubického grafu.

s δ(H) = 2 a |V2(H)| = 4 je silně V2(H)-dominantńı.

Dále jsme ukázali částečná řešeńı:

(i) Každý 5-souvislý graf bez K1,3 s minimálńım stupněm alespoň 6 je

hamiltonovsky souvislý.

(ii) Každý 4-souvislý graf bez K1,3 a bez H0 je 1-hamiltonovsky souvislý.

(iii) Každý 4-souvislý hranový graf roviného grafu je 2-hranově hamiltonov-

sky souvislý.
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Snaha o nalezeńı protipř́ıkladu vedla k vyvráceńı hypotézy, že každý graf je

N+ 3-pokrytelný.

K dosažeńı výsledk̊u byly využity nové d̊ukazové techniky:

(i) uzávěr graf̊u bez K1,3 na hranové grafy multigraf̊u zachovávaj́ıćı 1-ha-

miltonovskou souvislost,

(ii) uzávěr graf̊u bez K1,3 na hranové grafy multigraf̊u zachovávaj́ıćı hamil-

tonovskou souvislost,

(iii) uzávěr graf̊u bez K1,3 na hranové grafy zachovávaj́ıćı P-souvislost,

(iv) jednoznačně definovaný vzor hranových graf̊u multigraf̊u.

V současné době neznáme techniku, která by př́ımo mohla vést k d̊ukazu

Thomassenovy hypotézy nebo k jej́ımu vyvráceńı. Hlavńı motivaćı současného

úsiĺı o pokrok v této oblasti je zlepšováńı postup̊u a d̊ukazových technik, nikoliv

výsledk̊u samotných. Hlavńım ćılem této práce je ukázat na př́ıkladech takové

zlepšováńı (nikoliv samotný d̊ukaz hypotézy, i když se i o něj pokouš́ıme).

Zač́ıná se rozv́ıjet zkoumáńı souvislost́ı s grafy na plochách a technika ”zobec-

něných koster”. Problém je v současnosti intenzivně studován a je možné, že

se v bĺızké budoucnosti dočkáme výrazného posunut́ı hranic známého.
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Kapitola 7

Shrnut́ı

Thomassenova hypotéza se časem ukázala jako zásadńı problém v teorii graf̊u.

V současné době je publikováno přes dvacet ekvivalentńıch hypotéz se širokým

záběrem od hamiltonovských vlastnost́ı přes dominantńı tahy až po Tutteovy

struktury.

V této práci jsme ukázali ekvivalence jak se zdánlivě slabš́ımi hypotézami,

tak hypotézami zdánlivě velmi silnými. Zdánlivé oslabováńı ekvivalentńıch hy-

potéz směřuje hlavně na vlastnosti podtř́ıd kubických graf̊u. Zdánlivé zesi-

lováńı vede k rozšǐrováńı ekvivalentńıch hypotéz na grafy bez K1,3, zesilováńı

na silněǰśı vlastnosti nebo k oslabováńı podmı́nky souvislosti graf̊u.

Dále jsme ukázali částečná řešeńı spoč́ıvaj́ıćı ve vysloveńı dodatečných

podmı́nek na vzor hranových graf̊u, ześıleńı podmı́nky na souvislost, nebo

výsledky z oblasti zakázaných dvojic indukovaných podgraf̊u. Snaha o nalezeńı

protipř́ıkladu vedla k vyvráceńı hypotézy, že každý graf je N+ 3-pokrytelný.

K dosažeńı výsledk̊u byly využity nové d̊ukazové techniky v oblasti uzávěr̊u

graf̊u bez K1,3 a v oblasti jednoznačné korespondence vzor̊u hranových graf̊u

multigraf̊u. Důkazy využ́ıvaj́ı nové charakterizace podtř́ıd graf̊u bezK1,3 zejmé-

na graf̊u bez K1,3, u kterých každé 2-souvislé okoĺı uzlu indukuje kliku.
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Summary

Thomassen’s conjecture turned out to be a fundamental problem in graph the-

ory. Currently, more than twenty equivalent conjectures have been published

with a wide range from hamiltonian properties through dominating trails to

Tutte structures.

In the present thesis we show both equivalences with seemingly weaker

conjectures and equivalences with seemingly very strong conjectures. Appa-

rent weakening of the equivalent conjectures is oriented mainly towards the

properties of subclasses of cubic graphs, while apparent strengthening leads

to extending the equivalent conjectures to claw-free graphs, to strengthening

the conjectures to stronger properties or to weakening of the connectivity as-

sumption on the graph.

Furthermore, we have shown partial solutions consisting in imposing addi-

tional conditions on the root graph or in strengthening the connectivity con-

dition, and we also present results on pairs of forbidden subgraphs. Our effort

to find a counterexample led to disproving a conjecture, that every graph is

N+ 3-coverable.

The results were obtained using new proof techniques for closures of claw-

free graphs and for uniqueness of the root graph of a line graphs of a mul-

tigraph. The proofs use new characterizations of subclasses of claw-free graphs,

especially claw-free graphs in which every 2-connected neighbourhood induces

a clique.
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Zusammenfassung

Thomassen-Vermutung hat sich im Laufe der Zeit als ein grundlegendes Pro-

blem der Graphentheorie erwiesen. Es sind derzeit über 20 äquivalente Ver-

mutungen publiziert, die durch ein breites Spektrum von hamiltonschen Ei-

genschaften, dominanten Wegen und Tutte-Strukturen charakterisiert sind.

In dieser Arbeit zeigen wir Äquivalenz mit sowohl scheinbar schwächeren

als auch scheinbar sehr starken Vermutungen. Eine scheinbare Schwächung der

Vermutung ist durch Eigenschaften von Unterklassen der kubischen Graphen

charakterisiert. Eine scheinbare Verschärfung der Vermutung entschpricht einer

Verallgemeinerung auf klauenfreie Graphen und eine Schwächung der Bedin-

gung für Zusammenhang des Graphen.

Darüber hinaus haben wir partielle Lösungen gezeigt, die zusätzliche Be-

dingungen beinhalten wie stärkeren Bedingungen für Zusammenhang des Gra-

phen. oder Paare von verbotenen Untergraphen. Ein Versuch, ein Gegenbe-

ispiel zu finden, hat zum Widerlegen der Vermutung über N+3-Abdeckbarkeit

geführt.

Um diese Ergebnisse zu erreichen, haben wir neue Beweistechniken im Be-

reich der Hüllen für klauenfreie Graphen eingephiert Wir haben auch eine

eindeutige Korrespondenz von Kantengraphen ausgenutzt. In Beweisen haben

wir dazu noch eine neue Charakterisierung von klauenfreien Graphen, in jeden

jede zweifach zusammenhängende Nachbarschaft eine Clique induziert, benu-

tzt.
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tractible subgraphs, Thomassen’s conjecture and the Dominating Cycle

Conjecture for Snarks, Discrete Mathematics 308 (2008), 6064-6077.

[17] Z.-H. Chen, H.-J. Lai, Cycles in line graphs, Proceedings of the Twenty-

fifth Southeastern International Conference on Combinatorics, Graph

Theory and Computing (Boca Raton, FL, 1994), Congr. Numer. 105

(1994), 129–133.
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pairs implying Hamilton-connectedness, J. Graph Theory (2012), doi:

10.1002/jgt.21645.

[22] R. J. Faudree, E. Flandrin, Z. Ryjáček: Claw-free graphs - a survey, Dis-
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6. J. Barát, M. Kriesell: What is on his mind? Discrete Mathematics, 310

(2010), no. 20, 2573–2583.

7. W. Yang, H. Lai, H. Li, X. Guo: Collapsible graphs and Hamiltonian

connectedness of line graphs, Discrete Appl. Math. 160 (2012), no. 12,

1837–1844.

8. W. Yang, L. Xiong, H.-J. Lai and X. Guo: Hamiltonicity of 3-connected

line graphs, Applied Mathematics Letters 25 (2012), 1835-1838.

9. Y. Chen, S. Fan, H. Lai: On 3-connected hamiltonian line graphs, Dis-

crete Math. 312 (2012), no. 11, 1877–1882.

10. M. Ferrara, T. Morris and P. Wenger: Pancyclicity of 4-connected, claw-

free, P10-free graphs, Journal of Graph Theory 71 (2012), 435-447.
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Abstract

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free graph is Hamiltonian), by Thomassen
(every 4-connected line graph is Hamiltonian) and by Fleischner (every cyclically 4-edge-connected cubic graph has either a 3-
edge-coloring or a dominating cycle), which are known to be equivalent, are equivalent to the statement that every snark (i.e. a
cyclically 4-edge-connected cubic graph of girth at least five that is not 3-edge-colorable) has a dominating cycle.

We use a refinement of the contractibility technique which was introduced by Ryjáček and Schelp in 2003 as a common
generalization and strengthening of the reduction techniques by Catlin and Veldman and of the closure concept introduced by
Ryjáček in 1997.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Dominating cycle; Contractible graph; Cubic graph; Snark; Line graph; Hamiltonian graph

1. Introduction

In this paper we consider finite undirected graphs. All the graphs we consider are loopless (with one exception
in Section 3); however, we allow the graphs to have multiple edges. We follow the most common graph-theoretic
terminology and notation, and for concepts and notation not defined here we refer the reader to [2]. If F , G are graphs
then G − F denotes the graph G − V (F) and by an a, b-path we mean a path with end vertices a, b. A graph G is
claw-free if G does not contain an induced subgraph isomorphic to the claw K1,3.

In 1984, Matthews and Sumner [8] posed the following conjecture.

Conjecture A ([8]). Every 4-connected claw-free graph is Hamiltonian.
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Since every line graph is claw-free (see [1]), the following conjecture by Thomassen is a special case of
Conjecture A.

Conjecture B ([12]). Every 4-connected line graph is Hamiltonian.

A closed trail T in a graph G is said to be dominating, if every edge of G has at least one vertex on T , i.e., the
graph G − T is edgeless (a closed trail is defined as usual, except that we allow a single vertex to be such a trail). The
following result by Harary and Nash-Williams [6] shows the relation between the existence of a dominating closed
trail (abbreviated DCT) in a graph G and Hamiltonicity of its line graph L(G).

Theorem 1 ([6]). Let G be a graph with at least three edges. Then L(G) is Hamiltonian if and only if G contains a
DCT.

Let k be an integer and let G be a graph with |E(G)| > k. The graph G is said to be essentially k-edge-connected
if G contains no edge cut R such that |R| < k and at least two components of G − R are nontrivial (i.e. containing at
least one edge). If G contains no edge cut R such that |R| < k and at least two components of G − R contain a cycle,
G is said to be cyclically k-edge-connected.

It is well-known that G is essentially k-edge-connected if and only if its line graph L(G) is k-connected. Thus, the
following statement is an equivalent formulation of Conjecture B.

Conjecture C. Every essentially 4-edge-connected graph contains a DCT.

By a cubic graph we will always mean a regular graph of degree 3 without multiple edges. It is easy to observe
that if G is cubic, then a DCT in G becomes a dominating cycle (abbreviated DC), and that every essentially 4-edge-
connected cubic graph must be triangle-free, with a single exception of the graph K4. To avoid this exceptional case,
we will always consider only essentially 4-edge-connected cubic graphs on at least five vertices.

Since a cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-connected (see [5],
Corollary 1), the following statement, known as the Dominating Cycle Conjecture, is a special case of Conjecture C.

Conjecture D. Every cyclically 4-edge-connected cubic graph has a DC.

Restricting to cyclically 4-edge-connected cubic graphs that are not 3-edge-colorable, we obtain the following
conjecture posed by Fleischner [4].

Conjecture E ([4]). Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a DC.

In [10], a closure technique was used to prove that Conjectures A and B are equivalent. Fleischner and Jackson [5]
showed that Conjectures B–D are equivalent. Finally, Kochol [7] established the equivalence of these conjectures with
Conjecture E. Thus, we have the following result.

Theorem 2 ([5,7,10]). Conjectures A–E are equivalent.

A cyclically 4-edge-connected cubic graph G of girth g(G) ≥ 5 that is not 3-edge-colorable is called a snark.
Snarks have turned out to be an important class of graphs, for example in the context of nowhere zero flows. For more
information about snarks see the paper [9]. Restricting our considerations to snarks, we obtain the following special
case of Conjecture E.

Conjecture F. Every snark has a DC.

The following theorem, which is the main result of this paper, shows that Conjecture F is equivalent to the previous
ones.

Theorem 3. Conjecture F is equivalent to Conjectures A–E.

The proof of Theorem 3 is postponed to Section 4.
As already noted, every cyclically 4-edge-connected cubic graph other than K4 must be triangle-free. Thus, the

difference between Conjectures E and F consists in restricting to graphs which do not contain a 4-cycle. For the proof
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of the equivalence of these conjectures in Section 4 we first develop in Section 2 a refinement of the technique of
contractible subgraphs that was developed in [11] as a common generalization of the closure concept [10] and Catlin’s
collapsibility technique [3], and in Section 3 a technique that allows us to handle the (non)existence of a DC while
replacing a subgraph of a graph by another one.

2. Weakly contractible graphs

In this section we introduce a refinement of the contractibility technique from [11] under a special assumption
which is automatically satisfied in cubic graphs. We basically follow the terminology and notation of [11].

For a graph H and a subgraph F ⊂ H , H |F denotes the graph obtained from H by identifying the vertices of F as
a (new) vertex vF , and by replacing the created loops by pendant edges (i.e. edges with one vertex of degree 1). Note
that H |F may contain multiple edges and |E(H |F )| = |E(H)|. For a subset X ⊂ V (H) and a partition A of X into
subsets, E(A) denotes the set of all edges a1a2 (not necessarily in H ) such that a1 and a2 are in the same element
of A, and HA denotes the graph with vertex set V (HA) = V (H) and edge set E(HA) = E(H) ∪ E(A) (here the
sets E(H) and E(A) are considered to be disjoint, i.e. if e1 = a1a2 ∈ E(H) and e2 = a1a2 ∈ E(A), then e1, e2 are
parallel edges in HA).

Let F be a graph and A ⊂ V (F). Then F is said to be A-contractible, if for every even subset X ⊂ A (i.e. with
|X | even) and for every partition A of X into two-element subsets, the graph FA has a DCT containing all vertices of
A and all edges of E(A). In particular, the case X = ∅ implies that an A-contractible graph has a DCT containing all
vertices of A.

If H is a graph and F ⊂ H , then a vertex x ∈ V (F) is said to be a vertex of attachment of F in H if x has a
neighbor in V (H) \ V (F). The set of all vertices of attachment of F in H is denoted by AH (F). Finally, domtr (H)
denotes the maximum number of edges of a graph H that are dominated by (i.e. have at least one vertex on) a closed
trail in H . Specifically, H has a DCT if and only if domtr (H) = |E(H)|.

The following theorem shows that a contraction of an AH (F)-contractible subgraph of a graph H does not affect
the value of domtr (H).

Theorem 4 ([11]). Let F be a connected graph and let A ⊂ V (F). Then F is A-contractible if and only if

domtr (H) = domtr (H |F )

for every graph H such that F ⊂ H and AH (F) = A.

Specifically, F is A-contractible if and only if, for any H such that F ⊂ H and AH (F) = A, H has a DCT if and
only if H |F has a DCT (the “only if” part follows by Theorem 4; the “if” part can be easily seen by the definition of
A-contractibility).

Let F be a graph and let A ⊂ V (F). The graph F is said to be weakly A-contractible, if for every nonempty
even subset X ⊂ A and for every partition A of X into two-element subsets, the graph FA has a DCT containing all
vertices of A and all edges of E(A).

Thus, in comparison with the contractibility concept as introduced in [11], we do not include the case X = ∅. This
means that we do not require that a weakly A-contractible graph has a DCT containing all vertices of A.

Clearly, every A-contractible graph is also weakly A-contractible. It is easy to see that if F is weakly A-contractible
and |A| ≥ 3, then dF (x) ≥ 2 for every x ∈ A.

Examples. 1. The graphs in Fig. 1 are examples of graphs that are weakly A-contractible but not A-contractible
(vertices of the set A are double-circled).

2. The triangle C3 is A-contractible for any subset A of its vertex set.
3. Let C be a cycle of length ` ≥ 4, let x, y ∈ V (C) be nonadjacent and set A = V (C), X = {x, y} andA = {{x, y}}.

Then there is no DCT in C containing the edge xy ∈ CA and all vertices of A. Hence no cycle C of length at least
4 is weakly V (C)-contractible.

If H is a graph and F ⊂ H , then H−F denotes the graph with vertex set V (H−F ) = V (H) \ (V (F) \ AH (F)) and
with edge set E(H−F ) = E(H) \ E(F) (equivalently, H−F is the graph determined by the edge set E(H) \ E(F)).
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Fig. 1.

Our next theorem shows that, in a special situation, weak contractibility is sufficient to obtain the equivalence of
Theorem 4.

Theorem 5. Let F be a graph and let A ⊂ V (F), |A| ≥ 2. Then F is weakly A-contractible if and only if

domtr (H) = domtr (H |F )

for every graph H such that F ⊂ H, AH (F) = A, dH−F (a) = 1 for every a ∈ A, and |V (K ) ∩ A| ≥ 2 for at least
one component K of H−F .

Proof. The proof of Theorem 5 basically follows the proof of Theorem 2.1 of [11].
Let F be a graph and let H be a graph satisfying the assumptions of the theorem. Then every closed trail T in

H corresponds to a closed trail in H |F , dominating at least as many edges as T . Hence immediately domtr (H) ≤
domtr (H |F ).

Suppose that F is weakly A-contractible and let T ′ be a closed trail in H |F such that T ′ dominates domtr (H |F )
edges and, subject to this condition, T ′ has maximum length. If vF 6∈ V (T ′), then T ′ is also a closed trail in H ,
implying domtr (H |F ) ≤ domtr (H), as requested. Hence we can suppose vF ∈ V (T ′).

If T ′ is nontrivial, i.e. contains an edge, then the edges of T ′ determine in H a system of trails P = {P1, . . . , Pk},
k ≥ 1, such that every Pi ∈ P has end vertices in A (note that all trails in P are open since dH−F (a) = 1 for all
a ∈ A). Since dH−F (a) = 1 for all a ∈ A, every x ∈ A is an end vertex of at most one trail from P , and we set
X = {x ∈ AH (F)|x is an end vertex of some Pi ∈ P} and A = {A1, . . . , Ak}, where Ai is the (two-element) set of
end vertices of Pi , i = 1, . . . , k.

If T ′ is trivial (i.e., a one-vertex trail), then we consider a component K of H−F for which |V (K ) ∩ AH (F)| ≥ 2.
Let x1, x2 ∈ V (K ) ∩ AH (F). If V (K ) \ {x1, x2} 6= ∅ then, since K is connected, K contains a path of length at least
2 with end vertices x1, x2, but then we have a contradiction with the maximality of T ′. Hence V (K ) = {x1, x2} and
E(K ) = {x1x2}, and we set P1 = x1x2, P = {P1}, X = {x1, x2} and A = {{x1, x2}}. Note that in both cases the set
X is nonempty.

By the weak A-contractibility of F , FA has a DCT Q, containing all vertices of A and all edges of E(A). The trail
Q determines in F a system of trails Q1, . . . , Qk such that every Qi has its two end vertices in two different elements
ofA. Now, the trails Qi together with the system P form a closed trail in H , dominating at least as many edges as T ′.
Hence domtr (H |F ) ≤ domtr (H), implying domtr (H |F ) = domtr (H).

Next suppose that F is not weakly A-contractible (possibly even disconnected). Then, for some nonempty X ⊂ A
and a partition A of X into two-element sets, FA has no DCT containing all vertices of A and all edges of E(A).
Let A = {{x ′1, x ′′1 }, . . . , {x

′

k, x ′′k }}, and construct a graph H with F ⊂ H by replacing the edges of E(A) by k vertex
disjoint x ′i , x ′′i -paths Pi of length at least 3, i = 1, . . . , k, and by attaching a pendant edge to every vertex in A \ X .
Since X 6= ∅, at least one component K of H−F is a path with end vertices in A, implying |V (K ) ∩ A| ≥ 2. Since
FA has no DCT containing all vertices of A and all edges of E(A), H has no DCT. However, clearly H |F has a DCT
and we have domtr (H) < domtr (H |F ). �

In the special case of cubic graphs, we have the following corollary.
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Corollary 6. Let F be a graph with δ(F) = 2, ∆(F) ≤ 3 and |A| ≥ 2, where A = {x ∈ V (F) | dF (x) = 2}. Then
F is weakly A-contractible if and only if

domtr (H) = domtr (H |F )

for every cubic graph H such that F ⊂ H, AH (F) = A, and |V (K )∩ A| ≥ 2 for at least one component K of H−F .

Proof. Clearly dH−F = 1 for every a ∈ A, since H is cubic. If F is weakly A-contractible, then domtr (H) =
domtr (H |F ) immediately by Theorem 5. For the rest of the proof, it is sufficient to modify the last part of the proof
of Theorem 5 such that the constructed graph H is cubic. To achieve this, it is sufficient to use a copy of the graph
in Fig. 2(a) instead of each of the paths Pi , and a copy of the graph in Fig. 2(b) instead of each of the pendant edges
attached to the vertices a j ∈ A \ X . Then there is a component K of H−F with |V (K )∩ A| ≥ 2 since X is nonempty.
The graph H |F has a closed trail dominating all edges except for the edges different from e j in the copies attached to
the vertices in A \ X , while in H there is no such closed trail. �

We say that a subgraph F ⊂ H is a weakly contractible subgraph of H if F is weakly AH (F)-contractible. We
then have the following corollary.

Corollary 7. Let H be a cubic graph and let F be a weakly contractible subgraph of H with δ(F) = 2. Then H has
a DC if and only if H |F has a DCT.

Proof. First note that in a cubic graph every closed trail is a cycle and that a cubic graph with a DC must be essentially
2-edge-connected. Since H is cubic and δ(F) = 2, AH (F) = {x ∈ V (F) | dF (x) = 2} and the weak contractibility
assumption implies F is connected. If every component of H−F contains one vertex from AH (F), then clearly neither
H nor H |F is essentially 2-edge-connected (since H is cubic) and hence neither H nor H |F has a DCT. The rest of
the proof follows from Corollary 6. �

Example. Let H be the graph obtained from three vertex-disjoint copies F1, F2, F3 of the graph Fi from Fig. 2(a) by
adding edges x ′1x ′2, x ′1x ′3, x ′2x ′3, x ′′1 x ′′2 , x ′′1 x ′′3 , x ′′2 x ′′3 . Then H is cubic, F1 ⊂ H is weakly contractible, H |F1 has a DCT,
but H has no DC. This example shows that the assumption δ(F) = 2 in Corollaries 6 and 7 cannot be omitted.

3. Replacement of a subgraph

In this section we develop a technique to replace certain subgraphs by others without affecting the (non)existence
of a DCT.

Let G be a graph and let F ⊂ G be a subgraph of G. Let F ′ be a graph such that V (F ′)∩V (G) = ∅, let A′ ⊂ V (F ′)
be such that |A′| = |AG(F)| and let ϕ : AG(F)→ A′ be a bijection. Let H be the graph obtained from G−F and F ′

by identifying each x ∈ AG(F) with its image ϕ(x) ∈ A′. We say that the graph H is obtained by replacement (in G)

of F by F ′ modulo ϕ and denote H = G[F
ϕ
→ F ′].

Note that if H = G[F
ϕ
→ F ′] then also clearly G = H [F ′

ϕ−1

−→ F].
Let F be a graph and let A = {a1, . . . , ak} ⊂ V (F). Let A be a set with A ∩ V (F) = ∅, |A| = |A|,

and set A = {a1, . . . , ak}. Then F
A

denotes the graph with vertex set V (F
A
) = V (F) ∪ A and with edge set

E(F
A
) = E(F)∪ {ai ai |i = 1, . . . , k} (i.e., F

A
is obtained from F by attaching a pendant edge to every vertex of A).
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The following observation shows that, under certain conditions, the replacement in a graph G of a weakly
contractible subgraph by another one affects neither the existence nor the nonexistence of a DCT in G.

Proposition 8. Let G be a graph with δ(G) ≥ 1 and let F ⊂ G be a weakly contractible subgraph of G such that

|E(F)| ≥ 1, dG−F (x) = 1 for every x ∈ AG(F) and G 6' F
AG (F). Let F ′, |E(F ′)| ≥ 1, be a weakly A′-contractible

graph for an A′ ⊂ V (F ′), and let ϕ : AG(F)→ A′ be a bijection. Then G has a DCT if and only if G[F
ϕ
→ F ′] has

a DCT.

Proof. Set H = G[F
ϕ
→ F ′]. For |AG(F)| = 0 the assumptions G 6' F

AG (F) and δ(G) ≥ 1 imply that G is
disconnected and neither G nor H has a DCT. If |AG(F)| = 1 or if |AG(F)| ≥ 2 and |V (K ) ∩ AG(F)| = 1 for
every component K of G−F , then neither G nor H can have a DCT since |E(F)| ≥ 1, |E(F ′)| ≥ 1, dG−F (x) = 1

for every x ∈ AG(F) and G 6' F
AG (F). Thus, we can assume that |AG(F)| ≥ 2 and there is a component K of G−F

such that |V (K ) ∩ AG(F)| ≥ 2. Then, by Theorem 5, G has a DCT if and only if G|F has a DCT. Similarly, H has a
DCT if and only if H |F ′ has a DCT, but the graphs G|F and H |F ′ are, up to the number of pendant edges at vF (vF ′ ),
isomorphic. �

In the special case of cubic graphs, we obtain the following consequence.

Corollary 9. Let G be a cubic graph and let F ⊂ G be a weakly contractible subgraph of G with δ(F) = 2. Let
F ′ be a graph with δ(F ′) = 2 and ∆(F ′) ≤ 3, let A′ = {x ∈ V (F ′)|dF ′(x) = 2} and suppose that F ′ is weakly

A′-contractible. Let ϕ : AG(F) → A′ be a bijection. Then the graph H = G[F
ϕ
→ F ′] is cubic and G has a DC if

and only if H has a DC.

Proof. Clearly AG(F) = {x ∈ V (F)|dF (x) = 2} and since G is cubic, we have dG−F (x) = 1 for every x ∈ AG(F)

and G 6' F
AG (F). Since ϕ is a bijection, H is cubic. By Proposition 8, G has a DCT if and only if H has a DCT, but

in cubic graphs every DCT is a DC. �

Now we consider a similar question if F and/or F ′ are not contractible. We restrict our observations to cubic
graphs.

A connected graph F without multiple edges with ∆(F) ≤ 3 will be called a cubic fragment. For any cubic
fragment F and i = 1, 2 we set Ai (F) = {x ∈ V (F)|dF (x) = i} and A(F) = A1(F) ∪ A2(F) (note that if F ⊂ H ,
F is connected and H is cubic, then F is a cubic fragment and AH (F) = A(F)). A cubic fragment F is said to be
essential if |V (F) \ A1(F)| ≥ 2. It is easy to observe that if F is an essential cubic fragment, the set V (F) \ A1(F)
induces (in F) a connected subgraph with at least one edge.

For a cubic fragment F we now introduce the concept of an F-linkage. An F-linkage will be allowed to contain
loops. A loop on a vertex v is considered as an edge joining v to itself, and is denoted by an element vv of the edge
set. Edges of an F-linkage that are not loops will be referred to as open edges.

Let F be a cubic fragment and let B be a graph with V (B) ⊂ A(F), E(B) ∩ E(F) = ∅, and with components
B1, . . . , Bk . We say that B is an F-linkage, if E(B) contains at least one open edge and, for any i = 1, . . . , k,

(i) every Bi is a path (of length at least one) or a loop,
(ii) if Bi is a path of length at least two, then all interior vertices of Bi are in A1(F),

(iii) if Bi is a loop at a vertex x , then x ∈ A2(F).

Let F be a cubic fragment and let B be an F-linkage. Then F B denotes the graph with vertex set V (F B) = V (F)
and edge set E(F B) = E(F)∪ E(B). Note that E(B) and E(F) are assumed to be disjoint, i.e. if h1 = x1x2 ∈ E(F)
and h2 = x1x2 ∈ E(B), then h1, h2 are parallel edges of the graph F B .

Let F1, F2 be cubic fragments with |A(F1)| = |A(F2)| and let ϕ : A(F1) → A(F2) be a bijection. For any
F1-linkage B, ϕ(B) denotes the graph with vertex set V (ϕ(B)) = {ϕ(x)|x ∈ V (B)} and edge set E(ϕ(B)) =
{ϕ(x)ϕ(y)|xy ∈ E(B)} (note that the sets E(F2) and E(ϕ(B)) are again considered to be disjoint, and we admit
x = y in which case ϕ(x)ϕ(x) is a loop at ϕ(x)). Note that ϕ(B) is an F2-linkage.

Let F1, F2 be cubic fragments with |A(F1)| = |A(F2)| and let ϕ : A(F1)→ A(F2) be a bijection. We say that ϕ
is a compatible mapping if
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(i) ϕ(Ai (F1)) = Ai (F2), i = 1, 2,

(ii) if B is an F1-linkage such that F B
1 has a DC containing all open edges of B, then Fϕ(B)2 has a DC containing all

open edges of ϕ(B).

For a compatible mapping ϕ : A(F1)→ A(F2) we will simply write ϕ : F1 → F2.
Let F1, F2 be cubic fragments and let ϕ : A(F1)→ A(F2) be a bijection such that ϕ(Ai (F1)) = Ai (F2), i = 1, 2.

It is easy to observe that if F2 is weakly A(F2)-contractible then ϕ is compatible, and if moreover F1 is weakly A(F1)-
contractible then both ϕ and ϕ−1 are compatible (note that B cannot contain a path of length at least 2 in this case —
this is clear for |A(Fi )| ≤ 2, and for |A(Fi )| ≥ 3 this follows from the fact that weak A(Fi )-contractibility of Fi then
implies A(Fi ) = A2(Fi )).

The following example shows that the compatibility of a mapping ϕ does not imply ϕ−1 is compatible if the Fi ’s
are not weakly contractible.

Example. Let F1, F2 be the graphs in Fig. 3 and let ϕ : A(F1) → A(F2) be the mapping that maps a1
j on a2

j ,

j = 1, 2, 3, 4. By a straightforward check of all possible F1-linkages B and the corresponding DC’s in F B
1 and in

Fϕ(B)2 , we easily see that there are, up to symmetry, the following possibilities.

E(B) DC in F B
1 DC in Fϕ(B)2

a1
1a1

4 a1
1a1

4 yxa1
1 a2

1a2
4wuvza2

1

a1
1a1

2 not existing not existing

a1
1a1

2, a1
2a1

4 a1
1a1

2a1
4 yxa1

1 a2
1a2

2a2
4wuvza2

1

a1
1a1

3, a1
3a1

2 not existing a2
1a2

3a2
2uwza2

1

a1
1a1

2, a1
2a1

3, a1
3a1

4 a1
1a1

2a1
3a1

4 yxa1
1 a2

1a2
2a2

3a2
4wuvza2

1

a1
1a1

4, a1
4a1

3, a1
3a1

2 a1
1a1

4a1
3a1

2 xa1
1 a2

1a2
4a2

3a2
2uwza2

1

a1
1a1

4, a1
2a1

3 a1
1a1

4 ya1
3a1

2 xa1
1 a2

1a2
4wua2

2a2
3vza2

1

a1
1a1

2, a1
3a1

4 not existing a2
1a2

2uva2
3a2

4wza2
1

We conclude that ϕ : A(F1) → A(F2) is a compatible mapping, but there is no compatible mapping of A(F2) onto
A(F1). Note that this mapping ϕ will play an important role in the proof of our main result in Section 4.

The following result shows that the replacement of a subgraph of a cubic graph modulo a compatible mapping does
not affect the existence of a DC.

Theorem 10. Let G be a cubic graph and let C be a DC in G. Let F ⊂ G be an essential cubic fragment
such that G − F is not edgeless, and let F ′ be a cubic fragment such that V (F ′) ∩ V (G) = ∅ and there is a

compatible mapping ϕ : F → F ′. Then the graph G ′ = G[F
ϕ
→ F ′] is a cubic graph having a DC C ′ such that

E(C) \ E(F) = E(C ′) \ E(F ′).

(Note that if both ϕ and ϕ−1 are compatible and both F and F ′ are essential, then G has a DC if and only if

G ′ = G[F
ϕ
→ F ′] has a DC.)
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Proof. By the compatibility of ϕ, A1(F ′) = ϕ(A1(F)) and A2(F ′) = ϕ(A2(F)), hence G ′ is cubic. Let C be a DC
in G. We show that G ′ has a DC C ′ with E(C) \ E(F) = E(C ′) \ E(F ′).

We first observe that E(C) ∩ E(F) 6= ∅. Since F is essential, there is an edge xy ∈ E(F) with dF (x) ≥ 2 and
dF (y) ≥ 2. Then one of x, y (say, x) is on C . Since dF (x) ≥ 2, x has a neighbor x1 in F , x1 6= y. Then, since
dG(x) = 3, the edge xy or xx1 is in E(C) ∩ E(F).

Let CF and C−F denote the subgraph of C induced by the edge set E(C)∩E(F) and E(C)∩E(G−F ), respectively.
Since E(C) ∩ E(F) 6= ∅ and G − F is not edgeless, C−F is a nonempty system of paths. Let P1, . . . , Pk be the
components of C−F . Then:

• the end vertices of every Pi are in A(F),
• the interior vertices of every Pi are in A1(F) or in V (G) \ V (F),

where i = 1, . . . , k.
We define an F-linkage B as follows:

(i) for every Pi , let P B
i be the path obtained from Pi by replacing every maximal subpath of Pi with all interior

vertices in V (G) \ V (F) by a single edge (with both vertices in A(F)),
(ii) for every vertex x ∈ A(F) \ V (C−F ) which is on CF (note that such a vertex x must be in A2(F)), let ex be a

loop at x ,
(iii) B is the graph with components {P B

i |i = 1, . . . , k} ∪ {ex |x ∈ A2(F) \ V (C−F ) ∩ V (C)}.

It is immediate to observe that the graph F B has a DC C B containing all open edges of B. By the compatibility of
ϕ, the graph (F ′)ϕ(B) has a DC C ′B containing all open edges of the graph ϕ(B).

Let C ′F ′ denote the subgraph of C ′B induced by the edge set E(C ′B) ∩ E(F ′). Then C ′F ′ is a system of paths, and

the edges in E(C ′F ′) ∪ E(C−F ) determine a cycle C ′ in G ′ = G[F
ϕ
→ F ′] with E(C) \ E(F) = E(C ′) \ E(F ′).

Note that, by the construction, V (C)∩ A(F) ⊂ V (C ′)∩ A(F ′) (this is clear for vertices x with dC−F (x) ≥ 1, and for
vertices x with dC−F (x) = 0 this follows from the fact that both C B and C ′B dominate all loops in B and in ϕ(B),
respectively).

It remains to show that C ′ is a DC in G ′. Thus, let xy ∈ E(G ′).
If x, y ∈ V (G ′) \ V (F ′) = V (G) \ V (F), then x or y is on C−F , implying x or y is on C ′ since C−F ⊂ C ′. If

x, y ∈ V (F ′) \ A(F ′), then x or y is on C ′F ′ , implying x or y is on C ′ since C ′F ′ ⊂ C ′.
Up to symmetry, it remains to consider the case x ∈ A(F ′) = ϕ(A(F)). If x ∈ V (C), then also x ∈ V (C ′) since

V (C) ∩ A(F) ⊂ V (C ′) ∩ A(F ′), as observed above. Hence we can suppose that x 6∈ V (C), implying y ∈ V (C).
If y ∈ A(F ′), then similarly y ∈ V (C ′) and we are done; hence y 6∈ A(F ′). Then either y ∈ V (F ′) \ A(F ′), or
y ∈ V (G ′) \ V (F ′). But then, in the first case y is on C ′F ′ since C ′ is dominating in (F ′)ϕ(B), and in the second case
y is on C−F since C is dominating in G. In either case this implies y ∈ V (C ′). �

The following result shows that the existence of a compatible mapping is not affected by a replacement of a
subgraph by another one modulo a compatible mapping.

Proposition 11. Let X, F be essential cubic fragments such that there is a compatible mapping ψ : X → F. Let
F1 ⊂ F be an essential cubic fragment, and let F2 be a cubic fragment such that V (F) ∩ V (F2) = ∅ and there is a

compatible mapping ϕ : F1 → F2. Let F ′ = F[F1
ϕ
→ F2]. Then there is a compatible mapping ψ ′ : X → F ′.

Proof. For any x ∈ A(X) set

ψ ′(x) =

{
ψ(x) if x ∈ ψ−1(A(F) \ A(F1)),

ϕ(ψ(x)) if x ∈ ψ−1(A(F) ∩ A(F1)).

Then ψ ′ : A(X)→ A(F ′) is a bijection, and ψ ′ : Ai (X)→ Ai (F ′), i = 1, 2, by the compatibility of ψ and ϕ. Let B
be an X -linkage such that X B has a DC containing all open edges of B. By the compatibility of ψ , the graph Fψ(B)

has a DC C containing all open edges of ψ(B). We need to show that (F ′)ψ
′(B) has a DC containing all open edges

of ψ ′(B). We will construct a cubic graph H such that F ⊂ H , H has a DC that coincides with C on F , and the
structure of H − F implies that an application of Theorem 10 to H yields the required DC in (F ′)ψ

′(B).
Let B1, . . . , Bk be the components of ψ(B), and choose the notation such that
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• B1, . . . , Bp (p ≥ 1) are paths, V (B j ) = {x0
j , . . . , x

` j
j } (i.e. B j is of length ` j ), j = 1, . . . , p;

• if none of B1, . . . , Bk is a loop, then ` = 0, otherwise Bp+1, . . . , Bp+` are loops, V (Bp+ j ) = {x p+ j },
j = 1, . . . , `;
• if A(F) \ V (ψ(B)) = ∅, then f = 0, otherwise A(F) \ V (ψ(B)) = {x p+`+1, . . . , x p+`+ f }.

Thus, we have k = p + ` and V (ψ(B)) = ∪p+`
j=1(V (B j )).

Let Q j , Rs
j (s ≥ 2), S j and T j be the graphs shown in Fig. 4. We construct a cubic graph H containing F by the

following construction:

• take the graph F with the labeling of vertices of A(F) defined above;
• for each B j with 1 ≤ j ≤ p, ` j = 1, take one copy of Q j and for i = 0, 1 identify x i

j = q i
j if x i

j ∈ A1(F) or add

the edge x i
j q

i
j if x i

j ∈ A2(F), respectively,

• for each B j with 1 ≤ j ≤ p, ` j > 1, take one copy of Rs
j for s = ` j and

– for i = 0 and i = ` j identify x i
j = r i

j if x i
j ∈ A1(F) or add the edge x i

jr
i
j if x i

j ∈ A2(F), respectively,

– for 1 ≤ i ≤ ` j − 1 identify x i
j = r i

j ;
• for each B j with p + 1 ≤ j ≤ p + ` (if ` > 0) take one copy of S j , add the edge x j s j , and if ` ≥ 2, then for

j ≥ p + 2 add the edge v j−1u j ;
• for each x j with p + `+ 1 ≤ j ≤ p + `+ f (if f > 0) do the following:

– if x j ∈ A1(F), take one copy of S j , identify x j = s j and if f ≥ 2, then for j ≥ p + `+ 2 add the edge v j−1u j
(if x j−1 ∈ A1(F)), or the edge w j−1u j (if x j−1 ∈ A2(F)), respectively;

– if x j ∈ A2(F), take one copy of T j , identify x j = t j and if f ≥ 2, then for j ≥ p + `+ 2 add the edge v j−1w j
(if x j−1 ∈ A1(F)), or the edge w j−1w j (if x j−1 ∈ A2(F)), respectively;

– if x p+`+1 ∈ A2(F), then relabel wp+`+1 as u p+`+1 and if x p+`+ f ∈ A2(F), then relabel wp+`+ f as vp+`+ f ;
• if ` 6= 0, then

– for `1 = 1 remove the edge q0
1 a1 and add the edges q0

1 u p+1 and a1vp+`,

– for `1 > 1 remove the edge r0
1r1

1 and add the edges r0
1 u p+1 and r1

1vp+`;
• if f 6= 0, then

– for `1 = 1 remove the edge b1q1
1 and add the edges b1u p+`+1 and q1

1vp+`+ f ,

– for `1 > 1 remove the edge r`1−1
1 r`1

1 and add the edges r`1−1
1 u p+`+1 and r`1

1 vp+`+ f .

Then H is a cubic graph, F ⊂ H , AH (F) = A(F), and it is straightforward to check that H has a DC C H such
that E(C H ) ∩ E(F) = E(C) ∩ E(F).

Let C H
−F denote the subgraph of C H induced by the edge set E(C H ) ∩ E(H−F ). Then the structure of the graphs

Q j , Rs
j , S j and T j implies the following properties of C H

−F :

• if 1 ≤ j ≤ p and i = 0 or i = ` j , then dC H
−F
(x i

j ) = 1,

• if 1 ≤ j ≤ p and 1 ≤ i ≤ ` j − 1, then dC H
−F
(x i

j ) = 2,

• if ` > 0 and p + 1 ≤ j ≤ p + `, then dC H
−F
(x j ) = 0 and x j has no neighbor on C H

−F ,

• if f > 0 and p + `+ 1 ≤ j ≤ p + `+ f , then dC H
−F
(x j ) = 0 and all neighbors of x j in H−F are on C H

−F .
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Set H ′ = H [F1
ϕ
→ F2]. By the compatibility of ϕ and by Theorem 10, H ′ has a DC C H ′ such that

E(C H ′)\ E(F2) = E(C H )\ E(F1). Specifically, F ′ ⊂ H ′ and E(C H ′)\ E(F ′) = E(C H )\ E(F). Let C H ′
F ′ and C H ′

−F ′

denote the subgraph of C H ′ induced by E(C H ′) ∩ E(F ′) and E(C H ′) ∩ E(H ′
−F ′), respectively. Then C H ′

−F ′ = C H
−F ,

and from the above properties of C H
−F we obtain the following properties of C H ′

F ′ :

• if 1 ≤ j ≤ p and i = 0 or i = ` j , then dC H ′
F ′
(x i

j ) = 1,

• if 1 ≤ j ≤ p and 1 ≤ i ≤ ` j − 1, then dC H ′
F ′
(x i

j ) = 0 and all edges of F ′ with at least one vertex in NF ′(x i
j ) have

at least one vertex on C H ′ ,
• if ` > 0 and p + 1 ≤ j ≤ p + `, then dC H ′

F ′
(x j ) = 2,

• if f > 0 and p + ` + 1 ≤ j ≤ p + ` + f , then either dC H ′
F ′
(x j ) = 2, or dC H ′

F ′
(x j ) = 0 and all neighbors of x j in

F ′ are on C H ′
F ′ .

This implies that C H ′
F ′ together with the open edges of ψ ′(B) determines the required DC in (F ′)ψ

′(B) containing
all open edges of ψ ′(B). �

For a cubic fragment F with A(F) = A2(F) we will simply write F
A(F)
= F . If F1, F2 are cubic fragments with

A(Fi ) = A2(Fi ), i = 1, 2 and ϕ : A(F1)→ A(F2) is a bijection, then ϕ denotes the bijection ϕ : A(F1)→ A(F2)

defined by ϕ(a) = ϕ(a), a ∈ A(F1).
In the proof of Proposition 14 we will also need the following statement showing that the existence (or

nonexistence) of a compatible mapping is not affected by adding pendant edges to vertices of attachment.

Proposition 12. Let F1, F2 be cubic fragments with |A(F1)| = |A(F2)| and A(Fi ) = A2(Fi ), i = 1, 2, and let
ϕ : A(F1)→ A(F2) be a bijection. Then ϕ is compatible if and only if ϕ : A(F1)→ A(F2) is compatible.

Proof. Set A(F1) = {a1, . . . , ak}. Suppose first that ϕ is compatible and let B be an F1-linkage such that there is a
DC C in (F1)

B containing all open edges of B. Since A(F1) = A1(F1), all components of B are paths. We define an
F1-linkage B as follows:

(i) ai a j ∈ E(B), i 6= j , if and only if B has a component which is an ai , a j -path,
(ii) ai ai ∈ E(B) if and only if ai ∈ A(F1) \ V (B).

(This means that vertices in A(F) corresponding to internal vertices of paths in B will not be in V (B), and vertices
corresponding to vertices not in V (B) will have loops in B.)

Since C dominates all edges of F1 (including the edges ai ai with ai 6∈ V (B)), it is straightforward to see that
removing from C the edges of B and the pendant edges of {ai ai , i = 1, . . . , k} ∩ E(C), and adding the open edges
of B results in a DC C in F B

1 , containing all open edges of B. Using the compatibility of ϕ we obtain a DC in Fϕ(B)2
containing all open edges of ϕ(B), and adding the pendant edges and all edges of ϕ(B) yields a required DC in
(F2)

ϕ(B).
Conversely, let ϕ : A(F1) → A(F2) be compatible and let B be an F1-linkage. Since A(F1) = A2(F1), B

contains no paths of length more than one. Suppose the notation is chosen such that E(B) = {a1a2, . . . ,

a2p−1a2p, a2p+1a2p+1, . . . , a2p+`a2p+`}, where 2p+` ≤ k. Then we define B as the graph which has as components
the path a1a2p+`+1 . . . aka2 and (if p > 1) the edges a2i−1a2i , i = 2, . . . , p. The rest of the proof is similar to that
above. �

4. Equivalence of Conjectures A–F

Before proving our main result, Theorem 3, we first prove several auxiliary statements that describe the structure
of potential counterexamples to Conjecture D.

Proposition 13. If Conjecture D is not true, then there is an essential cubic fragment F such that

(i) |A2(F)| = |A(F)| = 4,
(ii) there is a cyclically 4-edge-connected cubic graph G such that F ⊂ G,
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(iii) there is no compatible mapping ϕ : C4 → F.

Proof. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph having no DC, let
e = uv ∈ E(G) and set F = G − {u, v}. Then F is an essential cubic fragment with |A2(F)| = |A(F)| = 4. Let,

to the contrary, ϕ : C4 → F be a compatible mapping and set G ′ = G[F
ϕ−1

−→ C4]. Then G ′ is isomorphic to one

of the graphs in Fig. 5, and hence G ′ has a DC. But then, by Theorem 10, the graph G = G ′[C4
ϕ
→ F] has a DC, a

contradiction. �

Proposition 14. Let F be an essential cubic fragment such that

(i) |A2(F)| = |A(F)| = 4,
(ii) there is a cyclically 4-edge-connected cubic graph G such that F ⊂ G,

(iii) there is no compatible mapping ϕ : C4 → F,
(iv) subject to (i), (ii) and (iii), |V (F)| is minimal.

Then F is essentially 3-edge-connected and contains no cycle of length 4.

Proof. Recall that a cubic graph is cyclically 4-edge-connected if and only if it is essentially 4-edge-connected
(see [5]).

We first show that F is essentially 3-edge-connected. Suppose the contrary. By definition, F is connected. Denote
A(F) = {a1, a2, a3, a4}, and let fi denote the edge in E(G) \ E(F) incident with ai , i = 1, 2, 3, 4. If F has a cut
edge e, then some nontrivial (i.e. containing at least one edge) component of F − e contains at most two vertices ai ,
but then e together with the corresponding edges fi is an essential edge cut in G of size at most 3, a contradiction.
Hence F has no cut edge. (Note that F has also no cut vertex since G is cubic.)

Thus, let R = {e1, e2} ⊂ E(F) be an essential edge cut of F , and let F1, F2 be nontrivial components of F − R.
Denote ei = b1

i b2
i with b j

i ∈ V (F j ), i, j = 1, 2. If |V (F1) ∩ A(F)| = 1, then we set V (F1) ∩ A(F) = {x} and
observe that the edges e1, e2 and the only edge of G−F incident to x form an essential edge cut of G of size 3, a
contradiction. We obtain a similar contradiction for |V (F1)∩ A(F)| = 0; hence |V (F1)∩ A(F)| ≥ 2. Symmetrically,
|V (F2) ∩ A(F)| ≥ 2, implying |V (F1) ∩ A(F)| = |V (F2) ∩ A(F)| = 2. Thus, we can suppose that the notation is
chosen such that a1, a2 ∈ V (F1) and a3, a4 ∈ V (F2).

If |V (F1)| > 4, then there is a compatible mapping ϕ : C4 → F1 by the minimality of F . Let C̃ be a copy of

C4 and set H = F[F1
ϕ−1

−→ C̃]. Then |V (H)| < |V (F)| and, by the minimality of F , there is a compatible mapping
ψ : C4 → H . By Proposition 11 (with X := C4, F := H , F1 := C̃ and F2 := F1), there is a compatible mapping

ψ ′ : C4 → H [C̃
ϕ
→ F1] = F , a contradiction. Hence |V (F1)| ≤ 4 and, symmetrically, |V (F2)| ≤ 4.

Now, since G is cyclically 4-edge-connected, either {a1, a2} ∩ {b1
1, b1

2} = ∅, or (up to symmetry), a1 = b1
1 and

a2 = b1
2. Hence F1 is a single edge or a cycle of length 4. Similarly, F2 is a single edge or a cycle of length 4. Thus,
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F is isomorphic to one of the graphs shown in Fig. 6. However, it is straightforward to check that for each of these
graphs there is a compatible mapping ϕ : C4 → F , a contradiction. Thus, F is essentially 3-edge-connected.

Next we show that

(∗) F contains no subgraph F̃ , F̃ 6= F , with |V (F̃)| > 4 and |A2(F̃)| = |A(F̃)| = 4.

Thus, let F̃ be such a subgraph. By the minimality of F , there is a compatible mapping ϕ : C4 → F̃ . Let C̃ be a copy of

C4 and set H = F[F̃
ϕ−1

−→ C̃]. By the minimality of F , there is a compatible mappingψ : C4 → H . By Proposition 11

(with X := C4, F := H , F1 := C̃ and F2 := F̃), there is a compatible mapping ψ ′ : C4 → H [C̃
ϕ
→ F̃] = F , a

contradiction. Hence there is no such F̃ .
Finally, we show that F contains no cycle of length 4. Let, to the contrary, Y ⊂ F be a copy of C4 (note that

possibly V (Y ) ∩ A(F) 6= ∅). Let F be the graph obtained from F by attaching a pendant edge to each vertex in
A(F), and let F1 and F2 be the graphs shown in Fig. 3 (recall that we already know there is a compatible mapping
ϕ : F1 → F2). Let Y be the (only) subgraph of F such that Y ⊂ Y and Y is isomorphic to F2, let T be a copy of F1

and let ϕ : T → Y be a compatible mapping. Set F
′
= F[Y

ϕ−1

−→ T ] (i.e., F = F
′
[T

ϕ
→ Y ]), and let F ′ be the graph

obtained from F
′

by removing the four pendant edges. Then F ′ is a cubic fragment with |A(F ′)| = |A2(F ′)| = 4.
We show that there is no compatible mapping ψ : C4 → F ′. Let, to the contrary, ψ : C4 → F ′ be compatible. By

adding pendant edges to A(C4) and A(F ′) and by Proposition 12, there is a compatible mapping ψ : C4 → F
′
. Thus,

we have ψ : C4 → F
′
, T ⊂ F

′
and ϕ : T → Y . By Proposition 11, there is a compatible mapping ψ

′
: C4 → F . By

removing the pendant edges and by Proposition 12 we obtain a compatible mapping ψ ′ : C4 → F , a contradiction.
Thus, there is no compatible mapping ψ : C4 → F ′.

By the minimality of F , the graph F ′ (and hence also F
′
) cannot be a subgraph of a cyclically 4-edge-connected

cubic graph. Thus, there is an edge cut R′ of F
′
such that |R′| ≤ 3 and at least one component X ′ of F

′
− R′ contains

a cycle and has minimum degree 2 (if such an R′ does not exist then, identifying the vertices of degree 1 of F
′

with
vertices of a C4, we get a cyclically 4-edge-connected cubic graph containing F

′
, a contradiction). However, there is

no such edge cut in F . Since F
′
= F[Y

ϕ−1

−→ T ], R′ contains the edge e = xy ∈ E(T ) with dT (x) = dT (y) = 3 and
some two edges f1, f2 ∈ E(F

′
) \ E(T ). Suppose the vertices of T are labeled such that A1(T ) = {a1, a2, a3, a4},

E(T ) = {a1x, a2x, a3 y, a4 y, xy} and a1, a2, x ∈ V (X ′). Then R′′ = { f1, f2, a3 y, a4 y} is an edge cut in F
′

such that
|R′′| = 4 and X ′ + e is a component of F

′
− R′′. Let e1 (e2, e3, e4) denote the pendant edge of Y which corresponds

to the edge a1x (a2x , a3 y, a4 y) ∈ E(T ), respectively, in the mapping ϕ. Then R = { f1, f2, e3, e4} is an edge cut of
F such that the component X of F − R containing X ′ and Y has |V (X)| > 4 and |A2(X)| = |A(X)| = 4.

By (∗) (and since F 6' C4, implying e1, e2 ∈ E(F)), F contains no such graph as a proper subgraph; hence
X = F . But then {e1, e2} is an edge cut of F , contradicting the fact that F is essentially 3-edge-connected. Hence F
contains no cycle of length 4. �

Proposition 15. If Conjecture D is not true, then there is an essential cubic fragment F such that

(i) F contains no cycle of length 4,
(ii) there is a cyclically 4-edge-connected cubic graph G such that F ⊂ G,

(iii) |A2(F)| = |A(F)| = 4 and A(F) is independent,
(iv) there is a compatible mapping ϕ : F → C4.

Proof. By Propositions 13 and 14, there is an essential cubic fragment H such that H contains no cycle of length
4, |A2(H)| = |A(H)| = 4, there is a cyclically 4-edge-connected cubic graph G such that H ⊂ G, and there is
no compatible mapping ψ : C4 → H . Let H be minimal with these properties. Since A(H) = A2(H), by the
nonexistence of a compatible mapping ψ : C4 → H , H is not weakly A(H)-contractible. Hence there is a nonempty
even set X ⊂ A(H) and a partition A of X into two-element subsets such that HA has no DCT containing all
vertices of A(H) and all edges of E(A). Set A(H) = {a1, a2, a3, a4} and suppose the notation is chosen such that
A = {{a1, a2}} if |X | = 2 or A = {{a1, a2}, {a3, a4}} if |X | = 4. Then the graph H B has no DC containing all open
edges of B for either E(B) = {a1a2, a3a3, a4a4} or E(B) = {a1a2, a3a4}.

Let H , H ′ be two copies of H (with a corresponding labeling A(H ′) = {a′1, a′2, a′3, a′4}), and let F be the cubic
fragment obtained from H and H ′ by adding the edges a1a′1 and a2a′2. Recall that H contains no cycle of length 4.
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Since H is essentially 3-edge-connected by Proposition 14, the set {a1, a2, a3, a4} (and hence also {a′1, a′2, a′3, a′4})
is independent. Hence F also contains no cycle of length 4, and the set A(F) = {a3, a4, a′3, a′4} is independent. It
remains to prove that there is a compatible mapping ϕ : F → C4.

First we show that the graph F B has no DC containing all open edges of B for E(B) = {a3a3, a4a4, a′3a′4}. To
the contrary, let C be such a DC. Then (E(C) ∩ E(H)) ∪ {a1a2} is a DC in H B containing all open edges of B for
E(B) = {a1a2, a3a3, a4a4}, and (E(C) ∩ E(H ′)) ∪ {a′1a′2, a′3a′4} is a DC in H ′B

′

containing all open edges of B ′

for E(B ′) = {a′1a′2, a′3a′4}, which is not possible. Thus, there is no such DC in F B . Symmetrically, F B′ has no DC
containing all open edges of B ′ for E(B ′) = {a′3a′3, a′4a′4, a3a4}. Let Y be a copy of C4 with vertices labeled b3, b4, b′3,
b′4 such that b3b4 6∈ E(Y ) and b′3b′4 6∈ E(Y ). Then it is straightforward to check that Y B′′ has a DC containing all open
edges of B ′′ for all Y -linkages B ′′ except for the cases E(B ′′) = {b3b3, b4b4, b′3b′4} and E(B ′′) = {b′3b′3, b′4b′4, b3b4}.
Hence the mapping ϕ : A(F)→ A(Y ) that maps ai on bi and a′i on b′i , i = 3, 4, is a compatible mapping. �

Note that we do not know any example of a cubic fragment with the properties given in Proposition 15. Moreover,
we believe that such a graph in fact does not exist.

Now we are ready to prove the main result of this paper, Theorem 3.

Proof of Theorem 3. Clearly, Conjecture E implies Conjecture F. By Theorem 2, it is sufficient to show that
Conjecture F implies Conjecture D. Thus, suppose Conjecture D is not true, and let F be an essential cubic fragment
as given by Proposition 15. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph
without a DC. For any cycle C of length 4 in G, choose a compatible mapping of F on C , and let G ′ be the graph
obtained by recursively replacing every cycle of length 4 by a copy of F . Then G ′ is a cubic graph of girth g(G ′) ≥ 5
and, by Theorem 10, G ′ has no DC. Moreover, G ′ is cyclically 4-edge-connected since any cycle-separating edge cut
in G ′ of size at most 3 would imply the existence of such an edge cut in G. If G ′ is not 3-edge-colorable, G ′ is a snark
and we are done. Otherwise, we use the following fact and construction by Kochol [7].

Claim ([7]). If a cubic graph G contains the graph H of Fig. 7 as an induced subgraph, then G is not 3-edge-
colorable.

We use the claim as follows. Let xy ∈ E(G ′), let x ′, x ′′ (y′, y′′) be the neighbors of x (of y) different from y (x),
respectively, and let G ′i , i = 1, 2, 3, be three copies of the graph G ′ − x − y (where x ′i , x ′′i , y′i , y′′i are the copies of
x ′, x ′′, y′, y′′ in G ′i ), i = 1, 2, 3. Then the graph Ḡ obtained from G ′1, G ′2, G ′3 and H by adding the edges x ′1v3, x ′′1v4,
y′1x ′2, y′′1 x ′′2 , y′2x ′3, y′′2 x ′′3 , y′3v1 and y′′3v2 is a cyclically 4-edge-connected graph of girth g(Ḡ) ≥ 5. By the claim, Ḡ is
not 3-edge-colorable. It remains to show that Ḡ has no DC.

Let, to the contrary, C be a DC in Ḡ. Then it is easy to check that for some i ∈ {1, 2, 3}, the intersection of C with
G ′i is either a path with one end in {x ′i , x ′′i } and the second in {y′i , y′′i }, or two such paths. But, in both cases, the path(s)
can be easily extended to a DC in G ′, a contradiction. �

5. Concluding remarks

1. Note that our proof of the equivalence of Conjecture F with Conjectures A–E is based on properties (compatible
mappings) that are specific for the C4. This means that our proof cannot be directly extended to obtain higher girth
restrictions.
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2. We pose the following conjecture and show it is equivalent to Conjectures A–F.

Conjecture G. Every cyclically 4-edge-connected cubic graph contains a weakly contractible subgraph F with
δ(F) = 2.

Theorem 16. Conjecture G is equivalent to Conjectures A–F.

Proof. We first show that Conjecture G implies Conjecture D. Suppose Conjecture G is true and let G be a minimum
counterexample to Conjecture D. Hence G has no DC. Let F ⊂ G be a weakly contractible subgraph of G with
δ(F) = 2 and set A = AG(F). Note that A 6= ∅ since δ(F) = 2. By Corollary 7, the graph G|F has no DCT. If
|A| ≤ 3, then every edge in G−F has at least one vertex in A since G is essentially 4-edge-connected. But then G|F
has a (trivial) DCT, a contradiction. Hence |A| ≥ 4.

We use the following operation (see [5]). Let H be a graph, let v ∈ V (H) be of degree d = dH (v) ≥ 4, and let
x1, . . . , xd be an ordering of the neighbors of v (allowing repetition in case of multiple edges). Let H ′ be the graph
obtained by adding edges xi yi , i = 1, . . . , d , to the disjoint union of the graph H − v and the cycle y1 y2 . . . yd y1.
Then H ′ is said to be an inflation of H at v. The following fact was proved in [5].

Claim ([5]). Let H be an essentially 4-edge-connected graph of minimum degree δ(G) ≥ 3 and let v ∈ V (H) be of
degree d(v) ≥ 4. Then some inflation of H at v is essentially 4-edge-connected.

Now let G ′ be an essentially 4-edge-connected inflation at vF of the graph obtained from G|F by deleting its
pendant edges. Then G ′ is a cubic graph having no DC (since otherwise G|F would have a DCT). Since no cycle of
length ` ≥ 4 is weakly contractible, F is not a cycle, and since δ(F) = 2, we have |AG(F)| < |E(F)|. But then
|E(G ′)| < |E(G)|, contradicting the minimality of G.

For the rest of the proof, it is sufficient to show that Conjecture D implies Conjecture G. Indeed, if C is a dominating
cycle in G, e = uv ∈ E(C) and A = {u, v}, then the graph F with V (F) = V (G) and E(F) = E(G) \ {e} is a
weakly A-contractible subgraph of G. �

It should be noted here that the last part of the proof of Theorem 16 is based on a construction with |A| = 2,
which forces G − F be empty (G−F is a one edge graph) since G is cubic and cyclically 4-edge-connected. It is
straightforward to observe that the following stronger statement implies Conjectures A–G. However, we do not know
whether these statements are equivalent.

Conjecture H. Every cyclically 4-edge-connected cubic graph G contains a weakly contractible subgraph F with
|AG(F)| ≥ 4.
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DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WEST BOHEMIA
AND INSTITUTE FOR THEORETICAL COMPUTER SCIENCE (ITI)

CHARLES UNIVERSITY, P.O. BOX 314
306 14 PILSEN, CZECH REPUBLIC

E-mail: ryjacek@kma.zcu.cz; vranap@kma.zcu.cz

Received February 22, 2009; Revised January 29, 2010

Published online 12 November 2010 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.20498

Abstract: We introduce a closure concept that turns a claw-free graph
into the line graph of a multigraph while preserving its (non-)Hamilton-
connectedness. As an application, we show that every 7-connected
claw-free graph is Hamilton-connected, and we show that the well-known
conjecture by Matthews and Sumner (every 4-connected claw-free graph
is hamiltonian) is equivalent with the statement that every 4-connected
claw-free graph is Hamilton-connected. Finally, we show a natural way to
avoid the non-uniqueness of a preimage of a line graph of a multigraph,
and we prove that the closure operation is, in a sense, best possible.
� 2010 Wiley Periodicals, Inc. J Graph Theory 66: 152–173, 2011

Keywords: Hamilton-connected; line graph of a multigraph; claw-free graph; closure

Contract grant sponsor: Czech Ministry of Education; Contract grant numbers:
1M0545; MSM 4977751301.
Journal of Graph Theory
� 2010 Wiley Periodicals, Inc.

152



LINE GRAPHS OF MULTIGRAPHS 153

1. NOTATION AND TERMINOLOGY

In this article, by a graph we mean a finite simple undirected graph G= (V(G),E(G));
whenever we allow multiple edges we say that G is a multigraph.

For a vertex x∈V(G), dG(x) denotes the degree of x in G, NG(x) denotes the neigh-
borhood of x in G (i.e. NG(x)={y∈V(G)| xy∈E(G)}) and NG[x] denotes the closed
neighborhood of x in G (i.e. NG[x]=NG(x)∪{x}). For x,y∈V(G), distG(x,y) denotes
the distance of x,y in G. A universal vertex of G is a vertex that is adjacent to all other
vertices of G. By a clique we mean a (not necessarily maximal) complete subgraph of
G; �(G) denotes the independence number of G and �(G) denotes the (vertex) connec-
tivity of G. By the square of a graph G we mean the graph G2 with V(G2)=V(G) and
E(G2)={xy∈V(G)|distG(x,y)≤2}.

If G, H are (multi-)graphs, then H ⊂G or H
IND⊂ G means that H is a subgraph or

an induced subgraph of G, respectively, and H �G stands for the isomorphism of H
and G. The induced subgraph of G on a set M ⊂V(G) is denoted 〈M〉G.

A path with endvertices a,b will be referred to as an (a,b)-path. If P is a path and
u∈V(P), then u− and u+ denote the predecessor and successor of u on P. A path on
k vertices is denoted Pk.

For a graph G and a,b∈V(G), p(G) denotes the length of a longest path in G, pa(G)
the length of a longest path in G with one endvertex at a∈V(G), and pab(G) the length
of a longest (a,b)-path in G. A graph G is homogeneously traceable if, for any a∈V(G),
G has a hamiltonian path with one endvertex at a (i.e. for any a∈V(G), pa(G)=|V(G)|),
and G is Hamilton-connected if, for any a,b∈V(G), G has a hamiltonian (a,b)-path
(i.e. for any a,b∈V(G), pab(G)=|V(G)|).

A walk (in G) is a sequence of vertices u1u2 . . .uk such that uiui+1 ∈E(G), i=
1, . . . ,k−1. For a walk J =u1u2 . . .uk we denote V(J)={u1,u2, . . . ,uk} the corresponding
set of vertices, and |V(J)|=|{u1,u2, . . . ,uk}| (thus, |V(J)|=k if and only if J is a path).
Finally, G is claw-free if G does not contain an induced subgraph that is isomorphic
to the claw K1,3.

For further concepts and notations not defined here we refer the reader to [4].

2. INTRODUCTION

A vertex x∈V(G) is eligible if NG(x) induces a connected non-complete graph, and x
is simplicial if the subgraph induced by NG(x) is complete. The local completion of G
at a vertex x is the graph G∗

x obtained from G by adding all edges with both vertices in
NG(x) (note that the local completion at x turns x into a simplicial vertex, and preserves
the claw-free property of G).

The closure cl(G) of a claw-free graph G is the graph obtained from G by recursively
performing the local completion operation at eligible vertices as long as this is possible.
We say that G is closed if G=cl(G).

The following was proved in [14].

Theorem A (Ryjáček [14]). For every claw-free graph G :

(i) cl(G) is uniquely determined,
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FIGURE 1. Forbidden subgraphs for line graphs.

(ii) cl(G) is the line graph of a triangle-free graph,
(iii) cl(G) is hamiltonian if and only if G is hamiltonian.

Note that the fact that cl(G) is a line graph can be seen e.g. also from the well-known
Beineke’s characterization of line graphs in terms of forbidden induced subgraphs.

Theorem B (Beineke [1]). A graph G is a line graph (of some graph) if and only if
G does not contain a copy of any of the graphs in Figure 1 as an induced subgraph.

A class C is stable if G∈C implies cl(G)∈C. A graph property � is stable in a stable
class C if, for any G∈C, G has � if and only if cl(G) has �.

Thus, Theorem A says that hamiltonicity is a stable property in the class of claw-free
graphs.

Zhan [17] proved the following.

Theorem C (Zhan [17]). Every 7-connected line graph of a multigraph is Hamilton-
connected.

Using the fact that hamiltonicity is a stable property, combining Theorems A and C
the following was obtained.

Theorem D (Ryjáček [14]). Every 7-connected claw-free graph is hamiltonian.

The line graph of the multigraph H in Figure 2 shows that Hamilton-connectedness
is not stable in 3-connected claw-free graphs (there is no hamiltonian (u1,u2)-path in
L(H), where u1,u2 are the vertices of L(H) that correspond to the edges u1,u2 in H).
Thus, the closure technique does not give a similar result for Hamilton-connectedness.

The existence of a connectivity bound for Hamilton-connectedness in claw-free
graphs was established by Brandt [5] who proved that every 9-connected claw-free
graph is Hamilton-connected. This result was later on improved by Hu et al. [8] as
follows.

Theorem E (Hu et al. [8]). Every 8-connected claw-free graph is Hamilton-
connected.

In the same article, Zhan’s result (Theorem C) was improved as follows.
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LINE GRAPHS OF MULTIGRAPHS 155

FIGURE 2. A graph with non-Hamilton-connected line graph.

Theorem F (Hu et al. [8]). Let G be a 6-connected line graph of a multigraph with
at most 29 vertices of degree 6. Then G is Hamilton-connected.

On the other hand, the following conjectures by Matthews and Sumner (Conjecture G)
and by Thomassen (Conjecture H) are still wide open.

Conjecture G (Matthews and Sumner [16]). Every 4-connected claw-free graph is
hamiltonian.

Conjecture H (Thomassen [16]). Every 4-connected line graph is hamiltonian.

Note that Theorem A immediately implies that Conjectures G and H are equivalent.
More equivalent versions of these conjectures (among others, on cycles in cubic graphs),
can be found e.g. in [7].

Another equivalence was established by Kužel and Xiong [10] (see also [11]), who
proved that Conjectures G and H are equivalent with the following statement.

Conjecture I (Kužel and Xiong [10]). Every 4-connected line graph of a multigraph
is Hamilton-connected.

It is natural to pose the following question.

Conjecture J. Every 4-connected claw-free graph is Hamilton-connected.

For a similar reason as with the extension of Theorem D to Hamilton-connectedness,
the closure technique as introduced in [14] does not establish the equivalence of
Conjecture J with the previous ones.

In Section 4 we develop a closure concept for Hamilton-connectedness from which, as
immediate applications, we obtain the following statements (see Theorems 15 and 17).

(i) Every 6-connected claw-free graph with at most 29 vertices of degree 6 is
Hamilton-connected.

(ii) Every 7-connected claw-free graph is Hamilton-connected.
(iii) Conjecture J is equivalent with Conjectures G, H and I.

3. k-CLOSURE AND STRUCTURE OF 2-CLOSED GRAPHS

The closure concept was extended in [3] as follows.
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FIGURE 3. A graph with no Hamiltonian (a,b)-path.

A vertex x∈V(G) is k-eligible if its neighborhood induces a k-connected non-
complete graph, and the k-closure of G, denoted clk(G), is the graph obtained from G
by recursively performing the local completion operation at k-eligible vertices as long
as this is possible. A graph G is k-closed if G=clk(G).

A class C is k-stable if G∈C implies clk(G)∈C. A graph property � is k-stable in a
k-stable class C if, for any G∈C, G has � if and only if clk(G) has �.

Theorem K (Bollobás et al. [3]). For every claw-free graph G,

(i) clk(G) is uniquely determined,
(ii) cl2(G) is homogeneously traceable if and only if G is homogeneously traceable,

(iii) cl3(G) is Hamilton-connected if and only if G is Hamilton-connected.

Thus, homogeneous traceability is 2-stable and hamilton-connectedness is 3-stable in
the class of claw-free graphs.

Let G be the graph in Figure 3 (where the ovals represent cliques on at least three
vertices). Then G has no hamiltonian (a,b)-path, the vertex x is 2-eligible, and there is a
hamiltonian (a,b)-path in the local completion G∗

x of G at x. This shows that the property
“having a hamiltonian (a,b)-path for given a,b∈V(G)” is not 2-stable. However, neither
G nor its 2-closure are Hamilton-connected. This motivated the following conjecture.

Conjecture L (Bollobás et al. [2]). Hamilton-connectedness is 2-stable in the class
of claw-free graphs.

Note that in [9] the author claimed to give an infinite family of counterexamples to
Conjecture L. However, this statement is not true, since it is not difficult to observe
that the graphs constructed in [9] have similar behavior as the graphs in Figure 3 (i.e.
they show that the property “having a hamiltonian (a,b)-path for given a,b∈V(G)” is
not 2-stable, but do not disprove Conjecture L).

Affirmative answer to Conjecture L was given in [15].

Theorem M (Ryjáček and Vrána [15]). Hamilton-connectedness is 2-stable in the
class of claw-free graphs.

A natural question is whether a 2-closure of a claw-free graph belongs to some
“nice” class of graphs. It is easy to see that, in general, cl2(G) is not a line graph, since
e.g. the second or fourth graph in Figure 1 is an example of a 2-closed claw-free graph

Journal of Graph Theory DOI 10.1002/jgt



LINE GRAPHS OF MULTIGRAPHS 157

FIGURE 4. Forbidden subgraphs for line graphs of multigraphs.

FIGURE 5. The graphs S1 and S2.

that is not a line graph. Thus, a next question is whether a 2-closure of a claw-free
graph is a line graph of a multigraph.

Line graphs of multigraphs were characterized by Bermond and Meyer [2] (see also
Zverovich [18]).

Theorem N (Bermond and Meyer [3]). A graph G is a line graph of a multigraph if
and only if G does not contain a copy of any of the graphs in Figure 4 as an induced
subgraph.

We see that, in general, cl2(G) is not a line graph of a multigraph, since the graphs
G2 and G4 of Figure 4 are 2-closed, i.e. they can be induced subgraphs in cl2(G).

We now consider the structure of cl2(G) in more detail. We include here only those
results that are needed for introducing the closure concept in Section 4. Proofs and
further necessary auxiliary results are postponed to Section 6.

Lemma 1. Let G be a 2-closed claw-free graph, and let Gi, i=1, . . . ,7 be the graphs
from Figure 4. Then G is {G1,G3,G5,G6,G7}-free.

Thus, a 2-closed claw-free graph can contain only induced G2 and/or G4. In the rest
of the article we will keep the notation of these graphs as shown in Figure 5.

Let J =u0u1 . . .uk+1 be a walk in G. We say that J is good in G, if k≥4, J2 ⊂G and
for any i, 0≤ i≤k−4, 〈{ui,ui+1, . . . ,ui+5}〉G is isomorphic to S1 or to S2.

Similarly, a cycle C⊂G is said to be good in G, if every set of six consecutive
vertices of C induces in G the graph S1 or S2.
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Lemma 2. Let G be a 2-closed claw-free graph and J =u0u1 . . .uk+1 a good walk in
G, k≥5. Then dG(ui)=4, i=3, . . . ,k−2.

Thus, for i=3, . . . ,k−2, 〈NG(ui)〉G is a path of length 3 with vertices ui−2, ui−1,
ui+1, ui+2.

Corollary 3. Let G be a connected 2-closed claw-free graph and let C⊂G be a good
cycle in G. Then G=C2.

Corollary 3 specifically implies that a connected 2-closed claw-free graph either
is isomorphic to the square of a cycle (and hence is trivially Hamilton-connected),
or contains no good cycle. In the rest of the article we concentrate on the second
(non-trivial) case.

Let J be a good walk in G. We say that J is maximal if, for every good walk J′ in
G, J being a subsequence of J′ implies J =J′.

Lemma 4. Let G be a connected 2-closed claw-free graph that is not the square of a
cycle, and let J =u0u1 . . .uk+1 be a maximal good walk in G. Then 〈NG[u1]\{u3}〉G =
〈NG[u2]\{u3,u4}〉G and this subgraph is a clique.

Note that symmetrically also 〈NG[uk]\{uk−2}〉G =〈NG[uk−1]\{uk−2,uk−3}〉G is
a clique.

Lemma 5. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, and let J =u0u1 . . .uk+1 be a good walk in G. Then u1 . . .uk is a path.

Let Jk
i be the graphs in Figure 6. We set:

J1 = {Jk
1 |k≥4},

J2 = {Jk
2 |k≥4},

J3 = {Jk
3 |k≥6},

J4 = {Jk
4 |k≥8}.

Our next lemma describes the structure of subgraphs induced by good walks.

Lemma 6. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, let J =u0u1 . . .uk+1 be a maximal good walk in G, and let J be chosen such
that

|V(J)|=min{|{x,u1, . . . ,uk,y}| | xu1 . . .uky is a maximal good walk in G}.

Then

〈V(J)〉G ∈J1 ∪J2 ∪J3 ∪J4.

The following lemma shows that the sets of interior vertices of maximal good walks
in a 2-closed graph are vertex-disjoint.
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FIGURE 6. Subgraphs induced by maximal good walks.

Lemma 7. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle and let J1 =u1

0u1
1 . . .u1

k+1, J2 =u2
0u2

1 . . .u2
k′+1 be maximal good walks in G such

that u1
s =u2

t for some s, t, 1≤s≤k, 1≤ t≤k′. Then

(i) {u1
1, . . . ,u1

k}={u2
1, . . . ,u2

k′ },
(ii) k=k′ and u1

i =u2
i or u1

i =u2
k−i+1, i=1, . . . ,k.

4. CLOSURE CONCEPT AND HAMILTON-CONNECTEDNESS

Before introducing the main concept of this article, the closure operation, we first
introduce some notations and recall some helpful definitions and facts from [9].

For any X ⊂V(G) let G∗
X denote the local completion of G at X, i.e. the graph with

V(G∗
X)=V(G) and E(G∗

X)=E(G)∪{uv| u,v∈X}. Thus, the previous notation G∗
x means

that, for a vertex x∈V(G), we simply write G∗
x for G∗

NG(x). Similarly, for a sequence of
vertices x1, . . . ,xk we will simply write G∗

x1 . . .xk
for ((G∗

x1
)∗x2

. . .)∗xk
.

Let C be a class of graphs and let P be a function on C such that, for any G∈C,
P(G)⊂2V(G) (i.e. P(G) is a set of subsets of V(G)). We say that a graph F is a
P-extension of G, denoted G�F, if there is a sequence of graphs G0 =G,G1, . . . ,Gk =
F such that Gi ∈C, i=1, . . . ,k, and Gi+1 = (Gi)∗Xi

for some Xi ∈P(Gi), i=1, . . . ,k−1.
Clearly, for any graph G a �-maximal P-extension H exists, and in this case we say
that H is a P-closure of G. If a P-closure is uniquely determined then it is denoted
by clP (G). Finally, a function P is non-decreasing (on a class C), if, for any H,H′ ∈C,
H �H′ implies that for any X ∈P(H) there is an X′ ∈P(H′) such that X ⊂X′.

The following result was proved in [9]. For the sake of completeness, we include
its (short) proof here.

Theorem O (Kelmans [9]). If P is a non-decreasing function on a class C, then, for
any G∈C, a P-closure of G is uniquely determined.
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Proof. Let H =H′ be P-closures of G, let G=G0,G1, . . . ,Gk =H′ be such that
Gi+1 = (Gi)∗Xi

for some Xi ∈P(Gi), and let s be a smallest integer such that Gs ⊂H.
Since Gs−1 ⊂H and P is non-decreasing, there is X ∈P(H) such that Xs−1 ⊂X. Since
H is �-maximal, we have H∗

X =H, a contradiction. �

For a given graph G, let CG denote the class of graphs with vertex set V(G). The
following two facts are easy to observe.

Lemma 8. Let G be a graph.

(i) Let P be a non-decreasing function on CG, let X ⊂V(G), and for any H ∈CG set
PX(H)=P(H)∪{NH(x)| x∈X}. Then PX is a non-decreasing function on CG.

(ii) For any integer k≥1, the function Pk(H)={NH(x)| 〈NH(x)〉H is k−connected}
is a non-decreasing function on CG. �

Consequently, for any graph G, integer k≥1 and a set X ⊂V(G), the function PX
k ,

defined (for any H ∈CG) by PX
k (H)= (Pk)X(H), is a non-decreasing function on CG.

Let now G be a connected claw-free graph that is not the square of a cycle and let
J1, . . . ,Jt be all maximal good walks in cl2(G). For any Ji =ui

0ui
1 . . .ui

k+1 set

Xi ={ui
1, . . . ,ui

r−1}∪{ui
r+2 . . .ui

2r} if k=2r

or

Xi ={ui
1, . . . ,ui

r−1}∪{ui
r+3 . . .ui

2r+1} if k=2r+1,

respectively, and set X =⋃t
i=1 Xi (note that the sets Xi are pairwise disjoint by Lemma 7).

Then, by Lemma 8, the function PM(H)=PX
2 (H) is a non-decreasing function on CG.

The corresponding PM-closure of G (which is unique by Lemma 8) will be called the
multigraph closure (or simply M-closure) of G and denoted clM(G). If G is the square
of a cycle, we define clM(G) as the complete graph on V(G). If G=clM(G) then we
say that G is M-closed.

Theorem 9. Let G be a connected claw-free graph and let clM(G) be the M-closure
of G. Then

(i) clM(G) is uniquely determined,
(ii) there is a multigraph H such that clM(G)=L(H),

(iii) for every a∈V(G), pa(clM(G))=pa(G),
(iv) clM(G) is Hamilton-connected if and only if G is Hamilton-connected.

Proof. If G=C2 for some cycle C then the statement is trivial, hence we suppose
that G is not the square of a cycle. Part (i) then follows immediately from Lemma 8,
and part (ii) follows immediately from Lemma 1, from the construction of clM(G),
from Lemma 25 and from Theorem N. �

Before proving parts (iii) and (iv) of Theorem 9, we first show that if G is not
the square of a cycle, then clM(G) can be equivalently constructed by the following
algorithm.

Journal of Graph Theory DOI 10.1002/jgt



LINE GRAPHS OF MULTIGRAPHS 161

FIGURE 7. Forbidden subgraphs for preimages of M-closed graphs.

Algorithm 10. Let G be a connected claw-free graph that is not the square of a
cycle.

1. Set G1 =cl2(G), i :=1.
2. If Gi contains a good walk, then

(a) choose a maximal good walk J =u0u1 . . .uk+1,
(b) set Gi+1 =cl2((Gi)∗u1uk

),
(c) i := i+1 and go to (2).

3. Set G=Gi.

Proposition 11. Let G be a connected claw-free graph that is not the square of a
cycle and let G be the graph constructed by Algorithm 10. Then G=clM(G).

Proof. By Lemma 28, Algorithm 10 closes all vertices with neighborhood in some
PM(Gi), hence clM(G)⊂G. By Lemma 25, every vertex with neighborhood in some
PM(Gi) is closed by Algorithm 10. Hence G is a special case of one possible construc-
tion of PM(G) and, by Theorem 9(i), G=clM(G). �

Proof. Proof of parts (iii), (iv) of Theorem 9 now immediately follows from
Proposition 27. �

Let T1,T2,T3 be the graphs in Figure 7. It is easy to observe that if G=L(H) and
x∈V(G) is 2-eligible, then the edge x1x2 ∈E(H), corresponding to x, is contained in a
copy of Ti for some i, 1≤ i≤3, such that dTi(x1)=dTi(x2)=3. However, the converse
is not true in general, unless x1 and/or x2 have an appropriate neighbor outside. More
specifically, it is straightforward to verify the following observation.

Proposition 12. Let G be a claw-free graph and let T1,T2,T3 be the graphs shown
in Figure 7. Then G is M-closed if and only if there is a multigraph H such that
G=L(H) and H does not contain a subgraph S (not necessarily induced) with any of
the following properties:

(i) S�T1,
(ii) S�T2 and there is a u∈V(H)\V(S) such that |NH(u)∩{x1,x2}|=1,

(iii) S�T3 and there are u1,u2 ∈V(H)\V(S) such that u1 =u2 and uixi ∈E(H), i=
1,2

(where x1, x2 are the only vertices in S with dS(xi)=3).

A well-known drawback of line graphs of multigraphs is the fact that there can be
multigraphs H1, H2 such that H1 �H2 but L(H1)�L(H2) (i.e. the “preimage” is not
uniquely determined). However, this problem can be avoided by a slight modification
of an approach given in [18]. Namely, we show that the preimage H =L−1

M (G) of a
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line graph G of a multigraph is uniquely determined under an (very natural) additional
assumption that simplicial vertices in G correspond to edges in H with one vertex of
degree 1 (called pendant edges).

The basic graph of a multigraph H is the graph with the same vertex set, in which two
vertices are adjacent if and only if they are adjacent in H. A multitriangle (multistar)
is a multigraph such that its basic graph is a triangle (star). The center of a multistar S
with m edges is the vertex x∈V(S) with dS(x)=m (for |V(S)|=2 we choose the center
arbitrarily), and all other vertices of S are its leaves. An induced multistar S in H is
pendant if none of its leaves has a neighbor in V(G)\V(S), and similarly a multitriangle
T is pendant if exactly one of its vertices (called the root) has neighbors in V(G)\V(S).
We will use the following operations introduced in [18].

Operation A. Choose a pendant multistar in H and identify all its leaves.
Operation B. Choose a pendant multitriangle H with vertices {v,x,y} and root v,
delete all edges joining v and x, and add the same number of edges between v
and y.

Now, for a multigraph H, AB(H) denotes the multigraph obtained by recursively
repeating operations A and B. The following result was proved in [18].

Theorem P (Zverovich [18]). Let H, H′ be connected multigraphs such that L(H)�
L(H′). Then AB(H)=AB(H′) unless one of H, H′ is a multitriangle and the other one
is a non-isomorphic multitriangle or a multistar.

We will need one more operation.

Operation C. Choose a pendant multistar in H and replace every leaf of degree
k≥2 by k leaves of degree 1.

Similarly as before, let BC(H) denote the multigraph obtained from a multigraph
H by recursively repeating operations B and C. Theorem P then easily implies the
following result.

Theorem 13. Let G be a connected line graph of a multigraph. Then there is, up
to an isomorphism, a uniquely determined multigraph H =L−1

M (G) such that a vertex
e∈V(G) is simplicial in G if and only if the corresponding edge e∈E(H) is a pendant
edge in H.

Proof. Let G=L(H). It is easy to see that every edge e∈E(H) corresponding to a
simplicial vertex e∈V(G) is in a pendant multitriangle or in a pendant multistar. Thus,
BC(H) has the required properties. Uniqueness follows from Theorem P. �

Note that if, specifically, G is a line graph of a graph, then the multigraph preimage
L−1

M (G) of G, given by Theorem 13, and the obvious line graph preimage L−1(G) can
be different. For example, for the graph T1 of Figure 7, L−1

M (T1) and L−1(T1) are shown
in Figure 8.

The following result shows that, with the use of the (uniquely determined) preimage
L−1

M (G) of a line graph of a multigraph G, Proposition 12 can be simplified.

Proposition 14. Let G be a claw-free graph and let T1,T2,T3 be the graphs shown
in Figure 7. Then G is M-closed if and only if G is a line graph of a multigraph and
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FIGURE 8. Preimages of the graph T1.

L−1
M (G) does not contain a subgraph (not necessarily induced) isomorphic to any of

the graphs T1, T2 or T3.

Proof. If L−1
M (G) does not contain any of T1, T2, T3, then clearly the conditions (i),

(ii) and (iii) of Proposition 12 are satisfied and hence G is M-closed by Proposition 12.
Conversely, suppose that G is M-closed and let H be a multigraph given by

Proposition 12. Then clearly T1 is not a subgraph of H and any T2 or T3 in H not
satisfying (ii) or (iii) is turned by Operations B and/or C into a star. Hence BC(H)
does not contain any of T1, T2, T3. �

5. APPLICATIONS AND SHARPNESS

Combining Theorems F and 9(iv), we immediately obtain the following result.

Theorem 15. Every 6-connected claw-free graph with at most 29 vertices of degree
6 is Hamilton-connected.

Proof. If G is a counterexample to Theorem 15, then H =clM(G) is a counterex-
ample to Theorem F. �

Corollary 16. Every 7-connected claw-free graph is Hamilton-connected.

Similarly, Theorem 9(iv) immediately implies the following result.

Theorem 17. Conjecture J is equivalent with Conjectures G, H and I.

Proof. Conjecture J implies Conjecture I since every line graph (of a multigraph)
is claw-free. Conversely, if G is a counterexample to Conjecture J, then H =clM(G) is
a counterexample to Conjecture I. �

Note that Corollary 16 was conjectured in [12].
We conclude by showing that the closure operation clM(G) is, in a sense, best

possible; more specifically, there is no closure operation that turns a 3-connected
line graph of a multigraph into a line graph (of a graph) and preserves Hamilton-
connectedness.

If C is a class of graphs, then by a closure on C we mean a mapping cl :C→C such
that, for any G∈C, V(G)=V(cl(G)) and E(G)⊂E(cl(G)). Let Lk denote the class of
k-connected line graphs (of graphs) and let LM

k denote the class of k-connected line
graphs of multigraphs.

Theorem 18. There is no closure cl on LM
3 such that cl :LM

3 →L3 and Hamilton-
connectedness is stable under cl.
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Proof. Let H be the multigraph shown in Figure 2 and let G=L(H). Then G is not
Hamilton-connected, and the vertices of G that correspond to edges of H adjacent to
some of the vertices a1,a2 induce in G a subgraph F isomorphic to the sixth graph in
Figure 1. Thus, for any closure cl :LM

3 →L3, cl(G) contains at least one edge joining
two non-adjacent vertices of F. However, adding any such edge turns G into a graph
that is Hamilton-connected. �

6. PROOFS AND LEMMAS

Lemma 19. Let G be a claw-free graph, x∈V(G), let y∈V(G) be a cutvertex of
〈NG(x)〉G and let K1, K2 be components of 〈NG(x)〉G −y. Then (up to a relabeling of
K1,K2),

(i) 〈V(K1)∪{y}〉G is a clique and K2 is a clique,
(ii) if H ⊂〈NG(x)〉G is 2-connected non-complete, then H ⊂〈V(K2)∪{y}〉G.

Proof. If (i) fails, then �(〈NG(x)〉G)≥3 and x is a center of an induced claw, a
contradiction. Part (ii) follows immediately from (i). �

Corollary 20. Let G be a claw-free graph, x∈V(G), let H
IND⊂ 〈NG(x)〉G be a

2-connected graph containing two distinct pairs of independent vertices. Then 〈NG(x)〉G
is 2-connected.

Proof. Proof follows immediately from Lemma 19. �

Corollary 21. Let G be a 2-closed claw-free graph, H ⊂G (not necessarily induced),
H �S1. If {u�u�+3|�=0,1,2}∩E(G)=∅, then

(i) either H
IND⊂ G,

(ii) or H+u0u5
IND⊂ G (and H+u0u5 �S2).

Proof. If u�u�+4 ∈E(G) for some �∈{0,1}, then u�+2 is 2-eligible by Corollary 20,
a contradiction. �

Lemma 22. Let G be a 2-closed claw-free graph, x∈V(G), H
IND⊂ 〈NG(x)〉G

2-connected, u,v∈V(H) independent. Then u or v is a cutvertex of 〈NG(x)〉G.

Proof. Since G is 2-closed and u,v are independent, 〈NG(x)〉G cannot be
2-connected. If 〈NG(x)〉G is disconnected, then, for an arbitrary vertex w in the
component of 〈NG(x)〉G not containing H, 〈{x,u,v,w}〉G �K1,3, a contradiction. Hence
�(〈NG(x)〉G)=1. Rest of the proof follows from Lemma 19. �

Proof of Lemma 1. Each of the graphs Gi, i∈{1,3,5,6,7}, contains a vertex xi
satisfying the assumptions of Corollary 20, i.e. such that xi is 2-eligible in any claw-free

graph G such that Gi
IND⊂ G. Hence none of the Gi can be an induced subgraph of a

2-closed graph. �
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Lemma 23. Let G be a 2-closed claw-free graph, H
IND⊂ G, H �S1 or H �S2. Then

there is no vertex z∈V(G)\V(H) such that {u1,u3}⊂NG(z) or {u2,u3}⊂NG(z) (and,
symmetrically, neither {u2,u4}⊂NG(z)).

Proof.

1. We first show that there is no z∈V(G)\V(H) such that {u1,u2,u3,u4}⊂NG(z).
Let, to the contrary, z∈V(G)\V(H) and ui ∈NG(z) for i=1,2,3,4. Then
〈{u1,u2,u3,u4}〉G is a 2-connected subgraph of 〈NG(z)〉G and u1, u4 are indepen-
dent. By Lemma 22, u1 or u4 is a cutvertex of 〈NG(z)〉G.

Suppose u4 is a cutvertex of 〈NG(z)〉G (the other case is symmetric), and let
w∈NG(z) be in the component of 〈NG(z)〉G −u4 not containing u1, u2 and u3.
Since 〈{u4,u5,u2,w}〉G �K1,3, we have u5w∈E(G). Then 〈{u2,u3,u5,w,z}〉G is a
2-connected subgraph of 〈NG(u4)〉G containing two distinct pairs of independent
vertices, hence u4 is 2-eligible by Corollary 20, a contradiction.

2. We show that there is no z∈V(G)\V(H) such that {u1,u2,u3}⊂NG(z) or
{u2,u3,u4}⊂NG(z). Let, to the contrary, {u1,u2,u3}⊂NG(z) (the second case is
symmetric). By part 1 of the proof, zu4 /∈E(G) and from 〈{u2,u0,z,u4}〉G �K1,3
we have zu0 ∈E(G). Then 〈{u0,u2,u3,z}〉G is 2-connected, u0, u3 are independent
and, by Lemma 22, either u0 or u3 is a cutvertex of 〈NG(u1)〉G. Choose a vertex
w in the component of 〈NG(u1)〉G −u0 (〈NG(u1)〉G −u3) not containing u2 and z,
respectively.
(i) If u0 is a cutvertex of 〈NG(u1)〉G, then 〈{w,u0,u1,u2,u3,u4}〉G is isomorphic

to S1 or S2 and we have a contradiction with part 1 of the proof (for the
vertex z).

(ii) If u3 is a cutvertex of 〈NG(u1)〉G, then from 〈{u3,w,u2,u5}〉G �K1,3 we have
wu5 ∈E(G), but then 〈NG(u3)〉G contains a 2-connected induced subgraph with
two distinct pairs of independent vertices. By Corollary 20, u3 is 2-eligible,
a contradiction.

3. (a) Let now {u1,u3}⊂NG(z) (but u2z /∈E(G)). From 〈{u3,z,u2,u5}〉G �K1,3 we have
zu5 ∈E(G), but then again u3 is 2-eligible by Corollary 20, a contradiction.

(b) The case {u2,u4}⊂NG(z) is symmetric.
(c) Finally, if {u2,u3}⊂NG(z) (but u1z /∈E(G)), then from 〈{u3,z,u1,u4}〉G �K1,3

we have zu4 ∈E(G), which is not possible by part 2 of the proof. �

Corollary 24. Let G be a 2-closed claw-free graph, H
IND⊂ G, H �S1 or H �S2.

Then

(i) both 〈NG[u1]\{u2,u3}〉G and 〈NG[u2]\{u3,u4}〉G are cliques,
(ii) NG[u2]\{u3,u4}⊂NG[u1]\{u3},

(iii) the only neighbor of u4 in NG(u2) is u3.

Note that also symmetrically 〈NG[u4]\{u3,u2}〉G and 〈NG[u3]\{u2,u1}〉G are cliques.

Proof.

(i) If 〈NG[u1]\{u2,u3}〉G is not a clique, then there is a z∈NG(u1) such that zu0 /∈
E(G), but then by Lemma 23 〈{u1,z,u0,u3}〉G �K1,3, a contradiction. The proof
for 〈NG[u2]\{u3,u4}〉G is symmetric.
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(ii) By (i), every neighbor of u2 is adjacent to u1.
(iii) If z∈NG(u2), z =u3, is adjacent to u4, then z /∈V(H) since H is induced, but this

contradicts Lemma 23. �

Lemma 25. Let G be a claw-free graph, F⊂V(G), F={u0,u1,u2,u3,u4,u5}. If F
induces S1 or S2 in cl2(G), then there are vertices v0,v5 ∈V(G) such that the set
{v0,u1,u2,u3,u4,v5} induces S1 or S2 in G.

Proof. Let cl2(G)=G∗
x1 . . .xk

, set Gi =G∗
x1 . . .xi

, i=1, . . . ,k (i.e. Gk =cl2(G)), and let

F={u0,u1,u2,u3,u4,u5} be such that 〈F〉Gk �S1 or 〈F〉Gk �S2. The proof then follows
by induction from the following fact.

If v0,v5 ∈V(G) are such that {v0,u1,u2,u3,u4,v5} induces S1 or S2 in Gi+1 for some
i, 1≤ i≤k−1, then there are w0,w5 ∈V(G) such that {w0,u1,u2,u3,u4,w5} induces S1
or S2 in Gi.

Thus, suppose that {v0,u1,u2,u3,u4,v5} induces S1 or S2 in Gi+1 = (Gi)∗xi
, and set

B=E(Gi+1)\E(Gi).
Since xi is adjacent to both vertices of all edges in B and F induces S1 or

S2 in Gk =cl2(G), by Lemma 23, B∩{u1u3,u2u3,u2u4}=∅. Since 〈NGk (xi)〉Gk is a
clique, and by symmetry, we can suppose that B⊂{v0u1,v0u2,u1u2}. If u1u2 ∈B, then
〈{u3,u1,u2,u5}〉Gi is a claw; hence u1u2 ∈E(Gi) and |B|≤2. If xi is adjacent in Gi
to both u1 and u2, then {xi,u1,u2,u3,u4,u5} induces S1 or S2 in Gi, we set w0 =xi,
w5 =v5 and we are done. Hence it remains to consider the case when xi is adjacent
in Gi to at most one of u1, u2 and, consequently, |B|=1. But then for B={v0u1} we
have 〈{u2,v0,u1,u4}〉Gi �K1,3 and for B={v0u2} we have 〈{u2,xi,u1,u4}〉Gi �K1,3, a
contradiction. �

Proof of Lemma 2. Let dG(ui)≥5 for some i, 3≤ i≤k−2, and let w∈V(G) be
a neighbor of ui, w /∈{ui−2,ui−1,ui+1,ui+2}. By Lemma 23 and since J is good, we
have wui−2 /∈E(G) and wui+2 /∈E(G). From 〈{ui,w,ui−2,ui+2}〉G �K1,3 we then have
ui−2ui+2 ∈E(G), contradicting the fact that J is good. �

Proof of Corollary 3. If |V(C)|≤6, then C cannot be good, hence |V(C)|≥7. Then,
by Lemma 2, all vertices of C are of degree 4 in G, implying C2 =G.

Proof Lemma 4. By Corolary 24 (i), 〈NG[u2]\{u3,u4}〉G is a clique and by
Corollary 24 (ii), NG[u2]\{u3,u4}⊂NG[u1]\{u3}. Thus, it remains to show that NG[u1]\
{u3}⊂NG[u2]\{u3,u4}. If this is not the case, then there is a vertex x∈V(G) such that
xu1∈E(G) and xu2 /∈E(G). By Corollary 24 (i) then xu0 ∈E(G) and, by Corollary 21,
J′ =xu0u1 . . .uk+1 is a good walk in G, contradicting the maximality of J. �

Proof of Lemma 5. Suppose that ui =uj for some i, j, 1≤ i<j≤k, and choose i, j
such that j− i is minimum. Then ui . . .uj−1uj is a cycle, and by the minimality of j− i,
ui+1 =uj−1.

1. Let first 3≤ j≤k−2. Then, by Lemma 2, 〈NG(uj)〉G �P4.
If 2≤ i≤k−2, then also the neighborhood of ui in J2 is a P4, and these neighbor-

hoods coincide. Since ui+1 =uj−1, we have ui+1 =uj+1, from which ui+2 =uj+2,
ui−1 =uj−1 and ui−2 =uj−2. Then ui . . .uj−1uj is a good cycle, a contradiction by
Corollary 3.
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If i=1, then the equality u0 =uj−1 follows from u2 =uj+1 and from the equality
of neighborhoods, and the cycle ui . . .uj−1uj is good by Corollary 21.

2. The case 3≤ i≤k−2 is symmetric.
3. Thus, it remains to consider the possibility i∈{1,2}, j∈{k−1,k}. This specifically

implies that for every good walk J =u0u1 . . .uk+1 we have k≤|V(G)|+2, hence
for every good walk J there is a maximal good walk J′ such that J is a subsequence
of J′. Hence we can without loss of generality suppose that J is maximal. We
distinguish 4 cases.

(a) i=1, j=k−1. Then, by Lemma 4 and by the fact that J is good, 〈NG(u1)〉G
consists of a clique and one edge while 〈NG(uk−1)〉G consists of a clique and
a P3, a contradiction.

(b) i=2, j=k. This case is symmetric to the previous one.
(c) i=2, j=k−1. Then the only possible vertices of degree 1 in 〈NG(u2)〉G are

u0 and u4, and, in 〈NG(uk−1)〉G only uk−3 and uk+1. Since uk−3 =u4 (by the
choice of i and j), we have uk+1 =u4, and hence uk−3 =u0. Since clearly k≥5,
we have dG(u3)=4 and u3 is the only common neighbor of u2, u4, but then,
since uk is a common neighbor of uk−1 =u2 and uk+1 =u4, necessarily uk =u3
and we are in Case 2.

(d) i=1, j=k. The only universal vertex in 〈NG(u1)〉G is u2 and in 〈NG(uk)〉G is
uk−1. Hence u2 =uk−1, contradicting the choice of i, j.

Lemma 26. Let G be a connected 2-closed claw-free graph that is not the square
of a cycle, J =u0u1 . . .uk+1 a maximal good walk in G, u∈V(G), u /∈{u0,u1,u2,u3,u4},
such that uu1 ∈E(G) or uu2 ∈E(G). Then:

(i) both uu1 ∈E(G) and uu2 ∈E(G),
(ii) uu1 . . .uk+1 is a good walk in G,

(iii) if u∈V(J), then k≥6 and u∈{uk−1,uk,uk+1}.

Proof. (i) follows immediately from Lemma 4.
(ii), (iii) if u /∈V(J), then Lemma 23 implies uu3 /∈E(G) and we are done by

Corollary 21. Hence suppose u∈V(J). Since uu2 ∈E(G) and J is good, necessarily u=uj
for some j≥7, implying k≥6. Since dG(u3)=4 (by Lemma 2), uu3 /∈E(G) and hence
uu1 . . .uk+1 is good by Corollary 21. Since dG(uj)=4 for 3≤ j≤k−2 (by Lemma 2),
we have u∈{uk−1,uk,uk+1}.

Proof of Lemma 6. First observe that by Lemma 2 the only edges to be considered
are those between u0,u1,u2 and uk−1,uk,uk+1.

Case 1. J is not a path. Since u1, . . . ,uk is a path by Lemma 5, the only possibili-
ties are u0 ∈{uk−1,uk,uk+1}, and, symmetrically, uk+1 ∈{u0,u1,u2} (note that k≥6 by
Lemma 26).

(a) u0 =uk−1. By Lemma 4, 〈{u1,u2,u0,uk+1,uk}〉G is a clique (not excluding the
possibility that uk+1 ∈{u1,u2}). Then 〈{u1, . . . ,uk}〉G ∈J4 (since all edges between
u1,u2 and uk−1,uk are present and no other edges are possible by Lemma 2), and
hence for uk+1 ∈{u1,u2} we have 〈V(J)〉G =〈{u1, . . . ,uk}〉G ∈J4 and we are done,
otherwise we have a contradiction with the minimality of J.
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(b) u0 =uk. Then similarly, by Lemma 4, 〈{u1,u2,uk,uk−1,uk+1}〉G is a clique and
then, as before, for uk+1 ∈{u1,u2} we obtain 〈V(J)〉G =〈{u1, . . . ,uk}〉G ∈J4, and
otherwise we have a contradiction with the minimality of J.

(c) u0 =uk+1. Then the only possible edges to be considered are the edges
between u1,u2 and uk−1,uk. By Lemma 26, either {u1uk,u1uk+1,u2uk,u2uk+1}⊂
E(G), or {u1uk,u1uk+1,u2uk,u2uk+1}∩E(G)=∅. In the first case we have
〈V(J)\{u0}〉G =〈{u1, . . . ,uk}〉G ∈J4, contradicting the minimality of J, otherwise
〈V(J)〉G ∈J3.

Case 2. J is a path. By Lemma 26, either {u1uk+1,u2uk+1}⊂E(G), or {u1uk+1,u2uk+1}∩
E(G)=∅. In the first case, the walk J−u0 =uk+1u1u2 . . .ukuk+1 is good in G,
contradicting the minimality of J. Hence u1uk+1,u2uk+1 /∈E(G), and, symmetrically,
u0uk−1,u0uk /∈E(G).

It remains to consider the edges between u1,u2 and uk−1,uk. Again, by Lemma 26,
either all of them or none of them are present. In the first case, the walk J−{u0,uk+1}=
uku1u2 . . .uk−1uku1 is good in G, contradicting the minimality of J; in the second case
we have 〈V(J)〉G ∈J1 if u0uk+1 /∈E(G) and 〈V(J)〉G ∈J2 if u0uk+1 ∈E(G). �

Proof of Lemma 7. If 3≤s≤k−2 or 3≤ t≤k′−2, then the statement follows
immediately by Lemma 2 (for {s, t}∩{1,2} =∅ we use the equality of neighborhoods
of the vertices u1

3 =u2
3, and symmetrically for s∈{k−1,k} or t∈{k′−1,k′}).

It remains to consider the cases when s∈{1,2,k−1,k} and t∈{1,2,k′−1,k′}. By
symmetry, it is sufficient to suppose s, t∈{1,2} (otherwise we relabel one or both walks).

1. Let u1
1 =u2

2. By Lemma 4, 〈NG(u1
1)〉G consists of a clique and an edge, while

〈NG(u2
2)〉G consists of a clique and a P3, a contradiction. Hence u1

1 =u2
2 and,

symmetrically, u2
1 =u1

2.
2. Suppose that u1

2 =u2
2. By Lemma 4, at most two vertices in 〈NG(ui

2)〉G can be of
degree 1, namely, ui

0 and ui
4, i=1,2. We distinguish two subcases.

(a) u1
4 =u2

4. The only neighbor of ui
4 in 〈NG(ui

2)〉G is the vertex ui
3, i=1,2; hence

u1
3 =u2

3. By Lemma 23, ui
1 is the only neighbor of ui

3 in 〈NG(ui
2)〉G, distinct

from ui
4, i=1,2, hence also u1

1 =u2
1. For k=k′ =4 we thus have u1

j =u2
j , j=

1,2,3,4; otherwise (i.e. if k≥5 or k′ ≥5) the statement follows from u1
3 =u2

3
by the beginning of the proof.

(b) u1
0 =u2

4 (and hence u1
4 =u2

0). Similarly as in (a) we have u1
1 =u2

3. The vertex
u2

0 is of degree 1 in 〈NG(u2
2)〉G (since u2

0 =u1
4 and u1

4 is of degree 1), hence
u1

3 =u2
1. But then the vertices u1

3 =u2
1 and u1

4 =u2
0 have a common neighbor

u1
5 and u1

2u1
5 /∈E(G), contradicting the fact that, by Lemma 4, NG[u2

1]\{u2
3}=

NG[u2
2]\{u2

3,u2
4}.

3. Finally, let u1
1 =u2

1. By Lemma 23, the only universal vertex in 〈NG(ui
1)〉G is ui

2,
i=1,2. Hence u1

2 =u2
2 and we are back in Case 2. �

Proposition 27. Let G be a connected 2-closed claw-free graph that is not the square
of a cycle and let J =u0u1 . . .uk+1 be a maximal good walk in G. Then

(i) for every a∈V(G), pa(G∗
u1uk

)=pa(G),
(ii) the graph G∗

u1uk
is Hamilton-connected if and only if G is Hamilton-connected.
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FIGURE 9. The graph S.

Proof. In the proof of Proposition 27 we will need the following result by Brandt
et al. (see [6], Proposition 3.2). �

Proposition Q (Brandt et al. [6]). Let x be an eligible vertex of a claw-free graph G,
G′

x the local completion of G at x, and a, b two distinct vertices of G. Then for every
longest (a,b)-path P′(a,b) in G′

x there is a path P in G such that V(P)=V(P′) and P
admits at least one of a, b as an endvertex. Moreover, there is an (a,b)-path P(a,b) in
G such that V(P)=V(P′) except perhaps in each of the following two situations (up to
symmetry between a and b) :

(i) There is an induced subgraph H ⊂G isomorphic to the graph S in Figure 9 such
that both a and x are vertices of degree 4 in H. In this case G contains a path
Pb such that b is an endvertex of P and V(Pb)=V(P′). If, moreover, b∈V(H),
then G contains also a path Pa with endvertex a and with V(Pa)=V(P′).

(ii) x=a and ab∈E(G). In this case there is always both a path Pa in G with
endvertex a and with V(Pa)=V(P′) and a path Pb in G with endvertex b and
with V(Pb)=V(P′).

Let G and J =uou1 . . .uk+1 satisfy the assumptions of Proposition 27 and let S be
the graph of Figure 9. For simplicity, set G′ =G∗

u1
and G′′ = (G′)∗uk

=G∗
u1uk

. We show
the following.

Claim 27.1. There is no set M ⊂V(G) satisfying either of the following conditions:

(i) 〈M〉G �S and d〈M〉G(u1)=4 or d〈M〉G(u2)=4,
(ii) 〈M〉G′ �S and d〈M〉G′ (uk)=4 or d〈M〉G′ (uk−1)=4.

Proof of Claim 27.1. Suppose there is such a set M ⊂V(G).

(i) If d〈M〉G(u1)=4, then 〈N〈M〉G(u1)〉G �P4, but, by Lemma 4, 〈NG(u1)〉G consists
of a clique and an edge, a contradiction.

Suppose that d〈M〉G(u2)=4, let e.g. u2 =c1 (see Fig. 9). Then 〈N〈M〉G(u2)〉G
is a P4 with vertices d2,c1,c2,d1. By Lemma 4, the only possible induced P4
in 〈NG(u2)〉G is xu1u3u4, where x∈NG(u2)\{u3,u4}, but then u1 =c1 or u1 =c2
and we are in the previous case.

(ii) Let first J /∈J4. Since 〈NG(uk)〉G =〈NG′(uk)〉G′ , and for k≥5 also 〈NG(uk−1)〉G =
〈NG′(uk−1)〉G′ , the proof is symmetric to the proof in (i) in these cases. It
remains to consider the case d〈M〉G′ (uk−1)=4 for k=4. Then 〈NG′(u3)〉G′ can be
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covered by two cliques K1, K2, where {u0,u1,u2}⊂V(K1) and {u4,u5}⊂V(K2),
and hence the only possible induced P4 is xu2u4y for x∈V(K1) and y∈V(K2).
This again leads to the previous case. Secondly, if J ∈J4, then k≥8, we have
〈NG′(uk)〉G′ =〈NG(uk)∪{u3}〉G′ and then, by Lemma 4 and by the definition of
G′, 〈NG′(uk)〉G′ consists of a clique and an edge, a contradiction. �

By Claim 27.1, the case (i) of Proposition Q is not possible. From this, again by
Proposition Q, we conclude that:

• for any a∈V(G), pa(G′′)=pa(G), i.e. statement (i) of Proposition 27 holds,
• if the statement (ii) of Proposition 27 fails, i.e. if pab(G′) =pab(G) or pab(G′′) =

pab(G′), then we have the situation described in case (ii) of Proposition Q, i.e.
ab∈E(G) and x∈{a,b} (where x=u1 or x=uk, respectively).

Suppose that pab(G′) =pab(G). Then u1 ∈{a,b}. Let G̃ denote the local completion
of G at u2. Since NG(u1)⊂NG(u2) by Lemma 4, we have E(G′)⊂E(G̃), and hence
for any pair a,b∈V(G) for which pab(G′) =pab(G) also pab(G̃) =pab(G). Thus, by
Proposition Q, u2 ∈{a,b}. Hence we conclude that if pab(G′) =pab(G), then {a,b}
={u1,u2}.

Symmetrically, if pab(G′′) =pab(G′), then {a,b}={uk−1,uk} (since the argument for
u1,u2 used only the statements of Lemma 4 and of Proposition Q and these remain true
also in G′). In the latter case (i.e. {a,b}={uk−1,uk}), we observe that G′′ =G∗

u1uk
=G∗

uku1
.

The proof for G∗
uk

is then symmetric to the proof for G′ and {a,b}={u1,u2}, and the
proof for G∗

uku1
(i.e. for the local completion of G∗

uk
at u1) follows by Proposition Q.

Hence it is sufficient to prove the statement for u1,u2.
Consider the following statements:

(a) G′ is Hamilton-connected,
(b) G contains a hamiltonian (a,b)-path for all pairs a,b∈V(G) except possibly

{a,b}={u1,u2},
(c) G′ contains a hamiltonian (u2,u3)-path,
(d) G contains a hamiltonian (u1,u2)-path,
(e) G is Hamilton-connected.

By the previous discussion, (a) ⇒ (b). Obviously (a) ⇒ (c) and (b) ∧ (d) ⇒ (e). Thus,
in order to show that (a) ⇒ (e) (i.e. to finish the proof of Proposition 27), it is sufficient
to show that (c) ⇒ (d).

Claim 27.2. If G′ contains a hamiltonian (u2,u3)-path, then G contains a hamiltonian
(u1,u2)-path.

Proof of Claim 27.2. Let P′ be a hamiltonian (u2,u3)-path in G′. We first show
that P′ can be chosen such that P′ ⊂G.

By Lemma 4, every edge in E(G′)\E(G) contains the vertex u3. Thus, if P′ contains
an edge in E(G′)\E(G), then this is the edge u−

3 u3. If u+
2 =u1, we set P′ :=u2u−

3 P′u1u3

(since u2u−
3 ∈E(G) by Lemma 4); for u+

2 =u1 we replace in P′ the path u−
1 u1u+

1 by the
edge u−

1 u+
1 and the edge u−

3 u3 by the path u−
3 u1u3, i.e. we set P′ :=u2P′u−

1 u+
1 P′u−

3 u1u3
(the edges we need are in G again by Lemma 4). Thus, in the rest of the proof we
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suppose that P′ is a hamiltonian (u2,u3)-path in G and we construct a hamiltonian
(u1,u2)-path P in G.

If u1 =u+
2 , then we set P=u1P′u3u2, and if u1 /∈{u+

2 ,u−
3 }, then we set P=

u1u3P′u+
1 u−

1 P′u2 (note that u−
1 u+

1 ∈E(G) by Lemma 4). Thus, we can suppose that
u1 =u−

3 . For u+
2 =u4 we then set P=u1P′u4u3u2, hence we can further suppose that

u+
2 =u4. Now, if u4u5 ∈E(P′) (which, by Lemma 2, necessarily occurs if k≥6), then

for u5 =u+
4 we set P=u1P′u5u3u4P′u2 and for u4 =u+

5 we set P=u1P′u4u3u5P′u2.
Thus, it remains to consider the following situation: u1 =u−

3 , u+
2 =u4, u4u5 /∈E(P′)

and 4≤k≤5.
If k=4, then u3,u4,u5,u−

4 ,u+
4 are in a clique (by Lemma 4) and we replace u4u+

4
by u4u3u+

4 , i.e. we set P=u1P′u+
4 u3u4P′u2.

Finally, if k=5, then u4,u5,u−
4 ,u+

4 ,u−
5 ,u+

5 are in a clique (again by Lemma 4) and
we set P=u1P′u+

5 u−
5 P′u+

4 u5u3u4P′u2 if P′ =u2P′u4P′u5P′u1u3, and P=u1P′u4u3u5u−
4

P′u+
5 u−

5 P′u2 if P′ =u2P′u5P′u4P′u1u3. �

Lemma 28. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, J1 =u0u1 . . .uk+1, J2 =v0v1 . . . vp+1 two maximal good walks in G, {u1 . . .uk} =
{v1 . . . vp}, and let G′ =cl2(G∗

v1vp
). Then either 〈V(J1)〉G′ is a clique, or there are vertices

w0, wk+1 such that w0u1 . . .ukwk+1 is a maximal good walk in G′.
If moreover p≥6, then also either 〈V(J2)〉G′ is a clique, or v1 . . . vp is a maximal

good walk in G′.

Proof. First note that, by Lemma 7, {u1 . . .uk}∩{v1 . . .vp}=∅. Let G0,G1, . . . ,Gt be
a sequence of graphs such that G0 =G∗

v1vp
, Gi+1 = (Gi)∗zi

for some zi that is 2-eligible
in Gi, i=0,1, . . . , t−1, and Gt =G′. Set J′

1 ={u3, . . . ,uk−2}, J′
2 ={v4, . . . ,vp−3} and let j

be the smallest integer such that at least one of the following holds:

(i) there is a vertex w∈J′
1 ∪J′

2 such that dGj(w)>4,
(ii) J1 or v1 . . .vp is not good in Gj.

Thus, there is an edge e∈E(Gj)\E(Gj−1) such that either

(i′) e has one vertex at some w∈J′
1 ∪J′

2, or
(ii′) e joins some vertices ui,ui+p or vi,vi+p for 3≤p≤5

(such an edge will be referred to as a bad edge).
If j=0, then a bad edge is obtained by local completion at v1 or at vp. Then clearly

v1 . . .vp remains good, and (i′) is not possible since neither v1 nor vp can be adjacent
in Gj−1 to any w∈J′

1 ∪J′
2. Hence the bad edge has both vertices in V(J1). But, for v1,

all edges in E((Gj−1)∗v1
)\E(Gj−1) contain v3, hence the existence of a bad edge implies

v3 ∈V(J1), contradicting Lemma 7. The argument for vp is symmetric.
Hence j≥1, i.e. a bad edge is obtained by closing a 2-eligible vertex. We prove the

statement for the case when the bad edge has at least one vertex w in V(J1); the proof
for a bad edge with both vertices in v1 . . .vp is the same.

We first verify the following two observations.
(*) If 〈V(J1)〉Gt is not a clique, then every vertex w∈{u3, . . . ,uk−2} has in Gj no

neighbors outside V(J1).
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Proof. Suppose (∗) fails and let w=u� have a neighbor outside V(J1). Then w has
in Gj−1 a 2-eligible neighbor z, and, by the choice of j, z∈{u�−2,u�−1,u�+1,u�+2}.
Also by the choice of j, z /∈{u3, . . . ,uk−2} (since dGj−1 (z)=4 and any additional edge in
〈NGj−1 (z)〉Gj−1 would violate (ii). Thus, by symmetry, it remains to consider the cases
z∈{u1,u2}.

If k≥6, then u2 cannot be 2-eligible in Gj−1 since u4 is of degree 1 in 〈NGj−1 (u2)〉Gj−1 ,
and similarly with u3 being of degree 1 in 〈NGj−1 (u1)〉Gj−1 for k≥5. Since clearly k =4
(otherwise there is nothing to do), it remains to consider the case k=5 and z=u2.
However, in this case, if u2 happens to be 2-eligible, then it is easy to see that 〈V(J1)〉Gt

is a clique. �
(∗∗) If 〈V(J1)〉Gt is not a clique, then no vertex ui, 1≤ i≤k, is 2-eligible in Gj−1.

Proof. We first consider the case i∈{1,2}. If u1 is 2-eligible in Gj−1 and k=4
or if u2 is 2-eligible in Gj−1 and k≤5, then, by Lemma 4, 〈V(J1)〉Gt is a clique. In
all remaining cases, by (∗) and by the choice of j, ui has a neighbor of degree 1 in
〈NGj−1 (ui)〉Gj−1 , i=1,2, hence ui cannot be 2-eligible. Symmetrically, i /∈{k−1,k}.

Hence 3≤ i≤k−2. Then 〈NGj−1 (ui)〉Gj−1 contains a path P that is not in G. By the
choice of j, P has no interior vertices, hence P is an edge. But then P is a bad edge in
Gj−1, a contradiction. �

By the assumption, there is an edge xy∈E(Gj)\E(Gj−1) such that xy is a bad edge
in Gj. By (∗) and (∗∗), there are the following two cases.

Case 1. x∈{u1,u2}, y∈{uk−1,uk} and xy is obtained by closing a vertex z /∈V(J1)
that is 2-eligible in Gj−1. Then, by Lemma 4, {u1,u2,uk−1,uk}⊂NGj−1 (z). Since closing
at z creates a bad edge, (k−1)−2≤4, i.e. k≤7. But then, for any k, 4≤k≤7, V(J1)
contains a vertex that is 2-eligible in Gj, implying 〈V(J1)〉Gt is a clique.

Case 2. k=4, x=u0, y∈{u3,u4} or k=5, x=u0, y=u4 (or, symmetrically, k=4,
x=u5, y∈{u1,u2} or k=5, x=u5, y=u2). Then, using Lemma 4, 〈V(J1)〉Gt is again a
clique. �
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Abstract We survey results and open problems in hamiltonian graph theory centered
around two conjectures of the 1980s that are still open: every 4-connected claw-free
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1 Introduction

Before we are going to introduce the necessary terminology for understanding the
sequel, let us start by presenting the two conjectures that will play the main role
throughout our exposition.
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Most of the results in this survey paper are inspired by the following two conjectures
that were tossed in the 1980s, and later appeared in the cited papers. The first conjecture
is due to Matthews and Sumner [50].

Conjecture 1 Every 4-connected claw-free graph is hamiltonian.

The second conjecture due to Thomassen was posed in [60], but was already men-
tioned in 1981 on page 12 of [6], and also appeared in [1].

Conjecture 2 Every 4-connected line graph is hamiltonian.

The above two highly related conjectures and their relationship to other open prob-
lems and results have been the subject of a number of specialized small scale workshops
between 1996 and 2011 in Enschede, Nečtiny (twice), Hannover, Hájek and Domažlice
(twice). In order to make the material available to a larger community we decided to
compose this survey paper that contains most of the relevant material related to these
intriguing open conjectures.

The presented material involves—apart from line graphs and claw-free graphs—
cubic graphs, snarks, and concepts like Hamilton cycles, Hamilton-connectedness,
dominating closed trails (circuits), and dominating cycles, and techniques involving
closures, collapsible graphs, and edge-disjoint spanning trees.

The paper is organized as follows. We first continue in the next section by explaining
the necessary terminology to understand the above statements and their relationship.
Next we will introduce the tools that show that the two conjectures are in fact equiv-
alent, and we analyze what the statement of the latter conjecture would mean for the
root graph of the line graph. Then we will present a sequence of seemingly weaker
but equivalent conjectures, and of seemingly stronger but equivalent conjectures. We
finish with a survey of some of the existing partial solutions to the conjectures, and
discuss how far we are from either proving or refuting the conjectures.

2 Basic Terminology and Concepts

All graphs in this survey are finite, undirected and loopless, and the majority is simple
(in some results we allow multiple edges). We refer to [10] for standard terminology
and notation.

We denote a (simple) graph G as G = (V, E), where V = V (G) is the vertex set
and E = E(G) is the edge set.

Adopting the terminology of [10], a graph is called hamiltonian if it contains a Ham-
ilton cycle, i.e., a cycle containing all its vertices, i.e., a connected spanning 2-regular
subgraph.

If H is a graph, then the line graph of H , denoted by L(H), is the graph on vertex
set E(H) in which two vertices in L(H) are adjacent if and only if their corresponding
edges in H share an end vertex (with a straightforward extension in case of multiple
edges).

A graph G is a line graph if it is isomorphic to L(H) for some graph H .
Which graphs are line graphs (of simple graphs) and which are not? This question

was answered by a forbidden subgraph characterization due to Beineke [5].
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Fig. 1 The nine forbidden subgraphs for line graphs of simple graphs

Theorem 3 A graph G is a line graph if and only if G does not contain a copy of any
of the graphs of Fig. 1 as an induced subgraph.

Let G be a graph and let S be a nonempty subset of V (G). Then the subgraph
of G induced by S, denoted by G[S], is the graph with vertex set S, and all edges
of G with both end vertices in S. H is an induced subgraph of G if it is induced in
G by some subset of V (G). G is H-free if H is not an induced subgraph of G. In
particular, a graph G is claw-free if G does not contain a copy of the claw K1,3 as an
induced subgraph. Direct inspection of Beineke’s result shows that every line graph
is claw-free.

3 A Handful of Conjectures and More

Since line graphs are claw-free, Conjecture 1 is stronger than Conjecture 2. Or are they
equivalent? (A question Herbert Fleischner posed during the EIDMA workshop on
Hamiltonicity of 2-tough graphs, Hotel Hölterhof, Enschede, November 19-24, 1996
[8].)

To answer the question affirmatively, Zdeněk Ryjáček introduced a closure concept
for claw-free graphs at the same workshop which was published in [53]. It is based on
adding edges without destroying the (non)hamiltonicity (similar to the Bondy–Chvátal
closure [9] for graphs with nonadjacent pairs with high degree sums).

The edges are added by looking at a vertex v and the subgraph of G induced by
N (v): the neighborhood of v.

If G[N (v)] is connected and not a complete graph, all edges are added to turn
G[N (v)] into a complete graph.

This procedure is repeated in the new graph, etc., until it is impossible to add any
more edges. By the following theorem due to Ryjáček [53], the closure cl(G) we
obtain this way is a well-defined graph.

Theorem 4 Let G be a claw-free graph. Then

– the closure cl(G) is uniquely determined,
– cl(G) is hamiltonian if and only if G is hamiltonian,
– cl(G) is the line graph of a triangle-free graph.
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The above theorem also shows that Conjectures 1 and 2 are equivalent. Moreover,
it gives the opportunity to translate questions on hamiltonicity in claw-free graph to
questions on hamiltonicity in line graphs, and results on line graphs to results on the
more general class of claw-free graphs. We come back to this later when we discuss
partial solutions to the two conjectures. Variants on the above closure technique and
extensions are discussed in [18].

Here we follow the line of reasoning by turning our attention to what the statements
of the conjectures entail for the root graph of the line graph.

Whenever we consider a line graph G, we can identify a graph H such that G =
L(H). If G is connected this H is unique, except for G = K3: then H can be K3 or
K1,3 (this is different for multigraphs, where we could also have three parallel edges,
or two parallel edges and one additional incident edge; and there are other pairs of
connected multigraphs with isomorphic line graphs). If we restrict ourselves to simple
graphs and take K1,3 in this exceptional case, we can talk of a unique graph H as the
root graph of the connected line graph G isomorphic to L(H). What is the counterpart
in H of a Hamilton cycle in G? A closed trail (sometimes referred to as a circuit in
the literature) is a connected eulerian subgraph, i.e., a connected subgraph in which
all degrees are even. A dominating closed trail (DCT for short) is a closed trail T such
that every edge has at least one end vertex on T . Note that this notion of domination
is not equivalent to the usual notion of domination meaning that every vertex not on
the trail has a neighbor on the trail; in our case of a DCT T in a graph H , the graph
H − V (T ) is edgeless. Also note that a DCT might consist of only one vertex (in case
the graph H is a star; then L(H) is a complete graph).

There is an intimate relationship between DCTs in H and Hamilton cycles in L(H),
a result due to Harary and Nash-Williams [30] that is known since the 1960s.

Theorem 5 Let H be a graph with at least three edges. Then L(H) is hamiltonian if
and only if H contains a DCT.

What is the counterpart in H of 4-connectivity in L(H)? Note that 4-edge-connec-
tivity is not the right answer, because edge-cuts in H that consist of all edges incident
to a single vertex v of H do not correspond to vertex-cuts in L(H) if H − v has at
most one component containing edges. A graph H is essentially 4-edge-connected if
it contains no edge-cut R such that |R| < 4 and at least two components of H − R
contain an edge. It is not difficult to check that L(H) is 4-connected if and only if H
is essentially 4-edge-connected. The previous results and observations imply that the
following conjecture is equivalent to Conjectures 1 and 2.

Conjecture 6 Every essentially 4-edge-connected graph has a DCT.

If H is cubic, i.e., 3-regular, then a DCT becomes a dominating cycle (abbreviated
DC). H is cyclically 4-edge-connected if H contains no edge-cut R such that |R| < 4
and at least two components of H − R contain a cycle. It is not difficult to show that a
cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-con-
nected. Hence the following conjecture due to Ash and Jackson [2] is a specialization
of Conjecture 6 to cubic graphs.
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Conjecture 7 Every cyclically 4-edge-connected cubic graph has a DC.

Plummer [52] observed that Conjecture 7 is equivalent to the following two
specializations of Conjecture 1.

Conjecture 8 Every 4-connected 4-regular claw-free graph is hamiltonian.

Conjecture 9 Every 4-connected 4-regular claw-free graph in which each vertex lies
on exactly two triangles is hamiltonian.

Fleischner and Jackson [25] proved that Conjecture 7 is in fact also equivalent to
the others. First note that one can transform an essentially 4-edge-connected graph
into one with minimum degree at least three by first deleting the vertices with degree 1,
and then replacing the paths with internal vertices with degree 2 by edges (suppressing
vertices with degree 2). The main ingredient in their proof is a nice trick to replace
vertices with degree more than 3 in the obtained graph by cycles without affecting the
essentially 4-edge-connectivity.

Let H be an essentially 4-edge-connected graph of minimum degree δ(H) ≥ 3 and
let v ∈ V (H) be of degree d(v) ≥ 4. Delete v and add a cycle on d(v) new vertices,
and join the new vertices to the original neighbors of v by a perfect matching. The
resulting graph is called a cubic inflation of H at v. It is not unique, since it depends
on the choice of the matching edges joining the new vertices to the original neighbors
of v. Fleischner and Jackson [25] proved that by a suitable choice of these edges, some
cubic inflation of H at v results in an essentially 4-edge-connected graph. By repeating
this procedure, the resulting graph will eventually be cubic and still essentially (and
hence cyclically) 4-edge-connected.

Before we continue with imposing further restrictions on the cubic graphs under
consideration, we would like to mention the following two related conjectures that
have been stated in [25] and are due to Jaeger and Bondy, respectively.

Conjecture 10 Every cyclically 4-edge-connected cubic graph G has a cycle C such
that G − V (C) is acyclic.

Conjecture 11 Every cyclically 4-edge-connected cubic graph G on n vertices has a
cycle of length at least cn, for some constant c with 0 < c < 1.

It is obvious that Conjecture 7 implies Conjecture 10, and it is not difficult to
show that Conjecture 10 implies Conjecture 11. We are not aware of any attempts to
establishing the equivalence of these conjectures, and we leave it as an open problem.

A further restriction to cyclically 4-edge-connected cubic graphs that are not
3-edge-colorable, is due to Fleischner [24] who posed the following conjecture.

Conjecture 12 Every cyclically 4-edge-connected cubic graph that is not 3-edge-col-
orable has a DC.

Kochol [39] proved that Conjecture 12 is equivalent to the others, by a constructive
approach. By assuming a counterexample to Conjecture 7 and using this as a black
box building block, he was able to construct a counterexample to Conjecture 12, using
an auxiliary gadget that is almost cubic and not 3-edge-colorable. We skip the details.
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For our final restriction on the cyclically 4-edge-connected cubic graphs under
consideration, we now turn to snarks. In this paper a snark is defined as a cyclically
4-edge-connected cubic graph of girth at least 5 that is not 3-edge-colorable. Here the
girth of a graph G is the length, i.e., the number of edges or vertices, of a shortest
cycle in G. In the literature one can find several variants on this definition where
either the restriction on the cyclically edge-connectivity or on the girth or on both
are relaxed. Snarks turn up as the ‘difficult’ objects in many open problems in graph
theory, including conjectures on double cycle covers and nowhere zero flows. These
are beyond the scope of this survey. We refer to the books of Zhang [66] and [67] for
more details and background.

The next conjecture has appeared independently at different places.

Conjecture 13 Every snark has a dominating cycle.

Conjecture 13 is also equivalent to the others, as shown in [13], using the construc-
tive approach together with the concept of contractible subgraphs. We will explain
some of the key ingredients here but refer to [13] for more details. The first step in the
proof of the equivalence is based on a refinement of a technique introduced in [56].

In [56], the notion of A-contractible graphs is introduced. For a graph H and a sub-
graph F of H , H |F denotes the graph obtained from H by contracting F to a single
vertex and adding some new vertices and edges in order to keep the same number of
edges. This is done by identifying the vertices of F as one new vertex vF , replacing
the edges between vertices of F and vertices of V (H) \ V (F) by the same number
of edges between vF and the adjacent vertices of V (H) \ V (F), and by replacing the
created loops (i.e., one for each edge of F) by pendant edges, i.e., edges incident with
vF and one other newly added incident vertex of degree 1. Note that H |F may contain
multiple edges but has the same number of edges as H . A vertex of F is a vertex of
attachment if it has a neighbor in V (H) \ V (F). The set of vertices of attachment of
F with respect to H is denoted by AH (F).

For a subset X ⊂ V (H), and a partition A of X into subsets, E(A ) denotes the
set of all edges a1a2 (not necessarily in H ) such that a1, a2 are in the same element
(i.e., the same equivalence class) of A . Now HA denotes the graph with vertex set
V (HA ) = V (H) and edge set E(HA ) = E(H) ∪ E(A ) (where E(H) and E(A )

are considered to be disjoint, so if e1 = a1a2 ∈ E(H) and e2 = a1a2 ∈ E(A ), then
e1 and e2 are parallel edges in HA ).

Let F be a graph and A ⊂ V (F). Then F is A-contractible, if for every even subset
X ⊂ A (i.e., with |X | even) and for every partition A of X into two-element subsets,
the graph FA has a DCT containing all vertices of A and all edges of E(A ). Note
that the case X = ∅ implies that an A-contractible graph has a DCT containing all
vertices of A.

The importance of A-contractible graphs lies in the fact proved in [56] that a con-
nected graph F is A-contractible if and only if, for any H such that F ⊂ H and
AH (F) = A, H has a DCT if and only if H |F has a DCT. In fact, the authors of
[56] proved the stronger result that the (extended) contraction (as defined above) of an
A-contractible subgraph of a graph H does not affect the maximum number of edges
dominated by a closed trail in H . Note that this number corresponds to the length of
a longest cycle in L(H).
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In [13], the following slightly weaker notion of a weakly A-contractible graph
plays an essential role. The difference with the above notion is that only nonempty
even subsets X ⊂ A are required to have the above property. This means that a weakly
A-contractible graph is not required to have a DCT containing all vertices of A. Using
this weaker notion, one of the key auxiliary results proved in [13] yields that for a
2-connected cubic graph H with a weakly AH (F)-contractible subgraph F of H , H
has a DC if and only if H |F has a DCT. This obviously imposes structural restrictions
on possible minimal counterexamples to the conjectures on the existence of a DC in
certain cubic graphs. This is combined in [13] with a second step in which it is shown
that replacing a subgraph of a cubic graph does not affect the (non)existence of a DC
if certain compatible mappings are respected. Without going into the technical details
of explaining what these mappings entail, this enables the replacement of 4-cycles
in a possible counterexample to Conjecture 7 in order to construct a counterexample
with girth at least 5 (Note that the only cyclically 4-edge-connected cubic graph with
triangles is K4). This is then further combined in [13] with techniques that were pre-
viously used in [39] in order to construct a snark without a DC under the assumption
of a counter example to Conjecture 7.

We like to bring the following two conjectures that were posed in [13] to the reader’s
attention. The first of these two conjectures was shown to be equivalent to the other
conjectures.

Conjecture 14 Every cyclically 4-edge-connected cubic graph contains a weakly
contractible subgraph F with δ(F) = 2.

The following statement, also posed as a conjecture in [13], implies the above, but
we do not know whether it is equivalent to the above conjecture.

Conjecture 15 Every cyclically 4-edge-connected cubic graph G contains a weakly
contractible subgraph F with |AG(F)| ≥ 4.

To date Conjecture 13 is the seemingly weakest conjecture on the existence of a
DC in certain cubic graphs that is equivalent to Conjectures 1 and 2. All snarks up to
36 vertices were tested for the existence of a DC by Brinkmann et al. [11]. Due to the
role snarks play in other areas we would like to pose the following two open questions.

– Is there a link to conjectures on Double Cycle Covers?
– Is there a link to conjectures on Nowhere-Zero Flows?

Taking a slightly different approach, we continue with presenting some other seem-
ingly weaker conjectures. Kochol [40] proved equivalence with seemingly weaker
versions, using a concept called sublinear defect. As an example, he proved that Con-
jecture 2 is equivalent to the following conjecture.

Conjecture 16 There are sublinear functions f1(n) and f2(n) such that every 4-con-
nected line graph G of order n contains ≤ f1(n) paths that cover ≥ n − f2(n) vertices
of G.

Similar techniques were introduced and applied in [3] to obtain equivalent versions
of the 2-tough conjecture, and in [4] successfully applied with suitable small gadgets
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to obtain counterexamples to the 2-tough conjecture. Although the 2-tough conjecture
restricted to claw-free graphs is equivalent to Conjecture 1, it is beyond the scope of
this survey. We refer the reader to [12] for more details. Inspired by these techniques,
independently of [39] it has been shown in [14] that Conjectures 1 and 2 are equivalent
to seemingly weaker conjectures in which the conclusion is replaced by a conclusion
similar to the one in Conjecture 16. We use the term r-path-factor for a spanning
subgraph consisting of at most r paths. A 2-factor is a set of vertex-disjoint cycles
that together contain all the vertices of the graph, i.e., a 2-regular spanning subgraph.

Theorem 17 Let k ≥ 2 be an integer, and let f (n) be a function of n with the property
that limn→∞ f (n)

n = 0. Then the following statements are equivalent.

(1) Every k-connected claw-free graph is hamiltonian.
(2) Every k-connected claw-free graph on n vertices has an f (n)-path-factor.
(3) Every k-connected claw-free graph on n vertices has a 2-factor with at most f (n)

components.
(4) Every k-connected claw-free graph on n vertices has a spanning tree with at most

f (n) vertices of degree one.
(5) Every k-connected claw-free graph on n vertices has a path of length at least

n − f (n).

The key ingredient for proving the above equivalences is the auxiliary result proved
in [14] that the existence of a k-connected nonhamiltonian claw-free graph G on n
vertices implies the existence of such a graph G∗ on at most 2n − 2 vertices that
contains a k-clique, i.e., a set of k mutually adjacent vertices. This result enables the
construction of k-connected claw-free graphs on at most (2r + 1)(2n − 2) vertices
without an r -path-factor, assuming that there is a k-connected nonhamiltonian claw-
free graph G on n vertices, by simply taking 2r + 1 vertex-disjoint copies of G∗ and
adding all edges between the k-clique vertices of all the copies.

By results in [32], where it has been shown that a claw-free graph G has an r -path-
factor if and only if cl(G) has an r -path-factor, and in [55], where it has been shown
that a claw-free graph G has a 2-factor with at most r components if and only if cl(G)

has such a 2-factor, the equivalence of statements (1), (2) and (3) in the above theorem
also holds for line graphs.

In this section we have presented a sequence of gradually seemingly weaker con-
jectures that turned out to be equivalent. In the next section we are going to present
some seemingly stronger conjectures.

4 Seemingly Stronger Versions for Cubic Graphs

Fouquet and Thuillier [27] considered a seemingly stronger version than the Ash-Jack-
son-Conjecture (Conjecture 7). Although the next conjecture is equivalent to Conjec-
ture 7, the conclusion is stronger in the sense that it requires a DC containing any two
given disjoint edges, as follows.

Conjecture 18 In a cyclically 4-edge-connected cubic graph any two disjoint edges
are on a DC.
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Establishing equivalent conjectures with stronger conclusions might help in an
attempt to refute the conjectures. The above equivalence was extended by Fleischner
and Kochol [26] by requiring a DC through any two given edges.

Conjecture 19 In a cyclically 4-edge-connected cubic graph any two edges are on a
DC.

Brinkmann et al. [11] have verified Conjecture 19 for all not 3-edge-colorable cycli-
cally 4-edge-connected cubic graphs with girth at least 4 up to 34 vertices, and for all
snarks on 36 vertices.

There are several further equivalent versions involving other subgraphs of cubic
graphs, like Conjecture 14. We present two others here without going too much into
the technical details. Interested readers are invited to consult the sources [43] and [45],
respectively. We need some additional terminology. Let H be a graph with minimum
degree δ(H) = 2 and suppose that the set V2(H) of all vertices with degree 2 in H has
four elements. We say that H is V2(H)-dominated if the graph H + {e1, e2} arising
from H after adding two new edges e1 = xy and e2 = wz (possibly creating multiple
edges) such that {x, y, w, z} = V2(H) has a dominating closed trail containing e1
and e2. We say that H is strongly V2(H)-dominated if H is V2(H)-dominated and
moreover the graph H +e obtained from H by adding the new edge e has a dominating
closed trail containing e for any newly added edge e = uv for {u, v} ⊂ V2(H).

The following two conjectures appeared in [43] and [45], respectively.

Conjecture 20 Any subgraph H of an essentially 4-edge-connected cubic graph with
δ(H) = 2 and |V2(H)| = 4 is V2(H)-dominated.

Conjecture 21 Any subgraph H of an essentially 4-edge-connected cubic graph with
δ(H) = 2 and |V2(H)| = 4 is strongly V2(H)-dominated.

We now turn to seemingly stronger versions than Conjecture 2 for line graphs.
Adopting the terminology of [10], a graph is called Hamilton-connected (sometimes
called hamiltonian-connected in the literature) if it admits a Hamilton path between
any two distinct given vertices. It is easy to check that any Hamilton-connected graph
on at least 4 vertices is necessarily 3-connected.

Kužel and Xiong [46] established the equivalence of Conjecture 2 with the follow-
ing conjecture.

Conjecture 22 Every 4-connected line graph of a multigraph is Hamilton-connected.

Ryjáček and Vrána [58] further extended the equivalence to claw-free graphs by
proving that the following conjecture is equivalent to Conjecture 22.

Conjecture 23 Every 4-connected claw-free graph is Hamilton-connected.

One of the key ingredients in their equivalence proof is a result from [57] that
extends the closure technique used in [53] to establish the equivalence of Conjec-
tures 1 and 2. In this new version of the closure technique, the 2-closure, edges are
added to a noncomplete neighborhood in a claw-free graph G if this neighborhood
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Fig. 2 The seven forbidden subgraphs for line graphs of multigraphs

induces a 2-connected subgraph instead of just a connected one. Then it is proved that
the new graph G ′ is Hamilton-connected if and only if G is Hamilton-connected. We
note here that it is not always true that a Hamilton path between two vertices u and
v exists in G if and only if it exists in G ′. Successively adding edges to a claw-free
graph G according to this new version yields a unique graph denoted cl2(G). One of
the serious difficulties in this approach is that the successive application of this new
closure operation to 2-connected neighborhoods does not always result in a line graph
(of a multigraph). One of the structures that can appear in cl2(G) is the square of
a cycle, i.e., the graph obtained from a cycle by adding edges between nonadjacent
vertices that have a common neighbor. The closure operation defined in [58] deals
with these squares of cycles separately (by adding all the edges to turn them into
complete graphs on the same vertex set) and defines an additional closure operation
on good walks in the graph cl2(G) if it is not the square of a cycle. We will not explain
the details involved in the handling of these good walks, but we conclude here with
the statement that this extension guarantees that the resulting multigraph closure is
a unique graph clM (G), and that it is the line graph of a multigraph. Moreover, this
new graph clM (G) is Hamilton-connected if and only if the original graph G is Ham-
ilton-connected. For convenience, we add the counterpart of Fig. 1 which shows the
forbidden induced subgraphs of line graphs of multigraphs. These are illustrated in
Fig. 2.

5 A Link to the P Versus NP Problem

At present the seemingly strongest version of the conjectures for line graphs is by
Kužel, Ryjáček and Vrána [45].

Adopting the terminology of [45], a graph G is called 1-Hamilton-connected if
for any vertex x of G there is a Hamilton path in G − x between any two vertices,
and G is called 2-edge-Hamilton-connected if the graph G + X has a Hamilton cycle
containing all edges of X for any X ⊆ {xy|x, y ∈ V (G)} with 1 ≤ |X | ≤ 2. It is easy
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to check that for both properties 4-connectedness is a necessary condition (except for
complete graphs on at most 4 vertices).

Using the equivalence of Conjecture 2 and Conjecture 21, in [45] it is proved that
the following conjecture is equivalent to Conjecture 2.

Conjecture 24 Every 4-connected line graph of a multigraph is 1-Hamilton-con-
nected (2-edge-Hamilton-connected).

This version strongly suggests that Conjecture 2 (and all equivalent versions) might
fail, for the following reasons. If the above conjecture is true, it implies that a line graph
is 1-Hamilton-connected (2-edge-Hamilton-connected) if and only if it is 4-connected.
It is well-known that the connectivity of a (line) graph can be determined in polynomial
time. It is an NP-complete problem to decide whether a line graph is hamiltonian (see,
e.g., [7]). It is not difficult to show that deciding whether a given graph is 1-Hamilton-
connected is also NP-complete. It seems not unlikely that deciding whether a given
graph is 1-Hamilton-connected remains NP-complete when restricted to line graphs.
If one would be able to show this, however, it would imply that Conjecture 2 cannot
be true, unless P=NP. In other words, the validity of Conjecture 2 would imply poly-
nomiality of both 1-Hamilton-connectedness and 2-edge-Hamilton-connectedness in
line graphs.

We add here as a side remark that, on the other hand, it is an easy exercise to show
that a result of Sanders (see [59, p. 342]) implies that every 4-connected planar graph
is 1-Hamilton-connected. Thus for a given planar graph one can decide in polynomial
time whether it is 1-Hamilton-connected or not, whereas deciding whether a planar
graph is hamiltonian is an NP-complete problem.

6 One Step Beyond

Very recently, the closure techniques of [57,58] have been strengthened and adapted
to work for the stronger notion of 1-Hamilton-connectivity. In [44], the concept of
multigraph closure is further strengthened in such a way that this adapted closure of
a claw-free graph is the line graph of a multigraph with at most two triangles or at
most one double edge. In [54], this is used to obtain a closure that turns a claw-free
graph into a line graph of a multigraph while preserving the property of (not) being 1-
Hamilton-connected. This yields the following currently seemingly strongest version
of the conjectures.

Conjecture 25 Every 4-connected claw-free graph is 1-Hamilton-connected.

7 Positive Results Related to the Conjectures

The gap between the conjecture(s) and the positive results is narrowing, in the following
sense. If we look at the connectivity conditions in Conjectures 1 and 2, then the first nat-
ural question is whether one can prove a theorem on hamiltonicity of claw-free graphs
or line graphs if one imposes a stronger connectivity condition. The earliest result in
this direction is due to Zhan [65] (and was independently proved by Jackson [33]).
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Theorem 26 Every 7-connected line graph (of a multigraph) is hamiltonian.

In fact, Zhan proved the stronger result that such graphs are Hamilton-connected.
For this purpose, he slightly generalized Theorem 5 to formulate an equivalent result
on the existence of dominating trails between pairs of edges in the root graph H of
a line graph G = L(H) such that each edge of H is dominated by an internal vertex
of the trail. He then used an approach that is typical for most of the results in this
section. We will present some of the ingredients here, starting with a classic result on
the existence of k edge-disjoint spanning trees due to Nash-Williams [51] and Tutte
[61].

Theorem 27 A graph G has k edge-disjoint spanning trees if and only if for every
partition P of V (G) we have ε(P) ≥ k(|P| − 1), where ε(P) counts the number
of edges of G joining distinct parts of P .

Kundu [42] observed that Theorem 27 has the following consequence.

Theorem 28 Every k-edge-connected graph has at least (k − 1)/2� edge-disjoint
spanning trees.

The use of the existence of two edge-disjoint spanning trees for obtaining a spanning
eulerian subgraph was observed by several researchers independently, and appeared
in a paper by Jaeger [36].

Theorem 29 Every graph with two edge-disjoint spanning trees has a spanning eule-
rian subgraph.

The intuition behind this result is that the vertices of odd degree in one of the trees
can be paired and connected by edge-disjoint paths in the other tree to form a spanning
eulerian subgraph (a spanning closed trail).

Combining the above results, we immediately obtain the next corollary.

Corollary 30 (i) Every 4-edge-connected graph has a spanning eulerian subgraph.
(ii) Every 4-edge-connected graph has a hamiltonian line graph.

On the other hand, we know that Conjecture 2 is equivalent to the conjecture (see
Conjecture 6) that every essentially 4-edge-connected graph has a hamiltonian line
graph. At first sight the gap between Corollary 30(i) and Conjecture 6 does not look that
large. Moreover in Corollary 30(i) we obtain a spanning eulerian subgraph, whereas
we would only need a DCT, i.e., a dominating eulerian subgraph in order to prove
Conjecture 6. Nevertheless Conjecture 6 and all the equivalent conjectures seem to
be very hard. As a side remark and a possible approach to solving the conjectures,
we would like to present another conjecture, that would clearly imply Conjecture 6,
and was put up by Jackson [34]. It resembles the way one can prove that 4-connected
planar graphs are hamiltonian by proving assertions on the existence of certain cycles
(paths) in 2-connected planar graphs.

Conjecture 31 Every 2-edge-connected graph G has an eulerian subgraph H with
at least three edges such that each component of G − V (H) is linked by at most three
edges to H.

Vrána [63] recently observed that Conjecture 31 is equivalent to Conjecture 2.
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We continue with sketching the approach to proving Theorem 26 and similar results.
Similarly to the way we have been proving the equivalence of many of the conjectures
mentioned earlier, the first step is to consider the root graph of the line graph, and
the equivalent property one has to establish, e.g., the existence of a DCT or of a trail
between two given edges that internally dominates all edges of the root graph. In the
next step the root graph is usually reduced by deleting the vertices with degree one (or
with only one neighbor in the case of multigraphs) and suppressing the vertices with
degree two. In the third step the degree and connectivity properties of the reduced
graph are used to establish the existence of a spanning eulerian subgraph (or trail
between two given edges). In this step the existence of two disjoint spanning trees (or
something slightly more sophisticated) is usually the intermediate goal.

Theorem 26 has been extended to results on 6-connected line graphs with some
additional conditions. The proof in [65] together with Theorem 4 immediately implies
that every 6-connected claw-free graph G with δ(G) ≥ 7 is hamiltonian. More careful
considerations show that the condition δ(G) ≥ 7 can be weakened to ‘at most 33
vertices have degree 6’ (Li [8]) or ‘the vertices of degree 6 are independent’ (Fan [8]).
Further extensions to 6-connected line graphs with some additional conditions and the
conclusion Hamilton-connected, but following basically the same method as in [65],
can be found in [31]. Even further extensions can be found in [64], but they still need
an additional condition bounding the number of vertices with degree 6 to at most 74 or
the structure they induce to at most 8 disjoint K4s (for 6-connected claw-free graphs
to be hamiltonian) or bounding the number of vertices with degree 6 to at most 54 or
the structure they induce to at most 5 disjoint K4s (for 6-connected line graphs to be
Hamilton-connected). The proofs in [64] use a similar approach as in the above sketch,
but combined with a powerful reduction technique based on collapsible graphs intro-
duced by Catlin [19]. Since this technique and its refinements play an important role
in obtaining results on the existence of spanning closed trails and DCTs, we will give
a brief outline of the basics involved. Before doing so, we first present the currently
best connectivity result related to Conjectures 1 and 2 due to Kaiser and Vrána [37].

Theorem 32 Every 5-connected claw-free graph with minimum degree at least 6 is
Hamilton-connected.

The proof of Theorem 32 is very technical and too complicated and long to present
here. Basically, the proof is along the same lines as the proofs of the other results in
this section. However, instead of finding two edge-disjoint spanning trees the authors
use a far more sophisticated approach to find quasitrees with tight complements in
hypergraphs associated with the root graphs. They apply this to prove that an essen-
tially 5-edge-connected graph in which every edge has at least 6 neighboring edges
contains a connected eulerian subgraph spanning all the vertices of degree at least 4.
This suffices to prove Theorem 32 for line graphs and with the conclusion hamiltonian.
Refinements of the techniques then show the validity of the more general statement.
The authors state in their concluding section of [37] that it is conceivable that a further
refinement in some parts of their analysis might improve the result a bit, perhaps even
to all 5-connected line (claw-free) graphs. On the other hand, they believe that the
4-connected case would require major new ideas. For instance, the root graph H of a
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4-connected line graph may be cubic, in which case it is not clear how to associate a
suitable hypergraph with H in the first place.

To finish this section we give the basic definitions and results related to the technique
of collapsible graphs. We refer to [20] for a survey on applications of the technique.

A graph is called supereulerian if it contains a spanning eulerian subgraph. A graph
H is collapsible if for every even subset X of V (H), H has a subgraph HX such that
H − E(HX ) is connected and X is the set of odd degree vertices of HX . As examples,
it is easy to see that a cycle of length 3 (or an edge of multiplicity 2 in a multigraph) is
a collapsible graph and it is not difficult to show that a graph containing two edge-dis-
joint spanning trees is a collapsible graph. But also many graphs that are only a few
edges short of having two edge-disjoint spanning trees are collapsible (see, e.g., [21]).
The importance of collapsible graphs is immediate from the following result proved
by Catlin [19].

Theorem 33 If H is a collapsible subgraph of a graph G, then G is supereulerian
(collapsible) if and only if G/H is supereulerian (collapsible).

Here G/H is the graph obtained from G by contracting all edges of H and remov-
ing all loops. The theorem gives a powerful reduction method for studying supere-
ulerian graphs because one can contract any collapsible subgraph without affecting
this property. It was shown in [19] that any (multi)graph G has a unique collec-
tion of maximal collapsible subgraphs, so contracting them yields a well-defined
unique graph called the reduction of G. Apart from applications in the area of our
survey, there are many applications of the above reduction method in the study of
cycle double covers, nowhere-zero 4-flows, etc. These are beyond the scope of this
survey.

Motivated by the idea to modify the above technique to the study of DCTs instead
of spanning closed trails, Veldman [62] refined Catlin’s technique by handling vertices
of degree 1 and 2 in a special way (since degree 1 vertices cannot occur on any closed
trail, and the two neighbors of a degree 2 vertex are on any DCT). This refinement
can be described in the following way. For a simple graph H , let D(H) = {v ∈
V (H)|dH (v) = 1, 2}. For an independent set X of D(H), let IX (H) be the graph
obtained from H by contracting one edge incident with each vertex of X . Veldman
then defined H as X-collapsible if IX (H) is collapsible in the Catlin sense. Also this
refined reduction technique is a powerful tool for studying hamiltonicity of line graphs,
in particular for dense graphs. However, the main drawback of Catlin’s and Veldman’s
techniques is that the search for maximal collapsible subgraphs is very difficult. In this
context, a natural question is whether the claw-free closure concept can be strength-
ened by using line graph techniques or by combining them with closure techniques.
A first attempt in this direction was done in [17], but the major work was done in
[56], where it was shown that the reduction techniques of Catlin and Veldman can be
reformulated in terms of a closure technique for line graphs. This closure technique
might be more convenient to use since it avoids the necessity of a search for maximal
collapsible subgraphs. It is based on the concept of A-contractible graphs that was
introduced earlier. We refer to [56] for more details and to [18] for a survey on closure
techniques (this survey does not contain the work of [56]).
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8 Related Results with a Weaker Conclusion

First of all, if we drop the connectivity condition of the 2-regular spanning subgraph,
we move from a Hamilton cycle to a 2-factor. Enomoto et al. [22] proved that every
2-tough graph contains a 2-factor. Since 2k-connected claw-free graphs are k-tough
by a result in [50], this implies the following.

Theorem 34 Every 4-connected claw-free graph has a 2-factor.

It does not seem easy to use this as a starting point to show that there is a 2-factor
with only one component, although there are some results that give upper bounds on
the number of components (see, e.g., [15,16,29]). These results are beyond the scope
of this paper.

By Theorem 3.1 in Jackson and Wormald [35], every connected claw-free graph
has a 2-walk, i.e., a closed walk which passes every vertex at most twice. Clearly, the
edges of a 2-walk induce a connected factor with maximum degree at most 4. In [14]
the following related result is proved.

Theorem 35 Every 4-connected claw-free graph contains a connected factor which
has degree two or four at each vertex.

By the results of Kriesell [41] it is possible to prove the related result that between
every pair of distinct vertices in a 4-connected line graph there exists a spanning trail
which passes every vertex at most twice. As with the 2-factor result these results do
not seem to help in finding a way to prove Conjectures 1 and 2, although they supply
some supporting evidence in favor of the conjectures.

9 Related Results with Additional Conditions

We have already presented some results in which a connectivity condition is accompa-
nied by another condition, e.g., Theorem 32. Another way of obtaining positive results
related to the conjectures is by relaxing the 4-connectedness and adding something
else. Many such results involve degree conditions and other neighborhood conditions.
Such results have been surveyed in several papers (see, e.g., [12,23,28]). We do not
want to discuss such conditions in this survey, but here is a connectivity-only result.

If we add an ‘essentially connectivity’ condition there is this result due to Lai et al.
[48].

Theorem 36 Every 3-connected, essentially 11-connected claw-free (line) graph is
hamiltonian.

The proof of Theorem 36 is based on the technique of collapsible graphs by Catlin
applied to the graph obtained from the root graph of the line graph by deleting vertices
with degree 1 and suppressing vertices with degree 2. We omit the details.

Recently, Kaiser and Vrána [38] were able to decrease the 11 to 9 in the above
theorem. In their proof they use a slight modification of their proof approach to
Theorem 32 in [37]. The proof is again based on quasitrees with tight complements in
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hypergraphs, but in the proof they have to work around quasitrees which contain bad
type leaves. This can be done by suitably choosing the hyperedges of the associated
hypergraph. We refer to [37] for the details.

Perhaps the 11 in Theorem 36 can be replaced by 5, which would be best possible
(by the line graph of the Petersen graph in which the edges of a perfect matching are
subdivided exactly once). An open question is how far we can decrease the 11 (or 9)
by raising the 3 to a 4 in the theorem.

10 Restrictions on the Root Graph

Using the technique of collapsible graphs, Lai [47] proved the following partial affir-
mative answer to Conjecture 2 by restricting the root graph to the class of planar
graphs, i.e., graphs that can be embedded in the plane in such a way that the edges
only intersect in incident vertices.

Theorem 37 Every 4-connected line graph of a planar graph is hamiltonian.

Kriesell [41] proved a similar result on line graphs of claw-free (multi)graphs with
the stronger conclusion of Hamilton-connectedness. In fact, he proved the following
more general result.

Theorem 38 Let G be a graph such that L(G) is 4-connected and every vertex of
degree 3 in G is on an edge of multiplicity at least 2 or on a triangle of G. Then L(G)

is Hamilton-connected.

Lai, Shao and Zhan [49] did something similar for quasi claw-free graphs, i.e.,
in which every pair of vertices u and v at distance 2 has a common neighbor w the
neighbors of which are in N (u) ∪ N (v) ∪ {u, v}.
Theorem 39 Every 4-connected line graph of a quasi claw-free graph is Hamilton-
connected.

11 Conclusion

We presented many conjectures, most of which have been shown to be equivalent to
the conjecture that 4-connected claw-free graphs are hamiltonian. We also presented
several results that supply supporting evidence in favor of the conjectures, including
the most recent result that 5-connected claw-free graphs with minimum degree at least
6 are Hamilton-connected. There are many other results on hamiltonian properties of
sufficiently connected claw-free graphs, including many that have not been listed here.
In most of the proofs of the results that are closely related to the open conjectures, clo-
sure techniques are used to restrict the statements to line graphs. Then the root graphs
are considered and the aim is to find a (closed or open) trail (internally) dominating all
edges. A common approach is the following. First the degree 1 vertices are deleted,
then the degree 2 vertices are suppressed, and now one tries to show that the reduced
graph has a suitable spanning (closed) trail. This is usually accomplished by applying
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the technique of finding two edge-disjoint spanning trees (or similar structures that
yield suitable trails), or by the technique of collapsible subgraphs, or by advanced
closure concepts. It seems that none of these techniques is capable of tackling the
open conjectures. Does the latter conclusion suggest that the conjectures are all false?
We now tend to believe that there might exist nonhamiltonian 4-connected claw-free
graphs, but we have no strong opinion. It is our sincere hope that this survey will
inspire new research into this intriguing and challenging field.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Abstract: A graph G is 1-Hamilton-connected if G−x is Hamilton-
connected for every x∈V (G), and G is 2-edge-Hamilton-connected if the
graph G+X has a hamiltonian cycle containing all edges of X for any
X ⊂E+(G)={xy | x,y ∈V (G)} with 1≤|X |≤2. We prove that Thomassen’s
conjecture (every 4-connected line graph is hamiltonian, or, equiva-
lently, every snark has a dominating cycle) is equivalent to the state-
ments that every 4-connected line graph is 1-Hamilton-connected and/or
2-edge-Hamilton-connected. As a corollary, we obtain that Thomassen’s
conjecture implies polynomiality of both 1-Hamilton-connectedness and
2-edge-Hamilton-connectedness in line graphs. Consequently, proving that
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1. INTRODUCTION

By a graph we mean a finite undirected loopless graph G= (V(G),E(G)) allowing
multiple edges. We follow the most common graph-theoretical notation and for notation
and concepts not defined here we refer the reader e.g. to [2].

A graph G is said to be hamiltonian if G has a hamiltonian cycle, i.e. a cycle
of length |V(G)|, and Hamilton-connected if, for any x,y∈V(G), G has a hamil-
tonian (x,y)-path, i.e. an (x,y)-path P with V(P)=V(G). Obviously, a hamiltonian
graph must be 2-connected and a Hamilton-connected graph must be 3-connected.
A graph G is k-Hamilton-connected if, for any X ⊂V(G) with |X|=k, the graph G−X
is Hamilton-connected. It is easy to see that a k-Hamilton-connected graph must be
(k+3)-connected.

We will use L(H) for the line graph of a graph H. Recall that every line graph is claw-
free, i.e. does not contain an induced subgraph isomorphic to the claw K1,3, and that a
line graph G=L(H) is k-connected if and only if H is essentially k-edge-connected, i.e.
H has no edge-cutset X ⊂E(H) such that |X|<k and at least two components of G−X
contain at least one edge (such an X will be referred to as an essential edge-cutset).
Also recall that if an edge in a graph H is pendant (i.e. one of its vertices has degree 1),
then the corresponding vertex in G=L(H) is simplicial, i.e. its neighborhood induces
a complete graph.

If a graph H has no edge-cutset X ⊂E(H) such that |X|<k and at least two compo-
nents of G−X contain at least one cycle, we say that H is cyclically k-edge-connected.
It is a well-known fact (see e.g. [5]) that a cubic (i.e. 3-regular) graph H is cycli-
cally 4-edge-connected if and only if H is essentially 4-edge-connected. A cyclically
4-edge-connected cubic graph H of girth (length of shortest cycle) g(H)≥5 that is not
3-edge-colorable is called a snark.

A closed trail (i.e. an Eulerian subgraph) T in a graph H is said to be dominating
if every edge of H has at least one vertex on T . It is a well-known fact (see [9])
that if G is a line graph of order at least 3 and G=L(H), then G is hamiltonian if
and only if H contains a dominating closed trail. For a,b∈E(H), a trail T is said to
be an (a,b)-trail if a is the first and b is the last edge of T . A trail T in a graph
H is internally dominating if every edge of H has at least one vertex in the set of
internal vertices of T . Let G=L(H), a,b∈V(G), and let ā, b̄∈E(H) be the edges of
H that correspond to a,b. Analogously to [9] (see e.g. [14]), a line graph G of order
at least 3 has a hamiltonian (a,b)-path if and only if H has an internally dominating
(ā, b̄)-trail.

Thomassen [17] posed the following conjecture.

Conjecture A (Thomassen [17]). Every 4-connected line graph is Hamiltonian.
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Since then, many statements that are seemingly stronger or weaker than Conjecture A
have been proved to be equivalent to it. Below we list some of them. The reference
always refers to the paper in which the equivalence with Conjecture A was established.

Theorem B. The following statements are equivalent with Conjecture A.

(i) [15] Every 4-connected claw-free graph is Hamiltonian.
(ii) [5] Every essentially 4-edge-connected graph has a dominating closed trail.

(iii) [5] Every cyclically 4-edge-connected cubic graph has a dominating cycle.
(iv) [11] Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable

has a dominating cycle.
(v) [3] Every snark has a dominating cycle.

Statement (iii) of Theorem B was strengthened as follows.

Theorem C. The following statements are equivalent with Conjecture A.

(i) [7] Any two independent edges of a cyclically 4-edge-connected cubic graph are
contained in a dominating cycle.

(ii) [6] Any two edges of a cyclically 4-edge-connected cubic graph are contained
in a dominating cycle.

On the positive side, the strongest known results related to Conjecture A are the
following.

Theorem D.

(i) [10] Every 5-connected claw-free graph G with minimum degree �(G)≥6 is
Hamiltonian.

(ii) [16] Every 6-connected claw-free graph with at most 29 vertices of degree 6 is
Hamilton-connected.

2. MAIN RESULT

Set E+(G)={xy| x,y∈V(G)}, and for X ⊂E+(G) set G+X = (V(G),E(G)∪X) (note that
we admit E(G)∩X �=�). A graph G is said to be k-edge-Hamilton-connected if, for
any X ⊂E+(G) such that |X|≤k and X determines a path system, the graph G+X has
a hamiltonian cycle containing all edges of X (note that by a path system we mean a
forest each component of which is a path).

The following facts are easy to observe.

Proposition 1. Let G be a graph. Then

(i) G is 1-edge-Hamilton-connected if and only if G is Hamilton-connected,
(ii) G is 2-edge-Hamilton-connected if and only if

(�) G is 1-Hamilton-connected, and
(�) for any four distinct vertices x1,x2,x3,x4 ∈V(G), G has a path factor

consisting of two paths P1,P2 such that both P1 and P2 have one endvertex
in {x1,x2} and one endvertex in {x3,x4},

(iii) if G is k-edge-Hamilton-connected, then G is (k+2)-connected.

Journal of Graph Theory DOI 10.1002/jgt
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Proof. Parts (i) and (ii) follow immediately from the definitions. Let G be k-edge-
Hamilton-connected and let {a1, . . . ,a�}⊂V(G), �≤k+1, be a cutset of G. Then for
X ={a1a2,a2a3, . . . ,a�−1a�} the graph G has no Hamiltonian cycle containing all edges
of X. This contradiction proves part (iii). �

Our main result, Theorem 2, shows that Conjecture A is equivalent to the statement(s)
that every 4-connected line graph has any of the above mentioned properties. Note that
the equivalence of (i) and (ii) was originally established in the unpublished paper [13].

Theorem 2. The following statements are equivalent.

(i) Every 4-connected line graph is Hamiltonian.
(ii) Every 4-connected line graph is Hamilton-connected.

(iii) Every 4-connected line graph is 1-Hamilton-connected.
(iv) Every 4-connected line graph is 2-edge-Hamilton-connected.

Proof of Theorem 2 is postponed to Section 3.
We will now discuss complexity aspects of Theorem 2.
The problem to decide whether a given graph G has a hamiltonian (a,b)-path for

given vertices a,b is one of the classical NP-complete problems (see [8]), and the
hamiltonian problem remains NP-complete even when restricted to line graphs (see e.g.
[1] for the hamiltonian path problem). The problem to decide whether G is Hamilton-
connected is also known to be NP-complete [4]. The complexity of the corresponding
Hamilton-connectedness problem in line graphs is not known, however, it is usually
supposed to be NP-complete. We now consider the next step (we include the easy proof
here since we are not aware of its being published).

1-HC
Instance: A graph G.
Question: Is G 1-Hamilton-connected?

Theorem 3. 1-HC is NP-complete.

Proof. Obviously 1-HC ∈ NP. We transform the Hamilton-connectedness problem
to 1-HC. Given a graph G, take a vertex w /∈V(G) and set G′ = (V(G)∪{w},E(G)∪
{wx| x∈V(G)}). We show that G′ is 1-Hamilton-connected if and only if G is Hamilton-
connected. Suppose first that G is Hamilton-connected. We show that for any x,y,u∈
V(G′), G′−u has a hamiltonian (x,y)-path. Let P be a hamiltonian (x,y)-path in G.
If u �=w, then P′ =xPu−wu+Py is a hamiltonian (x,y)-path in G′−u, and for u=w
we simply set P′ =P. Conversely, if G′ is 1-Hamilton-connected, then G=G′−w is
Hamilton-connected by definition. �

Thus, we can analogously define the following problems.

1-HCL
Instance: A line graph G.
Question: Is G 1-Hamilton-connected?

2-E-HCL
Instance: A line graph G.
Question: Is G 2-edge-Hamilton-connected?
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Note that, with respect to the above mentioned facts, a common expectation would
probably be that both these problems are NP-complete.

If Conjecture A is true, then, by Theorem 2, we have that every 4-connected line
graph is 2-edge-Hamilton-connected (hence also 1-Hamilton-connected). Conversely,
by Proposition 1(iii), every 2-edge-Hamilton-connected graph is 4-connected and, simi-
larly, every 1-Hamilton-connected graph is 4-connected. From this we observe that if
Conjecture A is true, then

(i) a line graph G is 1-Hamilton-connected if and only if G is 4-connected,
(ii) a line graph G is 2-edge-Hamilton-connected if and only if G is 4-connected.

Consequently, Conjecture A, if true, would imply polynomiality of both 1-HCL and
2-E-HCL. We thus have the following consequence.

Theorem 4. At least one of the followings is true:

(i) Both 1-HCL and 2-E-HCL are polynomial.
(ii) Conjecture A fails.

Remark. Note that Theorem 4 means that proving NP-completeness of 1-HCL or
2-E-HCL would imply the existence of a 4-connected non-hamiltonian line graph (and
also, e.g. the existence of a snark with no dominating cycle, etc.), unless P = NP.

3. PROOF OF THEOREM 2

We first mention several results that will be needed for our proof.
Set Vi(H)={x∈V(H)|dH(x)= i} and let H be a graph with �(H)=2 and

|V2(H)|=4. Then H is said to be V2(H)-dominated if for any two edges e1 =
u1v1,e2 =u2v2 ∈E+(H) with {u1,v1,u2,v2}=V2(H) the graph H+{e1,e2} has a
dominating closed trail containing e1 and e2, and H is said to be strongly V2(H)-
dominated if H is V2(H)-dominated and for any e=uv∈E+(H) with u,v∈V2(H),
the graph H+{e} has a dominating closed trail containing e. Note that in the
special case of a cubic graph a dominating closed trail becomes a dominating
cycle.

The following was proved in [12].

Theorem E (Kužel [12]). Conjecture A is equivalent to the statement that any subgraph
H of an essentially 4-edge-connected cubic graph with �(H)=2 and |V2(H)|=4 is
V2(H)-dominated.

We will need the following slight strengthening of Theorem E.

Theorem 5. Conjecture A is equivalent to the statement that any subgraph H of an
essentially 4-edge-connected cubic graph with �(H)=2 and |V2(H)|=4 is strongly
V2(H)-dominated.

Proof. Suppose that Conjecture A is true, let H be a subgraph of an essentially
4-edge-connected cubic graph with �(H)=2 and |V2(H)|=4, let V2(H)={a,b,c,d}, set
e=ab and suppose that H+{e} has no dominating cycle containing e.

Journal of Graph Theory DOI 10.1002/jgt



246 JOURNAL OF GRAPH THEORY

FIGURE 1. The graph F .

Let Hi, i=1,2,3,4 be four vertex-disjoint copies of H, denote V2(Hi)={ai,bi,ci,di},
i=1,2,3,4, and let F′ be the graph with V(F′)=⋃4

i=1 V(Hi) and E(F′)= (
⋃4

i=1 E(Hi))∪
{a1a2,b1b2,a3a4,b3b4,c1d3,c2d4,d1c4,d2c3}. Finally, let F be the graph obtained from F′
by subdividing the following edges with new vertices: c1d3 with a vertex x, c2d4 with a
vertex y, c3d2 with a vertex z and c4d1 with a vertex w, and set e1 =xy and e2 =zw (Fig. 1).

By Theorem E, the graph F+{e1,e2} has a dominating cycle C with e1,e2 ∈E(C).
As {w,x,y,z} separates H1 ∪H2 from H3 ∪H4, both e1 and e2 must be incident to edges
on C to both H1 ∪H2 and H3 ∪H4. But no matter how we pick these edges, two of
w,x,y,z are adjacent on C to some ci, di, contradicting that Hj +ajbj has no dominating
cycle containing ajbj for j∈{1,2,3,4}∩{3− i,7− i}.

Conversely, if every subgraph H of an essentially 4-edge-connected cubic graph with
�(H)=2 and |V2(H)|=4 is strongly V2(H)-dominated, then clearly every such H is
V2(H)-dominated and Conjecture A is true by Theorem E. �

We will also need the following operation (see [5]). Let H be a graph, z∈V(H) a
vertex of degree d≥4, and let u1,u2, . . . ,ud be an ordering of neighbors of z (we allow
repetition in case of parallel edges). Then the graph Hz, obtained from the disjoint
union of G−z and the cycle Cz =z1,z2, . . . ,zdz1 by adding the edges uizi, i=1, . . . ,d,
is called an inflation of H at z. If �(H)≥3, then, by successively taking an inflation
at each vertex of degree greater than 3 we can obtain a cubic graph HI , called a cubic
inflation of H. The inflation of a graph at a vertex is not unique (since it depends
on the ordering of neighbors of z) and it is possible that the operation decreases the
edge-connectivity of the graph. However, the following was proved in [5].

Lemma F (Fleischner and Jackson [5]). Let H be an essentially 4-edge-connected
graph with minimum degree �(H)≥3. Then some cubic inflation of H is essentially
4-edge-connected.

Let H′ be a cubic inflation of a graph H and for any z∈V(H) set I(z)=V(Cz) if
dH(z)>3 and I(z)={z} otherwise. Observing that a dominating cycle in H′ must contain
at least one vertex in I(z) for each z∈V(H) with dH(z)≥4, we immediately have the
following fact (which is implicit in [5]).

Lemma G (Fleischner and Jackson [5]). Let H be a graph with �(H)≥3 and let HI be
a cubic inflation of H. Let C be a dominating cycle in HI . Then H has a dominating
closed trail T such that

(i) T contains all vertices of degree at least 4,
(ii) if uv∈E(C) and u∈ I(x), v∈ I(y) for some x,y∈V(H), x �=y, then xy∈E(T).
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Proof of Theorem 2. It is sufficient to prove that (i) implies (iv). Thus, suppose that
Conjecture A is true and let G be a minimum counterexample to the statement (iv) of
Theorem 2, i.e. G is a 4-connected line graph that is not 2-edge-Hamilton-connected but
every 4-connected line graph G′ with |V(G′)|<|V(G)| is 2-edge-Hamilton-connected.
Let Y ⊂E+(G) be such that |Y|≤2 and G+Y has no hamiltonian cycle containing all
edges of Y .

If |Y|=1, then denote Y ={e1}, choose an arbitrary e2 ∈E(G) such that e1,e2 have
no vertex in common, and set X ={e1,e2}. If |Y|=2, then denote Y ={e1,e2} and set
X =Y . Denote e1 =ab, e2 =cd, and choose the notation such that possibly b=d. With
a slight abuse of notation, we will use X also for the subgraph determined by e1,e2.
To reach a contradiction, it is sufficient to show that G+X has a hamiltonian cycle
containing all edges of X.

Claim 1. None of the vertices a, b, c, d is simplicial.

Proof of Claim 1. Suppose that u∈{a,b,c,d} is simplicial.
Case 1: dX(u)=1. Without loss of generality suppose u=a, and set G′ =G−u. Then
G′ is a 4-connected line graph with |V(G′)|<|V(G)|, hence G′ is 2-edge-Hamilton-
connected. Choose a′ ∈NG(u) such that a′ /∈{b,c,d} (this is always possible since
dG(u)≥4) and set e′

1 =a′b and X′ ={e′
1,e2}. Let C′ be a hamiltonian cycle in G′+X′

containing e′
1 and e2. Then C=a′ae1bC′a′ is a hamiltonian cycle in G containing e1

and e2, a contradiction.
Case 2: dX(u)=2. Then, by the choice of notation, u=b=d. Similarly as before, G′ =
G−u is 2-edge-Hamilton-connected. Set e′ =ac, X′ ={e′} and let C′ be a hamiltonian
cycle in G′ containing X′. Then C=aucC′a is a hamiltonian cycle in G containing X,
a contradiction. �

Let now H be a graph such that L(H)=G, and let ā, b̄, c̄, d̄ be the edges corresponding
to the vertices a,b,c,d∈V(G), respectively. By Claim 1, none of the edges ā, b̄, c̄, d̄ is
pendant.

We now distinguish two cases.
Case 1: {a,b}∩{c,d}=∅. We define a graph H4 by the following construction.

• H′ is a graph obtained from H by subdividing each of the edges ā, b̄, c̄, d̄ with a
new vertex a′,b′,c′,d′, respectively,

• H1 is a graph obtained from H′ by adding a new vertex u and edges ua′,ub′,uc′,ud′,
• H2 is obtained from H1 by removing vertices of degree 1 and suppressing vertices

of degree 2.

Then H2 is essentially 4-edge-connected with minimum degree �(H2)≥3 and, by
Lemma F, H2 has an essentially 4-edge-connected cubic inflation H3. Finally, let H4
be obtained from H3 by removing I(u) (i.e. the vertices of the cycle that corresponds
to the vertex u of H2).

Then H4 satisfies the assumptions of Theorem 5, hence H4 +{a′b′,c′d′} has a domi-
nating cycle containing a′b′ and c′d′.

By Lemma G, (H2 −u)+{a′b′,c′d′} has a dominating closed trail T containing the
edges a′b′, c′d′ and all vertices of degree at least 4. The graph H is essentially 4-edge-
connected, hence for every vertex of H of degree 1 or 2, all its neighbors are of degree
at least 4. Thus, T is a dominating closed trail also in H′+{a′b′,c′d′}. Since T contains
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the edges a′b′ and c′d′, G+X has a hamiltonian cycle containing the edges e1 and e2,
a contradiction.
Case 2: {a,b}∩{c,d} �=�. By the choice of notation, we have b=d and the vertices
a,b,c are distinct. By the assumption, G is not 2-edge-Hamilton-connected, hence
G−b has no hamiltonian (a,c)-path, implying that H− b̄ has no internally dominating
(ā, c̄)-trail.

Claim 2. Neither ā and b̄ nor b̄ and c̄ share a vertex of degree 2.

Proof of Claim 2. By symmetry, suppose that ā and b̄ share a vertex v of degree 2.
Then ab∈E(G). Let K denote the subgraph of G induced by NG(a)\{b,c}. Since
dH(v)=2, K is a clique of order at least 2.

Let H′ be obtained from H by suppressing the vertex v, i.e. ā and b̄ coincide in H′ into
an edge w̄. Set G′ =L(H′). Then G′ is obtained from G by contraction of the edge ab
into a vertex w. Clearly, G′ is 4-connected, hence, by the minimality of G, G′ is 2-edge-
Hamilton-connected. Let a1 be an arbitrary vertex in K, set e′

1 =wa1 and e′
2 =wc, and

let C′ be a hamiltonian cycle in G′+{e′
1,e′

2} containing e′
1 and e′

2. Then C=a1abcC′a1
is a hamiltonian cycle in G+X containing e1 and e2, a contradiction. �

Let H1 be the graph obtained from H by removing vertices of degree 1 and
suppressing vertices of degree 2. Then H1 is essentially 4-edge-connected. Let a∗,b∗,c∗
denote the edges of H1 that correspond to the edges ā, b̄, c̄ of H. Note that possibly
a∗ =c∗ (if ā and c̄ share a vertex of degree 2), but, by Claim 2, a∗ �=b∗ and b∗ �=c∗.

Let H2 be an essentially 4-edge-connected cubic inflation of H1 and, with a slight
abuse of notation, let a∗,b∗,c∗ denote the edges of H2 that correspond to these edges
of H1. Set a∗ =a1a2, b∗ =b1b2, c∗ =c1c2.

Claim 3. The edges a∗,b∗,c∗ (and hence also the edges ā, b̄, c̄) do not share a vertex
of degree 3.

Proof of Claim 3. Let, to the contrary, w=a1 =b1 =c1 be of degree 3. If ā=
wa′

1 for some a′
1 �=a2, then, by the construction of H1, a′

1 is of degree 2 in H and
{a′

1a2,b2w,c2w} is an essential edge-cutset separating the edge a′
1w from the rest of H,

a contradiction. Hence a∗ = ā and, similarly, b∗ = b̄ and c∗ = c̄.
By Theorem C(ii), H2 has a dominating cycle C containing a∗ and c∗. Since w is

of degree 3, C does not contain b∗. By Lemma G and since H is essentially 4-edge-
connected, H has a dominating closed trail T containing ā and c̄ and not containing b̄.
But then T is an internally dominating (ā, c̄)-trail in H− b̄, a contradiction. �

By Claim 3, we either have a∗ =c∗, or either a∗,c∗ or a∗,b∗ have no common vertex.
Let H3 and H4 be the graphs obtained from H2 as follows:

(i) if a∗,c∗ have no vertex in common, then H3 is obtained from H2 by subdividing
each of the edges a∗,c∗ with a new vertex a′,c′, respectively, and by adding the
edge a′c′, and H4 is obtained from H3 by deleting the edges a′c′ and b∗ (but
keeping the vertices a′,c′,b1,b2);

(ii) if a∗ =c∗, then H3 =H2 and H4 is obtained from H3 by deleting the edges a∗,
b∗ (but keeping the vertices a1,a2,b1,b2), and, for consistence, by relabeling
a1 :=a′ and a2 :=c′;
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(iii) if a∗,b∗ have no vertex in common, then H3 is obtained from H2 by subdividing
a∗ and b∗ with a new vertex a′ and b′ and adding the edge a′b′ and then
subdividing a′b′ and c∗ with a new vertex d′ and c′ and adding the edge d′c′,
and H4 is obtained from H3 by deleting the vertices b′ and d′.

It is an easy observation that an essentially 4-edge-connected cubic graph remains
essentially 4-edge-connected if we subdivide two independent edges and connect the
new vertices with a new edge. Hence, in all three cases, the graph H3 is essentially
4-edge-connected. Since H4 is a subgraph of H3 with �(H4)=2 and |V2(H4)|=4, H4
satisfies the assumptions of Theorem 5. Then the graph H4 +{a′c′} has a dominating
cycle containing the edge a′c′, implying that H− b̄ has an internally dominating (ā, c̄)-
trail, a contradiction. �
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[13] R. Kužel and L. Xiong, Every 4-connected line graph is hamiltonian if and
only if it is Hamiltonian connected. R. Kužel: Hamiltonian properties of
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1. Introduction

Is there a positive constant C such that every C-connected graph is hamiltonian? Certainly not, as
shown by the complete bipartite graphs Kn,n+1, where n is large. The situation may change, however,
if the problem is restricted to graphs not containing a specified forbidden induced subgraph. For
instance, for the class of claw-free graphs (those not containing an induced K1,3), Matthews and
Sumner [18] conjectured the following in 1984.

Conjecture 1 (Matthews and Sumner). Every 4-connected claw-free graph is hamiltonian.

The class of claw-free graphs includes all line graphs. Thus, Conjecture 1 would in particular imply
that every 4-connected line graph is hamiltonian. This was stated at about the same time as a separate
conjecture by Thomassen [23].

Conjecture 2 (Thomassen). Every 4-connected line graph is hamiltonian.

Although formally weaker, Conjecture 2 was shown to be equivalent to Conjecture 1 by
Ryjáček [21]. Several other statements are known to be equivalent to these conjectures, including
the Dominating Cycle Conjecture [5,6]; for more work related to these equivalences, see also
[2,11,12].

Conjectures 1 and 2 remain open. The best general result to date in the direction of Conjecture 2 is
due to Zhan [26] and Jackson (unpublished).
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Theorem 3 (Zhan; Jackson). Every 7-connected line graph is hamiltonian.

In fact, the result of [26] shows that any 7-connected line graph G is Hamilton-connected — it
contains a Hamilton path from u to v for each choice of distinct vertices u, v of G.

For 6-connected line graphs, hamiltonicity has been proved only for restricted classes of graphs
[9,25]. Many papers investigate the Hamiltonian properties of other special types of line graphs; see,
e.g., [15,16] and the references given therein.

The main result of the present paper is the following improvement of Theorem 3.

Theorem 4. Every 5-connected line graph with minimum degree at least 6 is hamiltonian.

This provides a partial result towards Conjecture 2. Furthermore, the theorem can be strengthened in
two directions: it extends to claw-free graphs by a standard application of the results of [21], and it
remains valid if ‘hamiltonian’ is replaced by ‘Hamilton-connected’.

One of the ingredients of our method is an idea used (in a simpler form) in [10] to give a short
proof of the characterization of graphs with k disjoint spanning trees due to Tutte [24] and Nash-
Williams [19] (the ‘tree-packing theorem’). It may be helpful to consult [10] as a companion to
Section 5 of the present paper.

The paper is organized as follows. In Section 2, we recall the necessary preliminary definitions
concerning graphs and hypergraphs. Section 3 introduces several notions related to quasigraphs, a
central concept of this paper. Here, we also state ourmain result on quasitrees with tight complement
(Theorem 5). Sections 4–7 elaborate the theory needed for the proof of this theorem, which is finally
given in Section 8. Sections 9 and 10 explain why quasitrees with tight complement are important
for us, by exhibiting their relation to connected eulerian subgraphs of a graph. This relation is used
in Section 10 to prove the main result of this paper, which is Theorem 4 and its corollary for claw-
free graphs. In Section 11, we outline a way to further strengthen this result by showing that graphs
satisfying the assumptions of Theorem 4 are in fact Hamilton-connected. Closing remarks are given
in Section 12.

The end of each proof is marked by �. In proofs consisting of several claims, the end of the proof of
each claim is marked by △.

2. Preliminaries

All the graphs considered in this paper are finite and may contain parallel edges but no loops.
The vertex set and the edge (multi)set of a graph G is denoted by V (G) and E(G), respectively. For
background on graph theory and any terminology which is not explicitly introduced, we refer the
reader to [4].

A hypergraph H consists of a vertex set V (H) and a (multi)set E(H) of subsets of V (H) that are
called the hyperedges of H . We will be dealing exclusively with 3-hypergraphs, that is, hypergraphs
each of whose hyperedges has cardinality 2 or 3. Multiple copies of the same hyperedge are allowed.
Throughout this paper, any hypergraph is assumed to be a 3-hypergraph unless stated otherwise.
Furthermore, the symbol H will always refer to a 3-hypergraph with vertex set V . For k ∈ {2, 3}, a
k-hyperedge is a hyperedge of cardinality k.

To picture a 3-hypergraph, we will represent a vertex by a solid dot, a 2-hyperedge by a line as
usual for graphs, and a 3-hyperedge e by three lines joining each vertex of e to a point which is not a
solid dot (see Fig. 1).

In our argument, 3-hypergraphs are naturally obtained from graphs by replacing each vertex of
degree 3 by a hyperedge consisting of its neighbours. Conversely, we may turn a 3-hypergraph H into
a graph Gr(H): for each 3-hyperedge e of H , we add a vertex ve and replace e by three edges joining
ve to each vertex of e.

As in the case of graphs, the hypergraphH is connected if for every nonempty proper subset X ⊆ V ,
there is a hyperedge of H intersecting both X and V − X . If H is connected, then an edge-cut in H is
any inclusionwise minimal set of hyperedges F such that H − F is disconnected. For any integer k, the
hypergraph H is k-edge-connected if it is connected and contains no edge-cuts of cardinality less than
k. The degree of a vertex v is the number of hyperedges incident with v.
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Fig. 1. A 3-hypergraph H with three 2-hyperedges and two 3-hyperedges.

To extend the notion of induced subgraph to hypergraphs, we adopt the following definition. For
X ⊆ V , we define H[X] (the induced subhypergraph of H on X) as the hypergraph with vertex set X
and hyperedge set

E(H[X]) = {e ∩ X : e ∈ E(H) and |e ∩ X | ≥ 2} .

If e∩X = f ∩X for distinct hyperedges e, f , we include this hyperedge inmultiple copies. Furthermore,
we assume a canonical assignment of hyperedges of H to hyperedges of H[X]. To stress this fact, we
always write the hyperedges of H[X] as e ∩ X , where e ∈ E(H).

Let P be a partition of a set X . P is trivial if P = {X}. A set Y ⊆ X is P -crossing (or: Y crosses P ) if
it intersects at least two classes of P .

As usual, another partition R of X refines P (written as R ≤ P ) if every class of R is contained in
a class of P . In this case, we also say that R is finer than P or that P is coarser. If R ≤ P and R ≠ P ,
then we write R < P and say that R is strictly finer (and P is strictly coarser). It is well known that
the order ≤ on partitions of X is a lattice; the infimum of any two partitions P , R (i.e., the unique
coarsest partition that refines both P and R) is denoted by P ∧ R.

If Y ⊆ X , then the partition induced on Y by P is

P [Y ] = {P ∩ Y : P ∈ P and P ∩ Y ≠ ∅} .

3. Quasigraphs

A basic notion in this paper is that of a quasigraph. It is a generalization of tree representations and
forest representations used, e.g., in [7].

Recall from Section 2 that H is a 3-hypergraph on vertex set V . A quasigraph in H is a pair (H, π),
where π is a function assigning to each hyperedge e of H a set π(e) ⊆ e which is either empty or
has cardinality 2. The value π(e) is called the representation of e under π . Usually, the underlying
hypergraph is clear from the context, and we simply speak about a quasigraph π . Quasigraphs will be
denoted by lowercase Greek letters.

In this section, π will be a quasigraph in H . Considering all the nonempty sets π(e) as graph edges,
we obtain a graph π∗ on V . The hyperedges e with π(e) ≠ ∅ are said to be used by π . The set of all
such hyperedges ofH is denoted by E(π). The edges of the graphπ∗, in contrast, are denoted by E(π∗)
as expected. We emphasize that, by definition, π∗ spans all the vertices in V .

To picture π , we use a bold line to connect the vertices of π(e) for each hyperedge e used by π . An
example of a quasigraph is shown in Fig. 2.

The quasigraph π is a acyclic (or a quasiforest) if π∗ is a forest; π is a quasitree if π∗ is a tree.
Furthermore, we define π to be a quasicycle if π∗ is the union of a cycle and a (possibly empty) set of
isolated vertices. The hypergraph H is acyclic if there exists no quasicycle in H .

If e is a hyperedge of H , then π − e is the quasigraph obtained from π by changing the value at
e to ∅. The complement π of π is the spanning subhypergraph of H comprised of all the hyperedges
of H not used by π . Since π includes the information about its underlying hypergraph H , it makes
sense to speak about its complement without specifying H (although we sometimes do specify it for
emphasis). Note that π is not a quasigraph.
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Fig. 2. A quasigraph ρ in the hypergraph of Fig. 1.

(a) Possible types of 3-hyperedges e with
|e∩ X | = 2 with respect to the quasigraph π .

(b) The corresponding 2-hyperedges of the
induced quasigraph. Note that e does not
have a corresponding hyperedge.

Fig. 3. An illustration to the definition of the π-section at X .

How to define an analogue of the induced subgraph for quasigraphs? Let X ⊆ V . At first sight, a
natural choice for the underlying hypergraph of a quasigraph induced by π on X is H[X]. It is clear
how to define the value of the quasigraph on a hyperedge e ∩ X , except if |e| = 3 and |e ∩ X | = 2
(see Fig. 3(a)). In particular, if π(e) intersects both X and V − X , then e ∩ X will not be used by the
induced quasigraph; furthermore, it is (at least for our purposes) not desirable to include e ∩ X in the
complement of the induced quasigraph either. This brings us to the following replacement for H[X]

(cf. Fig. 3(b)).
The π-section of H at X is the hypergraph H[X]

π defined as follows:

• H[X]
π has vertex set X ,

• its hyperedges are the sets e ∩ X , where e is a hyperedge of H such that |e ∩ X | ≥ 2 and π(e) ⊆ X .

The quasigraph π in H naturally determines a quasigraph π [X] in H[X]
π , defined by

(π [X])(e ∩ X) = π(e),

where e ∈ E(H) and e∩X is any hyperedge ofH[X]
π . We refer to π [X] as the quasigraph induced by π

on X . Let us stress that whenever we speak about the complement of π [X], it is – in accordance with
the definition – its complement in H[X]

π .
The ideal quasigraphs for our purposes in the later sections of this paper would be quasitrees

with connected complement. It turns out, however, that this requirement is too strong, and that the
following weaker property will suffice. The quasigraph π has tight complement (in H) if one of the
following holds:

(a) π is connected, or
(b) there is a partition V = X1 ∪ X2 such that for i = 1, 2, Xi is nonempty and π [Xi] has tight

complement (in H[Xi]
π ); furthermore, there is a hyperedge e ∈ E(π) such that π(e) ⊆ X1 and

e ∩ X2 ≠ ∅.

The definition is illustrated in Fig. 4.
Our main result regarding quasitrees in hypergraphs is the following.

Theorem 5. Let H be a 4-edge-connected 3-hypergraph. If no 3-hyperedge in H is included in any edge-cut
of size 4, then H contains a quasitree with tight complement.
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Fig. 4. The quasigraph ρ of Fig. 2 has tight complement in H . The ovals show the subsets of V relevant to the definition of tight
complement. For i = 1, 2, ρ[Xi] has connected complement in H[Xi]

ρ , so ρ[X] has tight complement in H[X]
ρ ‘thanks to’ the

hyperedge e. Similarly, f makes the complement of ρ in H tight.

Theorem 5 will be proved in Section 8.
An equivalent definition of quasigraphs with tight complement is based on the following concept.

Let us say that a partition P of V is π-narrow if for every P -crossing hyperedge e of H , π(e) is also
P -crossing. (We call P ‘narrow’ since none of these sets π(e) fits into a class of P .) For instance,
the partition shown in Fig. 5(b) below is π-narrow. Observe that the trivial partition is π-narrow for
any π .

Lemma 6. A quasigraph π in H has tight complement if and only if there is no nontrivial π-narrow
partition of V .

Proof. Weprove the ‘only if’ part by induction on the number of vertices ofH . If |V | = 1, the assertion
is trivial. Assume that |V | > 1 and that P is a nontrivial partition of V ; we aim to prove that P is not
π-narrow. Consider the two cases in the definition of tight complement. If π is connected (Case (a)),
then there is a P -crossing hyperedge e of π . Since π(e) = ∅ is not P -crossing, P is not π-narrow.

In Case (b), there is a partition V = X1 ∪ X2 into nonempty sets such that each π [Xi] has tight
complement in H[Xi]

π . Suppose that P [X1] is nontrivial. By the induction hypothesis, it is not π [X1]-
narrow. Consequently, there is a hyperedge f ofH[X1]

π contained inπ [X1] and such thatπ(f ) ⊆ P∩X1,
where P ∈ P . It follows that P is not π-narrow as claimed.

By symmetry, we may assume that both P [X1] and P [X2] are trivial. Since P is nontrivial, it must
be that P = {X1, X2}. Case (b) of the definition of tight complement ensures that there is a hyperedge
e ∈ E(π) such thatπ(e) ⊆ X1 and e∩X2 ≠ ∅. Since e isP -crossing andπ(e) is not,P is notπ-narrow.
This finishes the proof of the ‘only if’ part.

The ‘if’ direction will be proved by contradiction. Suppose that V admits no nontrivial π-narrow
partition, but π does not have tight complement in H . Let R be a coarsest possible partition of V such
that each π [X], where X ∈ R, has tight complement in H[X]

π . (To see that at least one partition with
this property exists, consider the partition of V into singletons.) Since R is nontrivial by assumption,
there is an R-crossing hyperedge e of H with π(e) ⊆ R1, where R1 is some class of R. Since e is
R-crossing, it intersects another class R2 of R. By the definition, π [R1 ∪ R2] has tight complement in
H[R1 ∪ R2]

π , which contradicts the maximality of R. �

4. Narrow and wide partitions

We begin this section bymodifying the definition of a π-narrow partition of V . If π is a quasigraph
in H , then a partition P of V is π-wide if for every hyperedge e of H , π(e) is a subset of a class of P . (In
particular, π(e) is not P -crossing for any P -crossing hyperedge e.) An example of a π-wide partition



T. Kaiser, P. Vrána / European Journal of Combinatorics 33 (2012) 924–947 929

(a) A quasigraph τ in H and the positive
τ -parts of H (the grey regions).

(b) The negative τ -part of H . Note that the
vertex v belongs to a larger negative τ -part,
although it forms a component of τ on its
own.

Fig. 5. Positive and negative parts.

is shown in Fig. 5(a) below. Again, the trivial partition is π-wide for any π . Lemma 6 has the following
easier analogue.

Lemma 7. If π is a quasigraph in H, then π∗ is connected if and only if there is no nontrivial π-wide
partition of V .
Proof. We begin with the ‘only if’ direction. Suppose that P is a nontrivial partition of V . Since π∗ is
a connected graph with vertex set V , there is an edge π(e) of π∗ crossing P . This shows that P is not
π-wide.

Conversely, suppose that π∗ is disconnected, and let P be the partition of V whose classes are the
vertex sets of components of π∗. Let e be a hyperedge of H . We claim that π(e) is not P -crossing. This
is certainly true if e ∉ E(π). In the other case,π(e) is an edge ofπ∗ and both of its endverticesmust be
contained in the same component of π∗, which proves the claim. We conclude that P is a (nontrivial)
π-wide partition of V . �

It is interesting that both the class of π-narrow partitions and the class of π-wide partitions are
closed with respect to meets in the lattice of partitions:

Observation 8. If π is a quasigraph in H andP andR areπ-narrow partitions, thenP ∧R isπ-narrow.
Similarly, if P and R are π-wide, then P ∧ R is π-wide.

By Observation 8, for any quasigraph π in H , there is a unique finest π-narrow partition of V ,
which will be denoted by A−(π;H). Similarly, there is a unique finest π-wide partition of V , denoted
by A+(π;H). If the hypergraph is clear from the context, we write just A+(π) or A−(π). Lemmas 6
and 7 provide us with a useful interpretation of A+(π) and A−(π). It is not hard to show from the
latter lemma that the classes of A+(π) are exactly the vertex sets of components of π∗. Similarly, by
Lemma 6, the classes of A−(π) are all maximal subsets X of V such that π [X] has tight complement
in H[X]

π .
We call the classes of A+(π) the positive π-parts of H and the classes of A−(π) the negative

π-parts of H . (See Fig. 5 for an illustration.) The terms ‘positive’ and ‘negative’ are chosen with regard
to the terminology of photography, with ‘positive’ used for π and ‘negative’ for its complement, in
accordance with the above discussion.

We note the following simple corollary of Lemma 6.

Lemma 9. Let π be a quasigraph in H. For i = 1, 2, let Xi ⊆ V be such that π [Xi] has tight complement
in H[Xi]

π . Then the following holds:
(i) each Xi is contained in a class of A−(π) (as a subset), and
(ii) if H contains a hyperedge e such that e intersects each Xi and π(e) ⊆ X1 (we allow e ∉ E(π)), then

X1 ∪ X2 is contained in a class of A−(π).
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Proof. (i) Clearly, if P is a π-narrow partition of V , then P [X1] is π [X1]-narrow; it follows that
A−(π)[X1] ≥ A−(π [X1]). By Lemma 6, A−(π [X1]) is trivial. Hence A−(π)[X1] is also trivial. A
symmetric argument works for X2.

(ii) It suffices to prove that π [X1 ∪ X2] has tight complement in H[X1 ∪ X2]
π . If not, let P be a

nontrivial π [X1 ∪ X2]-narrow partition of X1 ∪ X2. By the assumption, each P [Xi] has to be trivial as
it is π [Xi]-narrow. Thus, P = {X1, X2}. However, since π(e) ⊆ X1, this is not a π [X1 ∪ X2]-narrow
partition — a contradiction. �

We use the partitions A+(π) and A−(π) to introduce an order on quasigraphs. If π and σ are
quasigraphs in H , then we write

π E σ if A+(π) ≤ A+(σ ) and A−(π) ≤ A−(σ ).

Clearly, E is a partial order.
For a set X ⊆ V , let us say that two quasigraphs π and σ in H are X-similar if the following holds

for every hyperedge e of H:

(1) π(e) ⊆ X if and only if σ(e) ⊆ X , and
(2) if π(e) ⊈ X , then π(e) = σ(e).

Let us collect several easy observations about X-similar quasigraphs.

Observation 10. If X ⊆ V and quasigraphs π and σ are X-similar, then the following holds:

(i) H[X]
π

= H[X]
σ ,

(ii) if X ∈ A+(π), then A+(σ ) ≤ A+(π),
(iii) if X ∈ A−(π), then A−(σ ) ≤ A−(π).

The following lemma is an important tool which facilitates the use of induction in our argument.

Lemma 11. Let X ⊆ V and let π and σ be X-similar quasigraphs in H. Then the following holds:

if π [X] E σ [X], then π E σ .

Proof. Note that by Observation 10(i), H[X]
π

= H[X]
σ . We need to prove that

if A−(π [X]) ≤ A−(σ [X]), then A−(π) ≤ A−(σ ), (1)

and an analogous assertion (1+) with all occurrences of ‘−’ replaced by ‘+’.
We prove (1). By the definition of A−(σ ), (1) is equivalent to the statement that

if every σ [X]-narrow partition of X is π [X]-narrow (in H[X]
π ),

then every σ -narrow partition of V is π-narrow (in H).

Assume thus that every σ [X]-narrow partition is π [X]-narrow and that P is a σ -narrow partition of
V . For contradiction, suppose that P is not π-narrow.

We claim that P [X] is σ [X]-narrow in H[X]
σ . Let e ∩ X be a P [X]-crossing hyperedge of H[X]

σ

(where e ∈ E(H)). Then e isP -crossing, and sinceP is σ -narrow, σ(e) isP -crossing. By the definition
of H[X]

σ , σ(e) ⊆ X and thus σ(e) = σ [X](e ∩ X) is P [X]-crossing. This proves the claim.
Since every σ [X]-narrow partition of X is assumed to be π [X]-narrow, P [X] is π [X]-narrow.
On the other hand, P is not π-narrow, so there is a P -crossing hyperedge f of H such that π(f )

is not P -crossing. However, σ(f ) is P -crossing as P is σ -narrow. Thus, π(f ) ≠ σ(f ), and since π
and σ are X-similar, both π(f ) and σ(f ) are subsets of X . It follows that σ(f ), and therefore also the
hyperedge f ∩ X of H[X]

σ
= H[X]

π , is P [X]-crossing. We have seen that P [X] is π [X]-narrow, and
this observation implies that π(f ) is P [X]-crossing and therefore P -crossing. This contradicts the
choice of f .

The proof of (1+) is similar to the above but simpler. The details are omitted. �
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Fig. 6. The partition sequence of the quasigraph τ from Fig. 5. Partitions P τ
0 , P τ

1 and P τ
2 are shown in different grey shades

from light to dark. Note that the classes of P τ
2 are τ -solid.

5. Partition sequences

Besides the order E introduced in Section 4, we will need another derived order≼ on quasigraphs,
one that is used in the basic optimization strategy in our proof. Let π be a quasigraph in H . Similarly
as in [10], we associate with π a sequence of partitions of V , where each partition is a refinement of
the preceding one. Since H is finite, the partitions ‘converge’ to a limit partition whose classes have a
certain favourable property.

Recall from Section 4 that there is a uniquely defined partition of V into positive π-parts; we will
let this partition be denoted by P π

0 . The partition sequence of π is the sequence

Pπ
= (P π

0 , P π
1 , . . .),

where for even (odd) i ≥ 1, P π
i is obtained as the union of partitions of X into positive (negative,

respectively) π [X]-parts of H[X]
π as X ranges over classes of P π

i−1. (See Fig. 6.) Thus, for instance, for
even i ≥ 2 we can formally write

P π
i =


X∈Pπ

i−1

A+(π [X]).

Since H is finite, we have P π
k = P π

k+2 for large enough k, and we set P π
∞

= P π
k .

Let us call a set X ⊆ V π-solid (in H) if π [X] is a quasitree with tight complement in H[X]
π . By the

construction, any class of P π
∞

is π-solid.
Let us define a lexicographic order on sequences of partitions: if (A0, A1, . . .) and (B0, B1, . . .)

are sequences of partitions of V , write

(A0, A1, . . .) ≼L(B0, B1, . . .)

if there exists some i such that for j < i, Aj = Bj, while Ai strictly refines Bi.
We can now define the order ≼ on quasigraphs as promised. Let π and σ be quasigraphs in H .

Define

π ≼ σ if π E σ and Pπ
≼L Pσ .

If π ≼ σ but σ ⋠ π , we write π ≺ σ .
From Lemma 11, we can deduce a similar observation regarding the order ≼ (in which the

implication is actually replaced by equivalence).
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Lemma 12. Let X ⊆ V and assume that either X is a positive π-part of H, or P π
0 is trivial and X is a

negative π-part of H. Let π and σ be X-similar quasigraphs in H. Then the following holds:

π [X] ≼ σ [X] if and only if π ≼ σ .

Proof. We consider two cases depending on whether X is a positive or negative π-part of H .
Case 1: X is a positive π-part of H .
Since π and σ are X-similar, we have

Pπ
= (P π

0 , P
π [X]

1 ∪ P π
1 [V − X], P

π [X]

2 ∪ P π
2 [V − X], . . .) and

Pσ
= (P σ

0 , P
σ [X]

1 ∪ P π
1 [V − X], P

σ [X]

2 ∪ P π
2 [V − X], . . .). (2)

Assume first that π [X] ≼ σ [X]. Eqs. (2) imply that for each i ≥ 1, P π
i ≤ P σ

i . Furthermore,
π [X] E σ [X] and Lemma 11 imply that π E σ . In particular,

P π
0 = A+(π) ≤ A+(σ ) = P σ

0

so Pπ
≼L Pσ and therefore also π ≼ σ .

Conversely, assume that π ≼ σ . The fact that Pπ
≼L Pσ together with (2) implies that for i ≥ 1,

P
π [X]

i ≤ P
σ [X]

i . Recall that X is a positive π-part of H . We claim that X is also a positive σ -part of H;
indeed, this follows from the fact that P π

0 ≤ P σ
0 and that π and σ are X-similar. This claim implies

P
π [X]

0 = X = P
σ [X]

0 (3)

and, consequently, Pπ [X]
≼L Pσ [X]. It remains to verify that π [X] E σ [X]. This follows from (3) and the

observation that P
π [X]

1 ≤ P
σ [X]

1 . (Here we use the fact that if P π
0 is trivial, then P π

1 = A−(π)).
Case 2: P π

0 is trivial and X is a negative π-part of H .
In this case, Eqs. (2) are replaced by

Pπ
=


{V } , A−(π [X]) ∪ P π

1 [V − X],

P
π [X]

0 ∪ P π
2 [V − X], P

π [X]

1 ∪ P π
3 [V − X], . . .


and

Pσ
=


{V } , A−(σ [X]) ∪ P π

1 [V − X],

P
σ [X]

0 ∪ P π
2 [V − X], P

σ [X]

1 ∪ P π
3 [V − X], . . .


. (4)

Assume first that π ≼ σ . Since X is a positive π-part of H , the partition A−(π [X]) appearing in the
second term of Pπ is trivial. A similar observation holds for σ in place ofπ . Hence, Pπ and Pσ are equal
in their first two terms and (4) directly implies that Pπ [X]

≼L Pσ [X]. Moreover, π [X] E σ [X] is implied
by (4) as well. We conclude that π [X] ≼ σ [X].

The converse implication follows from (4) without any further effort. The proof is complete. �

Corollary 13. Let π and σ be X-similar quasigraphs in H, where X ∈ P π
i for some i. Then the following

holds:

π [X] ≼ σ [X] if and only if π ≼ σ .

Proof. Follows from Lemma 12 by easy induction. �

We conclude this section by a lemma that suggests a relation between ≼-maximal and acyclic
quasigraphs. If π and σ are quasigraphs in H , then let us call σ a restriction of π if for every hyperedge
e of H , σ(e) equals either π(e) or ∅.

Lemma 14. Let π be a quasigraph in H and i ≥ 0. If π [X] is acyclic for each X ∈ P π
i , but π itself is not

acyclic, then there exists an acyclic restriction σ of π such that σ ≻ π .
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(a) A quasigraph π and a partition P of V . (b) The contracted quasigraph
π/P in H/P . Observe that
although e is used by π, e/P is a
hyperedge of π/P .

Fig. 7. An example of contraction.

Proof. Suppose that γ is a quasicycle in H such that E(γ ) ⊆ E(π). By the assumption, not all of the
edges of γ ∗ are contained in the same class of P π

i ; in other words, γ ∗ contains a P π
i -crossing edge.

Let k ≥ 0 be the least integer such that γ ∗ contains a P π
k -crossing edge γ (e) (where e ∈ E(H)).

Since P π
0 is a partition of V into positive π-parts and γ is a restriction of π , there are no P π

0 -
crossing edges in γ ∗. Thus, k ≥ 1. Similarly, if j ≥ 2 is even and X ∈ P π

j−1, then H[X]
π contains no

P π
j [X]-crossing edges. It follows that k is odd. Let Y be the class of P π

k−1 containing all edges of γ ∗ as
subsets.

Set ρ = π − e. Observe that (ρ[Y ])∗ is a connected graph spanning Y , since (π [Y ])∗ has this
property, and the removal of the edge π(e) cannot disconnect (π [Y ])∗ as π(e) is contained in a cycle
in π∗. Thus, P ρ

0 = {Y }.
Assume that π(e) = z1z2 and let Zi (i = 1, 2) be the class of P π

k containing zi. Since each Zi is a
class of A−(π [Y ]), ρ[Zi] has tight complement in H[Zi]ρ . Now the hyperedge e ∩ Y containing z1 and
z2 is not used by ρ. By Lemma 9(ii), Z1 ∪ Z2 is contained in a class of A−(ρ[Y ]). Consequently,

A−(ρ[Y ]) > A−(π [Y ])

and therefore ρ[Y ] ≻ π [Y ]. By Corollary 13, ρ ≻ π .
If ρ is not acyclic, we repeat the previous step. Since H is finite, we will arrive at an acyclic

restriction σ ≻ π of π after finitely many steps. �

6. Contraction and substitution

In this section, we introduce two concepts related to partitions: contraction and substitution.
Let P be a partition of V . The contraction of P is the operation whose result is the hypergraph

H/P defined as follows. For A ⊆ V , define A/P as the subset of P consisting of all the classes P ∈ P
such that A ∩ P ≠ ∅. The hypergraph H/P has vertex set P and it hyperedges are all the sets of
the form e/P , where e ranges over all P -crossing hyperedges. Thus, H/P is a 3-hypergraph, possibly
with multiple hyperedges. As in the case of induced subhypergraphs, each hyperedge f of H/P is
understood to have an assigned corresponding hyperedge e of H such that f = e/P .

If π is a quasigraph in H , we define π/P as the quasigraph in H/P consisting of the hyperedges
e/P such that π(e) is P -crossing; the representation is defined by

(π/P )(e/P ) = π(e)/P .

(Contraction is illustrated in Fig. 7.) In keeping with our notation, the complement of π/P in H/P is
denoted by π/P . Observe that if e ∈ E(H), then e/P is an edge of π/P if and only if e is P -crossing
and π(e) is not. The following lemma will be useful.
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Lemma 15. Let R ≤ P be partitions of V and π be a quasigraph in H. If γ /R is a quasicycle in π/R,
then one of the following holds:

(a) for some X ∈ P , γ [X]/R[X] is a quasicycle in the complement of π [X]/R[X] in H[X]
π/R[X],

(b) γ /P is a nonempty quasigraph inπ/P such that (γ /P )∗ is an eulerian graph (a graphwith all vertex
degrees even).

Proof. We will use two formal equalities whose proof is left to the kind reader as a slightly tedious
exercise: for X ∈ P and any quasigraph σ in H ,

σ [X]/R[X] = (σ/R)[R[X]], (5)

H[X]
π/R[X] = (H/R)[R[X]]

π/R. (6)

Let γ /R be a quasicycle in π/R. Suppose that there is X ∈ P such that every edge of (γ /R)∗ is
a subset of R[X]. Let γ̃ = (γ /R)[R[X]]. Thus, γ̃ is a quasicycle in (H/R)[R[X]] and E(γ̃ ) is disjoint
from E((π/R)[R[X]]). We infer that γ̃ is a quasigraph in (H/R)[R[X]]

π/R . Using (6), we find that γ̃
is a quasigraph in H[X]

π/R[X]. Finally, we use (5) twice (for γ and π ) and conclude that condition (a)
holds.

Thus, we may assume that the endvertices Y1, Y2 of some edge γ (e) of (γ /R)∗ are classes of R
contained in different classes ofP (say, X1 and X2, respectively). Thus, γ /P is a nonempty quasigraph
in H/P . Furthermore, E(γ /P ) is clearly disjoint from E(π/P ). To verify (b), it remains to prove that
(γ /P )∗ is eulerian. This is immediate from the fact that (γ /P )∗ can be obtained from the graph
(γ /R)∗ (which consists of a cycle and isolated vertices) by identifying certain sets of vertices (namely
those contained in the same class of P ). �

If X ⊆ V and σ is a quasigraph in H[X]
π , we define the substitution of σ into π as the operation

which produces the following quasigraph π |σ in H:

(π |σ)(e) =


π(e) if e ∩ X ∉ E(H[X]

π ),
σ (e ∩ X) otherwise.

This yields a well-defined represented subhypergraph of H (see Fig. 8). More generally, let P be a
family of disjoint subsets of V and for each X ∈ P , let σX be a quasigraph in H[X]

π . Assume we
substitute each σX into π in any order. For distinct X ∈ P , the hyperedge sets of the hypergraphs
H[X]

π are pairwise disjoint, since e ∈ E(H[X]
π ) only if |e ∩ X | ≥ 2. It follows easily that the resulting

hypergraph σ in H is independent of the chosen order. This hypergraph will be denoted by

σ = π | {σX : X ∈ P } .

Substitution behaves well with respect to taking induced quasigraphs and contraction.

Lemma 16. Let π be a quasigraph in H and P a partition of V . Suppose that for each X ∈ P , σX is a
quasigraph in H[X]

π , and define

σ = π | {σX : X ∈ P } .

Then the following holds for every Y ⊆ X ∈ P :

(i) H[Y ]
σ

= (H[X]
π )[Y ]

σX ,
(ii) σ [Y ] = σX [Y ].

Furthermore,

(iii) σ/P = π/P .

Proof. (i) Using the definition of H[Y ]
σ and the definition of substitution, it is not hard to verify that

e0 ⊆ V is a hyperedge of H[Y ]
σ if and only if e0 = e ∩ Y , where e is a hyperedge of H such that

|e ∩ Y | ≥ 2, π(e) ⊆ X and σX (e ∩ X) ⊆ Y . If we expand the right hand side of the equality in (i)
according to these definitions, we arrive at precisely the same set of conditions.
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(a) A quasigraph π in H and a set X ⊆ V . (b) A quasigraph σ in H[X]
π .

(c) The quasigraph π |σ .

Fig. 8. An example of substitution.

(ii) Both sides of the equation are quasigraphs in H[Y ]
σ . We will check that they assign the same

value to a hyperedge e ∩ Y of H[Y ]
σ . For such hyperedges, we have

σ [Y ](e ∩ Y ) = σ(e) = σX (e ∩ X) (7)

where the second equality follows from the definition of substitution. On the other hand, by part (i),
e ∩ Y is a hyperedge of (H[X]

π )[Y ]
σX , and thus

σX [Y ](e ∩ Y ) = σX (e ∩ X). (8)

The assertion follows by comparing (7) and (8).
(iii) Both σ/P and π/P are quasigraphs inH/P . Let e/P be a hyperedge ofH/P , where e ∈ E(H).

Using the definitions of substitution and contraction, one can check that

(σ/P )(e/P ) =


π(e)/P if e ∩ X ∉ E(H[X]

π ) and π(e) is P -crossing,
σX (e)/P if e ∩ X ∈ E(H[X]

π ) and σX (e) is P -crossing,
∅ otherwise.

However, the middle case can never occur since σX (e) ⊆ X and σX (e) is therefore not P -crossing. It
follows easily that (σ/P )(e/P ) = (π/P )(e/P ). �

7. The Skeletal Lemma

In this section, we prove a lemma which is a crucial piece of our method. It leads directly to an in-
ductive argument for the existence of a quasitree with tight complement under suitable assumptions,
which will be given in Section 8.

If π is a quasigraph in H , then a partition P of V is said to be π-skeletal if every X ∈ P is π-solid
and the complement of π/P in H/P is acyclic.
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Lemma 17 (Skeletal Lemma). Let π be an acyclic quasigraph in H. Then there is an acyclic quasigraph σ
in H such that σ ≽ π and σ satisfies one of the following:

(a) σ ≻ π , or
(b) there is a σ -skeletal partition S.

Proof. Weproceed by contradiction. Let the pair (π,H) be a counterexample such thatH hasminimal
number of vertices; thus, no acyclic quasigraph σ ≽ π in H satisfies any of (a) and (b). Note that π is
not a quasitree with tight complement (which includes the case |V | = 1), for otherwise σ = π would
satisfy condition (b) with S = {V }.

Claim 1. P π
0 is nontrivial.

Suppose the contrary and note that P := A−(π) is nontrivial. Consider a set Y ∈ P and the
acyclic quasigraph π [Y ]. By the minimality of H , there is a quasigraph σY ≽ π [Y ] in H[Y ]

π satisfying
condition (a) or (b) (with respect to π [Y ] and H[Y ]

π ). Define

σ = π | {σY : Y ∈ P } .

By Lemmas 14 and 16(ii), we may assume that σ is acyclic.
Assume first that for some Y ∈ P , σY ≻ π [Y ] (case (a) of the lemma). Since σ [Y ] = σY

(Lemma 16(ii)), Lemma 12 implies that σ ≻ π , a contradiction with the choice of π .
We conclude that case (b) holds for each Y ∈ P , namely that there exists a partition SY which is

σY -skeletal in H[Y ]
π . Set

S =


Y∈P

SY .

We claim that S is σ -skeletal. Let Z ∈ S and assume that Z ⊆ Y ∈ P . Since Z is σY -solid, and since
σ [Z] = σY [Z] and H[Y ]

σ
= (H[Y ]

π )[Z]
σY by Lemma 16(i)–(ii), Z is σ -solid.

Suppose that σ/S is not acyclic and choose a quasigraph γ in H such that γ /S is a quasicycle in
σ/S. By Lemma15, γ /P is a nonempty quasigraph in the complementπ/P ofπ/P inH/P . However,
by the definition ofA−(π), everyP -crossing hyperedge ofH belongs toπ/P and thus cannot be used
by γ /P , a contradiction. It follows that σ/S is indeed acyclic and S is σ -skeletal. This contradiction
with the choice of π concludes the proof of the claim. △

For each X ∈ P π
0 , H[X]

π has fewer vertices than H . By the minimality of H , there is an acyclic
quasigraph ρX ≽ π [X] in H[X]

π . Define

ρ = π |

ρX : X ∈ P π

0


.

By Lemma12,ρ ≽ π . Note that sinceP π
0 isπ-wide,ρ∗ is the disjoint union of the graphsρ∗

X (X ∈ P π
0 ).

Therefore, ρ is acyclic.
If ρX ≻ π [X] for some X ∈ P π

0 , then by Lemmas 16(ii) and 12, ρ ≻ π and we have a contradiction.
Consequently, for each X ∈ P π

0 , there is a ρX -skeletal partition RX (with respect to the hypergraph
H[X]

π ). We define a partition R of V by

R =


X∈Pπ

0

RX . (9)

Similarly as in the proof of Claim 1, each Y ∈ R is easily shown to be ρ-solid. An important difference
in the present situation, however, is thatR may not be ρ-skeletal as theremay be quasicycles in ρ/R.
Any such quasicycle γ ′ can be represented by a quasigraph γ in H such that γ ′

= γ /R.
Thus, let γ be a quasigraph in H such that γ /R is a quasicycle in ρ/R. By Lemma 15, there are two

possibilities:

(a) for some X ∈ P π
0 , γ [X]/RX is a quasicycle in the complement of ρ[X]/RX in H[X]

ρ/RX , or
(b) γ /P π

0 is a nonempty quasigraph in the complement of ρ/P π
0 in H/P such that (γ /P π

0 )∗ is an
eulerian graph.
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Fig. 9. An illustration to the proof of Claim 2. Some hyperedges are omitted. The light grey regions are the classes of P π
0 , the

darker ones are the classes of R. Bold lines indicate the quasigraph ρ. The set

fγ , e1, e2, e3


corresponds to a quasicycle γ

in H/R. The quasigraph σ is obtained by including fγ in E(ρ), with the representation given by dashed lines. Note that v is
contained in the same negative σ -part as u1 .

Since ρ[X] = ρX (Lemma 16(ii)) and RX is ρX -skeletal, case (a) is ruled out. Thus, we can choose a
hyperedge fγ of H such that γ (fγ ) is P π

0 -crossing. As γ /R is a quasicycle in ρ/R, ρ(fγ ) is contained
in a class of R. If fγ is used by ρ, then this class will be denoted by Yγ and we will say that the chosen
hyperedge fγ is a connector for Yγ .

Claim 2. For each quasicycle γ /R in ρ/R, the hyperedge fγ is used by ρ.
Suppose to the contrary that γ (fγ ) = u1u2, where each ui (i = 1, 2) is contained in a different class

Xi of P π
0 . By Lemma 11 and Observation 10(ii), P π

0 = P
ρ

0 . Let σ be the quasigraph in H defined by

σ(e) =


π(e) if e ≠ fγ ,
u1u2 otherwise

(see Fig. 9). Considering the role of the hyperedge e, we see that

P
ρ

0 < P σ
0 . (10)

Next, we would like to prove that

A−(ρ) ≤ A−(σ ). (11)

First of all, we claim that u1 and u2 are contained in the same class of A−(σ ). Let the vertices on the
unique cycle in (γ /R)∗ be T1, . . . , Tk in this order, where each Ti is a class of R, u1 ∈ T1 and u2 ∈ Tk.
By symmetry, we may assume that

fγ ∩ Tk
 = 1 (i.e., T1 is the only class of R which may contain

more than one vertex of fγ ).
By Lemma 16(i)–(ii), together with the fact that each Y ∈ R is ρX -solid (where Y ⊆ X ⊆ P π

0 ),
each Ti (i = 1, . . . , k) is ρ-solid. Thus, Ti is also σ -solid for i ≥ 2. Let T ′

1 be the negative σ [T1]-part of
H[T1]σ containing u1.

For i = 1, . . . , k− 1, let ei be the hyperedge of E(γ ) such that γ (ei)/R = TiTi+1 (choosing e1 ≠ fγ
if k = 2). Let T = T ′

1 ∪ T2 ∪ · · · ∪ Tk. Using the minimality of H and Lemma 9(ii), it is easy to prove
that T is a subset of a class, say Q , of A−(σ ). Note that Q contains u1 and u2 as claimed.

If (11) is false, then the unique vertex of fγ − {u1, u2} is necessarily contained in a class of A−(σ )
distinct from Q . In that case, however, A−(σ ) is not σ -narrow as σ(fγ ) ⊆ Q . This contradiction with
the definition proves (11).

By (10) and (11), π ≼ ρ ≺ σ . Moreover, σ is acyclic, since ρ is acyclic and σ(fγ ) has endvertices in
distinct components of ρ∗. Thus, σ satisfies condition (a) in the statement of the lemma, contradicting
the choice of π . △
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For any Y ∈ R, let conn(Y ) be the set of all connectors for Y , and write

conn2(Y ) = {f ∩ Y : f ∈ conn(Y )} .

Note that for any connector f for Y , f ∩ Y is a 2-hyperedge of ρ[Y ].
Let us describe our strategy in the next step in intuitive terms (see Fig. 10 for an illustration). We

want to modify ρ within the classes of R and ‘free’ one of the hyperedges fγ from ρ, which would
enable us to apply the argument from the proof of Claim 2 and reach a contradiction. If no such
modification works, we obtain a quasigraph σ and a partition S which refines R. The effect of the
refinement is to ‘destroy’ all quasicycles γ /R in ρ/R by making the representation ρ(fγ ) of each
associated connector fγ S-crossing. Thanks to this, it will turn out that S is σ -skeletal as required to
satisfy condition (b).

Thus, let Y ∈ R and set

H̃Y = H[Y ]
ρ

− conn2(Y ),

ρ̃Y = ρ[Y ] − conn2(Y )

(we allow conn2(Y ) = ∅) and observe that ρ̃Y is an acyclic quasigraph in H̃Y . Let σY be a ≼-maximal
acyclic quasigraph in H̃Y such that σY ≽ ρ̃Y . We define a quasigraph τY in H[Y ]

ρ by

τY (e) =


e if e ∈ conn2(Y ),
σY (e) otherwise.

Claim 3. For all Y ∈ R,

A+(σY ; H̃Y ) = A+(ρ̃Y ; H̃Y ).

From σY ≽ ρ̃Y , we know that the left hand side in the statement of the claim is coarser than
(or equal to) the right hand side. Suppose that for some Y ∈ R, A+(σY ; H̃Y ) is strictly coarser than
A+(ρ̃Y ; H̃Y ). Then we can choose vertices u1, u2 ∈ Y which are contained in different classes U1,U2,
respectively, ofA+(ρ̃Y ; H̃Y ), but in the same classU ofA+(σY ; H̃Y ). Since Y is ρ-solid, the graph ρ[Y ]

∗

contains a path P joining u1 to u2. The choice of u1 and u2 implies the following:

(A1) P contains the edge fγ ∩ Y ∈ conn2(Y ) for some quasicycle γ , and
(A2) all the edges of E(P) ∩ conn2(Y ) are contained in a cycle in (ρ|σY )

∗.

We choose a quasicycle γ satisfying (A1) and let τ be the quasigraph in H obtained as

τ = (ρ|τY ) − fγ ∩ Y .

By (A2) and the fact that ρ[Y ] is connected, τ [Y ] is connected as well. Since σY has tight
complement in H̃Y , τ [Y ] has tight complement in H[Y ]

ρ (the two complements coincide). Thus, Y
is τ -solid. By Corollary 13, τ ≽ ρ. By Lemma 14 and the fact that ρ ≽ π , we may assume that τ is
acyclic.

Since ρ and τ are Y -similar, we have

ρ/R = τ/R.

In particular, the quasicycle γ in ρ/R (associatedwith fγ ) is also a quasicycle in τ/R. As fγ is not used
by τ (and τ ≽ ρ), we can repeat the argument used in the proof of Claim 2, namely add fγ (with a
suitable representation) to τ and reach a contradiction with the choice of π . △

Wewill now construct a σ -skeletal partition of V . Let Y ∈ R. By the choice ofH and themaximality
of σY , there is a σY -skeletal partition SY of Y (in H̃Y ). We define a quasigraph σ in H and a partition S
of V by

σ = ρ| {τY : Y ∈ R} ,

S =


Y∈R

SY .
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(a) Bold lines show the quasigraph ρ, the dotted
regions are the positive ρ̃Y -parts of H̃Y .

(b) The dotted regions here are the pos-
itiveσY -parts of H̃Y . If the partition is strictly coarser
than in (a), we can ‘free’ a suitable connector fγ and
use it as before.

(c) Otherwise, we obtain a finer partition S
(darkest grey regions) such that ρ(fγ ) is S-crossing
for each γ .

Fig. 10. An illustration to the proof of Claim 3 and the following part of the proof. We use similar conventions as in Fig. 9.

We aim to show that S is σ -skeletal. Let Z ∈ S and suppose that Z ⊆ Y ⊆ X , where X ∈ P π
0 and

Y ∈ R. Since σ [Z] = σY [Z] and SY is σY -skeletal, σ [Z] is a quasitree.
To show that the complement of σ [Z] in H[Z]

σ is tight, we use Lemma 16(i):

H[Z]
σ

= (H[Y ]
ρ)[Z]

τY = H̃Y [Z]
τY = H̃Y [Z]

σY . (12)

Here, the second and the third equality follows from Claim 3 which implies that any connector for
Y intersects two classes of A+(σY ; H̃Y ). From (12) and the fact that σY [Z] has tight complement in
H̃Y [Z]

σY , it follows that σ [Z] has tight complement as well.
It remains to prove that σ/S is acyclic. Suppose, for the sake of a contradiction, that γ is a

quasigraph in H such that γ /S is a quasicycle in σ/S. Note that the complement of τY/SY in H[Y ]
ρ

is the same as the complement of σY/SY in H̃Y , and hence acyclic. By Lemma 15, γ /R is a nonempty
quasigraph in ρ/R with (γ /R)∗ eulerian.

Let δ be a restriction of γ such that δ/R is a quasicycle in ρ/R. Every such quasicycle has an
associated hyperedge fδ which is a connector for a class Yδ ∈ R (Claim 2). In particular, fδ is used
by ρ. By the fact that fδ intersects two classes of A+(σYδ

; H̃Yδ
), ρ(fδ) is S-crossing. This implies that

σ(fδ) is S-crossing, which contradicts the assumption that γ /S is a quasicycle in σ/S. The proof is
complete. �
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8. Proof of Theorem 5

We can now prove our main result regarding spanning trees in hypergraphs, announced in
Section 3 as Theorem 5:

Theorem. Let H be a 4-edge-connected 3-hypergraph. If no 3-hyperedge of H is included in any edge-cut
of size 4, then H contains a quasitree with tight complement.

Proof. Letπ be a≼-maximal acyclic quasigraph inH . By the Skeletal Lemma (Lemma 17), there exists
a π-skeletal partition P of V . For the sake of a contradiction, suppose that π is not a quasitree with
tight complement. In particular, P is nontrivial.

Assume that H/P has n vertices (that is, |P | = n) and m hyperedges. For k ∈ {2, 3}, let mk be
the number of k-hyperedges of π/P . Similarly, let mk be the number of k-hyperedges of π/P . Thus,
m = m2 + m3 + m2 + m3.

Since π/P is acyclic, the graph Gr(π/P ) (defined in Section 2) is a forest. As Gr(π/P ) has n+m3
vertices andm2 + 3m3 edges, we find that

m2 + 2m3 ≤ n − 1. (13)

Since P is π-solid and π is an acyclic quasigraph, we know that m2 + m3 ≤ n − 1. Moreover, by the
assumption that π is not a quasitree with a tight complement, either this inequality or (13) is strict.
Summing the two, we obtain

m + m3 ≤ 2n − 3. (14)

We let n4 be the number of vertices ofH/P of degree 4, and n5+ be the number of the other vertices.
Since n ≥ 2 and H is 4-edge-connected, we have n = n4 + n5+ . By double counting,

4n4 + 5n5+ ≤ 2(m2 + m2) + 3(m3 + m3) = 2m + m3 + m3. (15)

The left hand side equals 4n + n5+ . Using (14), we find that

4n + n5+ ≥ 2m + 2m3 + n5+ + 6.

Combining with (15), we obtain

m3 ≥ m3 + n5+ + 6. (16)

We show that m3 ≤ n5+ . Let T ′
= (π/P )∗ be the forest on P which represents π/P . In

each component of T ′, choose a root and direct the edges of T ′ away from it. To each 3-hyperedge
e ∈ E(π/P ), assign the head h(e) of the arc π(e). By the assumptions of the theorem, no edge-cut
of size 4 contains a 3-hyperedge, so h(e) is a vertex of degree at least 5. At the same time, since each
vertex is the head of at most one arc in the directed forest, it gets assigned to at most one hyperedge.
The inequality m3 ≤ n5+ follows. This contradiction to inequality (16) proves that π is a quasitree
with tight complement. �

9. Even quasitrees

In the preceding sections, we were busy looking for quasitrees with tight complement in
hypergraphs. In this and the following section, we will explain the significance of such quasitrees
for the task of finding a Hamilton cycle in the line graph of a given graph.

Let π be a quasitree in H . For a set X ⊆ V , we define a number Φπ (X) ∈ {0, 1} by

Φπ (X) ≡


v∈X

dπ∗(v) (mod 2).

Observe that Φπ (X) = 0 if and only if X contains an even number of vertices whose degree in the tree
π∗ is odd.

For X ⊆ V , we say that π is even on X if for every component K of π whose vertex set is a subset
of X , it holds that Φπ (V (K)) = 0. If π is even on V , then we just say π is even.

The main result of this section is the following:
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(a) The quasitree π . (b) The quasitree π ′ , resulting from the switch.

Fig. 11. The case Φπ (X1) = 1 in the proof of Lemma 19. The grey regions are the sets X1 and X2 . Note how the switch of the
representation of e changes the parity of exactly one vertex degree in X1 .

Lemma 18. If π is a quasitree in H with tight complement, then there is a quasigraph ρ in H such that
E(ρ) = E(π) and ρ is an even quasitree in H.

Lemma 18 is a direct consequence of the followingmore technical statement (to derive Lemma 18,
set X = V ):

Lemma 19. Let π be a quasitree in H and X ⊆ V . Assume that Φπ (X) = 0 and π has tight complement
in H[X]

π . Then there is a quasitree ρ in H such that π and ρ are X-similar, and ρ is even on X.

Proof. We proceed by induction on |X |. We may assume that |X | ≥ 2, since otherwise the claim is
trivially true. Similarly, if π [X] is connected, then the assumption Φπ (X) = 0 implies that π is even
on X . Thus, we assume that π [X] is disconnected.

The definition implies that there is a partition X = X1 ∪ X2 such that:
(B1) for each i = 1, 2, π [Xi] has tight complement in H[Xi]

π ,
(B2) there is a hyperedge e intersecting X2 with π(e) ⊆ X1, and
(B3) for any hyperedge f intersecting both X1 and X2, we have f ∈ E(π).

If Φπ (X1) = 0, then we may use the induction hypothesis with X1 playing the role of X . The result
is a quasitree ρ1 in H which is even on X1 and X1-similar to ρ. In particular, Φρ1(X1) = 0 and hence
also Φρ1(X2) = 0. Using the induction hypothesis for X2, we obtain a quasitree ρ2 in H which is even
on X2; furthermore, being X2-similar to ρ1, it is even on X1 as well. By (B3), the vertex set of every
component K of π with V (K) ⊆ X is a subset of X1 or X2. Thus, ρ := ρ2 is even on X , and clearly
X-similar to π .

It remains to consider the case that Φπ (X1) = 1, illustrated in Fig. 11. Here we need to ‘switch’
the representation of e (the hyperedge from (B2)) as follows. Let e = x1x2y, with π(e) = x1x2. The
removal of the edge x1x2 from π∗ splits π∗ into two components, each containing one of x1 and x2.
By symmetry, we may assume that y is contained in the component containing x1. We define a new
quasigraph π ′ in H by

π ′(e) =


x2y if f = e,
π(f ) otherwise.

Note that π ′ is a quasitree and Φπ ′(X1) = 0. Consequently, we can proceed as before, apply the
induction hypothesis and eventually obtain a representation ρ which satisfies the assertions of the
lemma. �

10. Hamilton cycles in line graphs and claw-free graphs

We recall two standard results which interpret the connectivity and the hamiltonicity of a line
graph in terms of its preimage. The first result is a folklore observation, the second is due to Harary
and Nash-Williams [8].We combine them into one theorem, but beforewe state them,we recall some
necessary terminology.

Let G be a graph. An edge-cut C in G is trivial if it consists of all the edges incident with some vertex
v of G. The graph G is essentially k-edge-connected (k ≥ 1) if every edge-cut in G of size less than k is
trivial. A subgraph D of G is dominating if G − V (D) has no edges.
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(a) The vertices of odd degree in π∗ are circled. (b) Since each component of π contains an
even number of circled vertices, we can
complete π∗ to an eulerian graph (the added
edges are shown as dashed bold lines).

Fig. 12. An illustration to Lemma 22. The grey regions are the components of π , where π is the quasigraph shown by solid
bold lines.

Theorem 20. For any graph G and k ≥ 1, the following holds:

(i) L(G) is k-connected if and only if G is essentially k-edge-connected,
(ii) L(G) is hamiltonian if and only if G contains a dominating connected eulerian subgraph C.

In a similar spirit, the minimum degree of L(G) equals the minimum edge weight of G, where the
weight of an edge e is defined as the number of edges incident with e and distinct from it.

Given a set X of vertices of G, an X-join in G is a subgraph G′ of G such that a vertex of G is in X if
and only if its degree in G′ is odd. (In particular, ∅-joins are eulerian subgraphs).

Wewill need a lemmawhich has been used a number of times before, either explicitly or implicitly.
For completeness, we sketch a quick proof.

Lemma 21. If T is a tree and X is a set of vertices of T of even cardinality, then T contains an X-join.

Proof. By induction on the order of T . If |V (T )| = 1, the assertion is trivial. Otherwise, choose an edge
e = v1v2 and let T1 and T2 be components of T − e, T1 being the one which contains v1. Let X1 be
X ∩ V (T1) if the size of this set is even; otherwise, set X1 = (X ∩ V (T1)) ⊕ {v1}, where ⊕ stands for
the symmetric difference. The induction yields an X1-join T ′

1 in T1. A set X2 and an X2-join T ′

2 in T2 is
obtained in a symmetric way. It is easy to check that the union of T ′

1 and T ′

2, with e added if |X ∩ V (T1)|
is odd, is an X-join. �

If G1 and G2 are two graphs, then G1+G2 denotes the graphwhose vertex set is the (not necessarily
disjoint) union of vertex sets of G1 and G2, and whose multiset of edges is the multiset union of E(G1)
and E(G2).

As the following lemma shows, an even quasitree in H allows one to find a connected spanning
eulerian subgraph of Gr(H) (see Fig. 12 for an illustration):

Lemma 22. If π is an even quasitree in H, then there is a quasigraph τ in H such that E(π) and E(τ ) are
disjoint, and π∗

+ τ ∗ is a connected eulerian subgraph of the graph Gr(H) spanning all vertices in V .

Proof. Let K be a component of π , and let X be the set of vertices of K whose degree in π∗ is odd.
Sinceπ is even, |X | is even. Choose a spanning tree T of the (connected) graphGr(K). Using Lemma 21,
choose a subforest T ′ of T such that for every vertex w of Gr(K), dT ′(w) is odd if and only if w ∈ X .
In π∗

+ T ′, all the vertices of K have even degrees. In fact, the same holds for any vertex ve of Gr(K),
where e is a hyperedge of H of size 3: if e is used by π , then dπ∗+T ′(ve) = 2, and otherwise we have

dπ∗+T ′(ve) = dT ′(ve),

which is even since ve ∉ X . In particular, there is a quasigraph τK in H such that τ ∗

K = T ′.
We apply the above procedure repeatedly, one component of π at a time. For this, we need to

be sure that a 3-hyperedge e will not be used by τK1 as well as τK2 , where K1 and K2 are distinct
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components of π . This is clear, however, since e can only be used by τK if |e ∩ V (K)| ≥ 2. Thus, the
components of π can be treated independently, and we eventually obtain an eulerian subgraph S of
Gr(H). Since it contains the tree π∗, S spans all of V , and since each of the trees (τK )∗ contains an edge
incident with a vertex in V (unless (τK )∗ is edgeless), it follows that S is connected. �

Using Theorem 20, it will be easy to derive our main result (Theorem 4) as a consequence of the
following proposition. Let us remark that the proposition is closely related to a conjecture made by
Jackson (see [1, Conjecture 4.48]) and implies one of its three versions.

Proposition 23. If G is an essentially 5-edge-connected graph with minimum edge weight at least 6, then
G contains a connected eulerian subgraph spanning all the vertices of degree at least 4 in G.

Proof. For the sake of a contradiction, let G be a counterexample with as few vertices as possible.
Since the claim is trivially true for a one-vertex graph, we may assume |V (G)| ≥ 2. For brevity, a good
subgraph in a graph G′ will be a connected eulerian subgraph spanning all the vertices of degree at
least 4 in G′.
Claim 1. The minimum degree of G is at least 3.

Suppose first that G contains a vertex v of degree 2 with distinct neighbours w1 and w2. If we
suppress v, the resulting graph G′ will be essentially 5-edge-connected. Furthermore, the minimum
edge weight of G′ is at least 6 unless G is the triangle vw1w2 with the edge w1w2 of multiplicity 5,
which is however not a counterexample to the proposition. By theminimality assumption,G′ contains
a good subgraph C ′. It is easy to see that the corresponding subgraph of G is also good.

Suppose then that G contains a vertex u of degree 1 or 2 with a single neighbour z. Let U be the set
of all the vertices of degree 1 or 2 in Gwhose only neighbour is z. If V (G) = U ∪ {z}, then the Eulerian
subgraph consisting of just the vertex z shows that G is not a counterexample to the proposition. Thus,
z has a neighbour x outsideU . In fact, sinceG is essentially 5-edge-connected, z is incidentwith at least
5 edges whose other endvertex is not in U . Let e be an edge with endvertices z and x. Since the degree
of x is at least 3, the edge weight of e in G−U is at least 6. This implies that the minimum edge weight
of G − U is at least 6. Since the removal of U does not create any new minimal essential edge-cut,
G − U is essentially 5-edge-connected. Since the degree of z in G − U is at least 5, any good subgraph
in G − U is a good subgraph in G. Thus, G − U is a smaller counterexample than G, contradicting the
minimality of G. △

Claim 2. No vertex of degree 3 in G is incident with a pair of parallel edges.
Suppose that v is a vertex of degree 3 incidentwith parallel edges e1, e2. If v has only one neighbour,

then any good subgraph of G − v is good in G. By the minimality of G, v must have exactly two
neighbours, say w and z, where w is incident with e1 and e2. Let G′ be obtained from G by removing v
and adding the edge e0 with endvertices w and z.

It is easy to see that G′ is essentially 5-edge-connected, and that any good subgraph of G′ can be
modified to a good subgraph of G (as dG(w) ≥ 6). We show that the minimal edge weight in G′ is at
least 6.

Suppose the contrary and let e be an edge of G′ of weight less than 6. We have e ≠ e0 as the
assumptions imply that dG(w) ≥ 6 and dG(z) ≥ 5, so the weight of any edge with endvertices w and
z in G′ is at least 8. Thus, e is an edge of G.

It must be incident with w, for otherwise its weight in G′ would be the same as in G. Let u be the
endvertex of e distinct from w. Since dG(w) ≥ 6, w is incident in G′ with at least 3 edges of G′ distinct
from e0 and e. By the weight assumption, u must be incident with only at most one edge of G′ other
than e, contradicting Claim 1. △

Let H be the 3-hypergraph whose vertex set V is the set of all vertices of Gwhose degree is at least
4; the hyperedges of H are of two kinds:

• the edges of Gwith both endvertices in V ,
• 3-hyperedges consisting of the neighbours of any vertex of degree 3 in G.

Note thatH is well-defined, for any neighbour of a vertex of degree 3 in Gmust have degree at least
4 (otherwise they would be separated from the rest of the graph by an essential edge-cut of size at
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most 4). Furthermore, by Claim 2, any vertex of degree 3 does indeed have three distinct neighbours
in V .

In the following two claims, we show that H satisfies the hypotheses of Theorem 5.
Claim 3. The hypergraph H is 4-edge-connected.

Suppose that this is not the case and F is an inclusionwise minimal edge-cut in H with |F | ≤ 3. Let
A be the vertex set of a component of H − F .

Let e ∈ F . By the minimality of G, |e − A| ≥ 1. We assign to e an edge e′ of G, defined as follows:

• if |e| = 2, then e′
= e,

• if |e| = 3 and e ∩ A = {u}, then e′
= uve,

• if |e| = 3, |e ∩ A| = 2 and e − A = {u}, then e′
= uve.

Observe that F ′
:=


e′

: e ∈ F

is an edge-cut in G. Since G is 5-edge-connected, F ′ must be a trivial

edge-cut. This means that a vertex v ∈ V has degree 3 in H , a contradiction as v has degree at least 4
in G and therefore also in H . △

The other claim regards edge-cuts of size 4 in H:
Claim 4. No 3-hyperedge of H is included in an edge-cut of size 4 in H .

Let F be an edge-cut of size 4 in H . As in the proof of Claim 3, we consider the corresponding
edge-cut F ′ in G. Since G is essentially 5-edge-connected, one component of G− F ′ consists of a single
vertex w whose degree in G is 4. Assuming that F includes a 3-hyperedge e, we find that in G, w has
a neighbour v of degree 3. Since the weight of the edge vw is 5, we obtain a contradiction with our
assumptions about G. △

Since the assumptions of Theorem 5 are satisfied, we can use it to find a quasitree π with tight
complement in H . By Lemmas 18 and 22, Gr(H) = G admits a connected eulerian subgraph spanning
the set V . This is what we wanted to find. �

We can now prove our main theorem, stated as Theorem 4 in Section 1:

Theorem. Every 5-connected line graph of minimum degree at least 6 is hamiltonian.

Proof. Let L(G) be a 5-connected line graph of minimum degree at least 6. By Theorem 20(i),
G is essentially 5-edge-connected. Furthermore, the minimum edge weight of G is at least 6. By
Proposition 23, G contains a connected eulerian subgraph C spanning all the vertices of degree at
least 4. By Theorem 20(ii), it is sufficient to prove that G − V (C) has no edges. Indeed, the vertices of
any edge e in G − V (C) must have degree at most 3 in G, which implies that e is incident to at most 4
other edges of G, a contradiction to the minimum degree assumption. Thus, L(G) is hamiltonian. �

Using the claw-free closure concept developed by Ryjáček [21], Theorem 4 can be extended to
claw-free graphs. Let us recall the main result of [21]:

Theorem 24. Let G be a claw-free graph. Then there is a well-defined graph cl(G) (called the closure of
G) such that the following holds:

(i) G is a spanning subgraph of cl(G),
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) the length of a longest cycle in G is the same as in cl(G).

Corollary 25. Every 5-connected claw-free graph G of minimum degree at least 6 is hamiltonian.

Proof. Apply Theorem 24 to obtain the closure cl(G) of G. Since G ⊆ cl(G), the closure is 5-connected
and has minimum degree at least 6. Being a line graph, cl(G) is hamiltonian by Theorem 4. Since G is
a spanning subgraph of cl(G), property (iii) in Theorem 24 implies that G is hamiltonian. �

11. Hamilton-connectedness

Recall from Section 1 that a graph is Hamilton-connected if for every pair of distinct vertices u, v,
there is a Hamilton path from u to v. The method used to prove Theorem 4 and Corollary 25 can be
adapted to yield the following stronger result:
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Theorem 26. Every 5-connected claw-free graph of minimum degree at least 6 is Hamilton-connected.

In this section, we sketch the necessary modifications to the argument. For a start, let H = L(G) be
a 5-connected line graph of minimum degree at least 6. By considerations similar to those in the proof
of Proposition 23, it may be assumed that the minimum degree of G is at least 3 and that no vertex of
G is incident with a pair of parallel edges, so wemay associate with G a 3-hypergraph H just as in that
proof. Moreover, H may again be assumed to satisfy the assumptions of Theorem 5.

Let V≥4 ⊆ V (G) be the set of vertices of degree at least 4 in G.
First, we will need a replacement of Theorem 20(ii) that translates the Hamilton-connectedness of

H to a property of G. A trail F is a sequence of edges of G such that each pair of consecutive edges is
adjacent in G, and F contains each edge of G at most once. Wewill say that F spans a set Y of vertices if
each vertex in Y is incident with an edge of F . A trail is an (e1, e2)-trail if it starts with e1 and ends with
e2. Furthermore, an (e1, e2)-trail F is internally dominating if every edge of G has a common endvertex
with some edge in F other than e1 and e2. The following fact is well-known (see, e.g., [17]):

Theorem 27. Let G be a graph with at least 3 edges. Then L(G) is Hamilton-connected if and only if for
any pair of edges e1, e2 ∈ E(G), G has an internally dominating (e1, e2)-trail.

One way to find an internally dominating (e1, e2)-trail (where e1, e2 are edges) is by using a
connection to X-joins as defined in Section 10. For each edge e of G, fix an endvertex ue of degree
at least 4 in G (which exists since G is essentially 5-edge-connected). If e1 and e2 are edges, set

X(e1, e2) =


ue1 , ue2


if ue1 ≠ ue2 ,

∅ otherwise.

Suppose now that the graph G − e1 − e2 happens to contain a connected X(e1, e2)-join J spanning
all of V≥4. By the classical observation of Euler, all the edges of J can be arranged in a trail TJ whose
first edge is incident with ue1 and whose last edge is incident with ue2 . Adding e1 and e2, we obtain an
(e1, e2)-trail T in G. (If u1 = u2, we use the fact that u1 is incident with an edge of TJ .) Since G contains
no adjacent vertices of degree 3, T is an internally dominating (e1, e2)-trail.

Summing up, the Hamilton-connectedness of L(G)will be established if we can show that for every
e1, e2 ∈ E(G), the graph G − e1 − e2 contains a connected X(e1, e2)-join spanning V≥4.

How to find such X(e1, e2)-joins? Recall that in Section 10, the existence of a connected dominating
eulerian subgraph of G (a connected dominating ∅-join) was guaranteed by Lemma 22 based on the
assumption that H contains an even quasitree. As shown by Lemma 18, an even quasitree in H exists
wheneverH contains a quasitreewith tight complement. A rather straightforwardmodification of the
proofs of these two lemmas (which we omit) leads to the following generalization:

Lemma 28. Let H ′ be a 3-hypergraph containing a quasitreeπ with tight complement, and let X ⊆ V (H ′).
Then there is a quasigraph τ such that E(π) and E(τ ) are disjoint, and π∗

+ τ ∗ is a connected X-join in
Gr(H ′) spanning all vertices in V (H ′).

Roughly speaking, Lemma 28 will reduce our task to showing that for each pair of edges e1, e2 of G, a
suitably defined 3-hypergraph H ′ admits a quasitree with tight complement.

Let us define the 3-hypergraph H ′ to which Lemma 28 is to be applied. Suppose that e1 and e2 are
given edges of G, and letwi (i = 1, 2) be the endvertex of ei distinct from ui. We distinguish two cases:

(1) if e1 and e2 have a common vertex of degree 3 (namely, the vertex w1 = w2), then H ′ is obtained
from H by removing the 3-hyperedge corresponding to w1;

(2) otherwise, H ′ is the hypergraph obtained by performing the following for i = 1, 2:
(2a) if wi has degree 3, then the 3-hyperedge ewi of H corresponding to wi is replaced by the 2-

hyperedge ewi − {ui},
(2b) otherwise, the 2-hyperedge ei of H is deleted.
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By Lemma 28 and the preceding remarks, it suffices to show that H ′ admits a quasitree with tight
complement. To do so, we apply to H ′ the proof of Theorem 5, which works well as far as equation
(14). However, the inequality (15) may fail since H ′ is not necessarily 4-edge-connected. It has to be
replaced as follows.

For an arbitrary hypergraph H∗, let s(H∗) be the sum of all vertex degrees in H∗. Let P be the
partition of V (H ′) obtained in the proof of Theorem 5. Furthermore, let n∗

4 be the number of vertices
of degree 4 in H/P , and let n∗

5+ = n − n∗

4 . (All the symbols such as n, m, m3 etc., used in the proof of
Theorem 5, are now related to the hypergraph H ′ rather than H .)

It is not hard to relate s(H ′) to s(H). Indeed, the operations in cases (1), (2a) and (2b) above decrease
the degree sum by 3, 1 and 2, respectively. It follows that s(H ′) ≥ s(H) − 4 and, in fact,

s(H ′/P ) ≥ s(H/P ) − 4.
Since H is 4-edge-connected, we know that

s(H/P ) ≥ 4n∗

4 + 5n∗

5+

and thus we can replace (15) by
4n∗

4 + 5n∗

5+ − 4 ≤ s(H ′/P ) = 2m + m3 + m3.

This eventually leads to
m3 ≥ m3 + n∗

5+ + 2
as a replacement for (16). Thus, the contradiction is much the same as before, since we have (by the
same argument as in the old proof) thatm3 ≤ n∗

5+ . This proves Theorem 26 in the case of line graphs.
If G is a claw-free graph, we will use a closure operation again. However, the claw-free closure

described in Section 10 is not applicable, since the closure of G may be Hamilton-connected even if
G is not. Instead, we use the M-closure which was defined in [22] and applied there to prove that 7-
connected claw-free graphs are Hamilton-connected. Let us list its relevant properties [22, Theorem
9]:

Theorem 29. If G is a connected claw-free graph, then there is a well-defined graph clM(G) with the
following properties:
(i) G is a spanning subgraph of clM(G),
(ii) clM(G) is the line graph of a multigraph H,
(iii) clM(G) is Hamilton-connected if and only if G is Hamilton-connected.

Using this result (and the fact that parallel edges are allowed throughout our argument), it is easy
to prove Theorem 26 just like Corollary 25 is proved using the claw-free closure.

12. Conclusion

We have developed a method for finding dominating eulerian subgraphs in graphs, based on the
concept of a quasitree with tight complement. Using this method, we have made some progress on
Conjecture 2, although the conjecture itself is still wide open. It is conceivable that a refinement in
some part of the analysismay improve the result a bit — perhaps to all 5-connected line graphs. On the
other hand, the 4-connected casewould certainly requiremajor new ideas. For instance, the preimage
G of a 4-connected line graph may be cubic, in which case we do not even know how to associate a
3-hypergraph with G in the first place.

As mentioned in Section 1, a simpler variant of our method yields a short proof of the tree-packing
theorem of Tutte and Nash-Williams. It is well known that spanning trees in a graph G are the bases of
a matroid, the cycle matroid of G, and thusmatroid theory provides a very natural setting for the tree-
packing theorem. Interestingly, quasitrees with tight complement do not quite belong to the realm
of matroid theory, although quasitrees themselves do. Is there an underlying abstract structure, more
general than the matroidal one, which forms the ‘reason’ for the existence of both disjoint spanning
trees in graphs, and quasitrees with tight complement in hypergraphs?

It remains a question for further research whether our approach may be useful for other problems
on the packing of structures similar to spanning trees, but also lacking their matroidal properties.
These include the packing of Steiner trees [13,14] or T -joins [3,20].
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Abstract

A graph G is said to be claw-free if G has no induced subgraph isomorphic to K1,3. For
a cycle C in a graph G, C is called a Tutte cycle of G if C is a Hamilton cycle of G, or the
order of C is at least 4 and every component of G − C has at most three neighbors on C.
In [On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997), 217–224],
Ryjáček proved that the conjectures by Matthews and Sumner (every 4-connected claw-free
graph is Hamiltonian) and by Thomassen (every 4-connected line graph is Hamiltonian) are
equivalent. In this paper, we show the above conjectures are equivalent with the conjecture
by Jackson in 1992 (every 2-connected claw-free graph has a Tutte cycle).

Keywords: Hamiltonian, Claw-free graph, Line graph, Tutte cycle
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1 Introduction

In this paper, we consider finite graphs without loops. For terminology and notation not defined

in this paper, we refer the readers to [5]. Let G be a graph. We denote by V (G) and E(G) the

vertex set and the edge set of G, respectively. The degree of a vertex v of G is the number of

edges incident with v in G, and we denote by δ(G) the minimum degree of G. For X ⊆ V (G),

we let G[X] denote the subgraph induced by X in G, and let G − X = G[V (G) − X]. For
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a subgraph H of G, let G − H = G − V (H). A graph G is said to be Hamiltonian if G has

a Hamilton cycle, i.e., a cycle containing all vertices of G, and Hamilton-connected if G has a

Hamilton path between any pair of vertices, i.e., a path containing all vertices of G. A graph G

is said to be claw-free if G has no induced subgraph isomorphic to K1,3. For a cycle C of G, C

is said to be maximal if there exists no cycle C ′ such that V (C) ( V (C ′).

In this paper, we will deal with many statements which are unknown to be true or not. We

call two statements equivalent if the correctness of one statement implies that of the other and

vice versa. Most of the results in this paper are motivated by the following two conjectures due

to Matthews and Sumner [16] and Thomassen [22], respectively.

Conjecture A (Matthews and Sumner [16], Thomassen [22]) The following statements

are true.

(A1) Every 4-connected claw-free graph is Hamiltonian.

(A2) Every 4-connected line graph is Hamiltonian.

Since every line graph is claw-free, statement (A2) is a special case of statement (A1).

However it is known that a result on closures due to Ryjáček [17] implies that statements (A1)

and (A2) are even equivalent.

Theorem B (Ryjáček [17]) Statements (A1) and (A2) are equivalent.

Like Theorem B, many statements that are seemingly stronger or weaker than statements

(A1) and (A2) have been proven to be equivalent to it as follows (see a survey [4] for more

details). Note that statements (A5) and (A6) were conjectured by Ash and Jackson [1] and

Fleischner [7], respectively.

Theorem C All of the following statements are equivalent to statements (A1) and (A2).

(A3) Every 4-connected claw-free graph is Hamilton-connected [18].

(A4) Every 4-connected line graph is 1-Hamilton-connected (2-edge-Hamilton-connected) [14].

(A5) Every essentially 4-edge-connected graph has a dominating closed trail [8].

(A6) Every cyclically 4-edge-connected cubic graph has a dominating cycle [8].

(A7) Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a dominating

cycle [11].

(A8) Every snark has a dominating cycle [2].

Recently, as a positive result related to Conjecture A, Kaiser and the fourth author [15]

proved that every 5-connected claw-free graph with minimum degree at least 6 is Hamilton-

connected.
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On the other hand, it is known that considering “Tutte cycles” is an effective approach to

some problems on Hamiltonicity, where a cycle C of a graph G is called a Tutte cycle of G if

(i) C is a Hamilton cycle of G, or (ii) |V (C)| ≥ 4 and every component of G − C has at most

three neighbors on C. Note that every Tutte cycle C of a 4-connected graph G is a Hamilton

cycle, since otherwise the neighbors of a component of G − C form a cut set of order at most

three, contradicting 4-connectedness of G. One can show that every 4-connected planar graphs

are Hamiltonian by proving assertions on the existence of certain Tutte cycles in 2-connected

planar graphs (see [21, 23]). Starting with this result, many researchers have studied about the

existence of certain Tutte cycles not only in planar graphs but also in projective planar graphs

or graphs on other surfaces in order to show Hamiltonicity of such graphs, (for example, see

[19, 20, 24]). Thus, it has succeeded to show Hamiltonicity of 4-connected planar graphs or

graphs on surfaces, considering stronger concept “Tutte cycles”.

Motivated by the above situation for planar graphs, in this paper, we concentrate on Tutte

cycles in claw-free graphs. As a possible approach to solve Conjecture A, Jackson [10] proposed

the following conjecture (also see a survey [6, Conjecture 2a.5]).

Conjecture D (Jackson [10]) The following statement is true.

(A9) Every 2-connected claw-free graph has a Tutte cycle.

As mentioned above, Tutte cycles in 4-connected graphs are Hamilton cycles, and hence

statement (A9) implies statement (A1). The main result of this paper is to show that the

converse also holds. In fact, we prove the following theorem.

Theorem 1 Statements (A1) and (A9) are equivalent.

On the other hand, if a graph has a Tutte cycle, then we can expect that it is long since it

can avoid only vertices in a component of the graph after deleting a cut set of order at most

three. Actually, Tutte cycles in 4-connected graphs are Hamilton cycles, i.e., Tutte cycles in

4-connected graphs are longest cycles of the graphs. How about 2-connected (or 3-connected)

claw-free graphs? In view of Theorem 1, it would be natural to ask that every 2-connected (or

3-connected) claw-free graph has a Tutte cycle which is longest. As an answer of this problem,

in Section 6, we will give a 3-connected claw-free graph in which any Tutte cycle is not longest.

Thus it is not always true that a 2-connected (or 3-connected) claw-free graph has a longest

one. However, the following theorem, which is also our main theorem, implies that if every

2-connected claw-free graph has a Tutte cycle, then we can always take it so that it is maximal.

Theorem 2 Statement (A9) is equivalent to the following statement.

(A10) Every 2-connected claw-free graph has a Tutte cycle which is a maximal cycle of the graph.

In Sections 3 and 4, we prove Theorems 1 and 2 by using closure concepts and other related

results, some of which are also new.
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2 Notation and terminology

In this section, we prepare terminology and notation which we use subsequent sections. Let G

be a graph. For a vertex v of G, we denote by dG(v) and NG(v) the degree and the neighborhood

of v in G, respectively, and let NG[v] = NG(v) ∪ {v}. For an integer l, let Vl(G) = {v ∈ V (G) |
dG(v) = l}, and let V≥l(G) =

∪
m≥l Vm(G) and V≤l(G) =

∪
m≤l Vm(G). For a subgraph H of

G and a vertex v in G − H, let NH(v) = NG(v) ∩ V (H). For subgraphs H and F of G with

V (F ) ∩ V (H) = ∅, we define NH(F ) =
∪

v∈V (F ) NH(v). We use L(G) for the line graph of G.

Let e ∈ E(G). We denote by ve a vertex in L(G) corresponding to e. Let V (e) be the set of

end vertices of e, and we define EG(e) = {f ∈ E(G) | V (f) ∩ V (e) 6= ∅}. The edge degree of

e in G is defined by the number of elements of EG(e) − {e}, i.e., the number of edges incident

with e. Note that for a graph G, the minimum edge degree of G is d if and only if the minimum

degree of L(G) is d. For subsets X and Y of V (G) with X ∩ Y = ∅, let EG(X, Y ) denote the

set of edges between X and Y , and let eG(X, Y ) = |EG(X,Y )|. We often identify a subgraph

H of G with its vertex set V (H). For example, we write EG(H, F ) instead of EG(V (H), V (F ))

for two disjoint subgraphs H and F of G. For a graph H and an edge set X, H + X means

the graph with vertex set V (H) ∪
( ∪

e∈X V (e)
)

and the edge set E(H) ∪X. For a subgraph H

of G, let EG(H) = E(G[V (H)]) ∪ EG(H, G − H). A star is a graph consisting of a vertex and

edges incident with the vertex (note that a star is not necessary a tree in this paper).

3 Closure

In this and the next sections, we will prove Theorems 1 and 2. In order to prove them, here we

consider a new statement and divide the proof into two theorems. Before mentioning those, we

need some definitions.

A connected graph T is called a closed trail (abbreviated as CT) if all vertices of T have even

degree in T . Let H be a multigraph, and let T be a CT of H. We call T a dominating closed

trail of H if H −T is edgeless (in case that T is a cycle, we call T a dominating cycle), and T is

said to be edge-maximal if there exists no closed trail T ′ of H such that EH(T ) ( EH(T ′). Note

that a dominating CT of H is an edge-maximal CT of H. In [9], it is shown that for a connected

multigraph H with |E(H)| ≥ 3, H has a dominating CT if and only if L(H) is Hamiltonian.

Hence by the definition of an edge-maximal CT, we can easily obtain the following lemma.

Lemma 1 Let H be a graph, and let T be an edge-maximal CT of H and H∗ = H[V (T )] +

EH(T, H − T ). Then L(H∗) has a Hamiltonian cycle which is a maximal cycle of L(H).

Let H be a graph with |E(H)| ≥ 3. For a closed trail T of H, T is called a Tutte closed

trail of H if (i) EH(T ) = E(H), or (ii) |EH(T )| ≥ 4 and eH(F, T ) ≤ 3 for every component

F of H − T , and T is called a weakly Tutte closed trail of H if (i) EH(T ) = E(H), or (ii)
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|EH(T )| ≥ 4 and eH(F, T ) ≤ 3 for all F ∈ FH(T ), where let FH(T ) = {F | F is a component

of H − T with |V (F )| ≥ 2}. If T is a Tutte closed trail (resp. a weakly Tutte closed trail) and

an edge-maximal closed trail of H, then we call T a Tutte (resp. a weakly Tutte) edge-maximal

closed trail of H. Furthermore, we need the following terminology and notation. Now let H

be a connected multigraph. For an edge-cut set X of H, X is called an essential k-edge-cut

set of H if |X| = k and G − X has exactly two components of orders at least 2. We define

Ek(H) = {X ⊆ E(H) | X is an essential k-edge-cut set of H}. For an integer k ≥ 2, H is called

essentially k-edge-connected if |E(H)| ≥ k + 1 and El(H) = ∅ for all l < k. It is known that for

a multigraph H such that L(H) is not complete, H is essentially k-edge-connected if and only

if L(H) is k-connected and that if H is essentially 2-edge-connected and H is not a star, then

H − V1(H) is 2-edge-connected.

We are ready to state a new statement that plays a crucial role in the proofs of Theorems 1

and 2. We also give two theorems.

(A11) Every essentially 2-edge-connected multigraph has a weakly Tutte edge-maximal CT.

Theorem 3 If statement (A1) is true, then statement (A11) is also true.

Theorem 4 If statement (A11) is true, then statement (A10) is also true.

Here we prove Theorems 1 and 2 assuming Theorems 3 and 4.

Proof of Theorem 1. It is clear that statement (A10) implies statement (A9) and statement

(A9) implies statement (A1). On the other hand, if statement (A1) is true, then by Theorem 3,

statement (A11) is true, and by Theorem 4, statement (A10) is also true. This completes the

proofs of Theorems 1 and 2. �

Thus, to prove Theorems 1 and 2, it suffices only to show Theorems 3 and 4. We will prove

Theorems 3 and 4 in the next section and in the rest of this section, respectively. Notice that

by Theorems 3 and 4, we have that statement (A11) is also equivalent to statement (A1).

Before preparing some results to prove Theorem 4, we also state other statements and a

theorem as follows.

(A12) Every essentially 2-edge-connected multigraph has a weakly Tutte CT.

(A13) Every essentially 2-edge-connected multigraph has a Tutte CT.

Theorem 5 If statement (A12) is true, then statement (A13) is also true.

We can easily see that statement (A11) implies statement (A12). Moreover, by the definition

of a Tutte CT, it is easy to check that statement (A13) implies statement (A5) “every essentially

4-edge-connected graph has a dominating CT”. Therefore, combining this with Theorems C, 3
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and 5, we have that statement (A1) is also equivalent to statements (A12) and (A13). Note that

it is not necessary to prove Theorem 5 for the proofs of Theorems 3 and 4, but we prove it since

it may itself be interesting (we will prove Theorem 5 in Section 5).

Now we introduce some concepts to prove Theorem 4. We use Ryjáček closure [17] and

certain cycles with a particular property. In [17], Ryjáček introduced the concept of a closure

for claw-free graphs as follows. For a vertex v of a graph G, we call v a locally connected vertex

of G if G[NG(v)] is connected. For a locally connected vertex v of a graph G, we call v an eligible

vertex of G if G[NG(v)] is not compete. Let G be a claw-free graph. For an eligible vertex v of

G, the operation of adding all possible edges between vertices in NG(v) is called local completion

at v. In [17], it is shown that this operation preserves the claw-freeness of the original graph.

Iterating local completions as long as possible, we obtain the graph G∗ in which G∗[NG∗(v)] is

a complete graph for every locally connected vertex v, i.e., there is no eligible vertex in G∗. We

call this graph the closure of G, and denote it cl(G). In [17], it is shown that the closure of a

graph has the following property.

Theorem E (Ryjáček [17]) Let G be a claw-free graph. Then the following hold.

(i) cl(G) is well-defined, (i.e., uniquely defined).

(ii) There exists a triangle-free simple graph H such that L(H) = cl(G).

(iii) The length of a longest cycle in G and in cl(G) is the same.

To obtain Theorem E (iii), Ryjáček actually proved the following, where for an eligible vertex

v of a claw-free graph G, let Gv be the graph obtained from G by local completion at v.

Proposition F (Ryjáček [17]) Let G be a claw-free graph and v be an eligible vertex of G.

If C ′ is a longest cycle of Gv, then G has a cycle C such that V (C) = V (C ′).

We further consider about certain cycles with a particular property as follows. For a vertex

v of G, we call v a simplicial vertex of G if G[NG(v)] is complete. A cycle C of a claw-free graph

G is called a cycle with (∗)-property if C satisfies the following property:

(∗)
for every vertex x in C such that x is a simplicial vertex of cl(G),

if E(G[NG[x]]) ∩ E(C) 6= ∅, then NG[x] ⊆ V (C).

Proposition F might not hold for a cycle C ′ which is not a longest cycle of Gv. However, in the

proof of Proposition F, the maximality of |V (C ′)| is only used for the fact that NGv [v] ⊆ V (C ′) if

E(Gv[NGv [v]])∩E(C ′) 6= ∅. Therefore by the definition of the (∗)-property, the same argument

can work in the proof of the following proposition. Note that every eligible vertex of G is a

simplicial vertex of cl(G). Note also that NG(x) ⊆ NGv(x) for all x ∈ V (G), and hence the

(∗)-property is a heredity property from Gv to G.
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Proposition 6 Let G be a claw-free graph and v be an eligible vertex of G. If C ′ is a cycle

with (∗)-property of Gv, then G has a cycle C with (∗)-property such that V (C) = V (C ′).

As a corollary of Proposition 6, we can obtain the following, where for convenience, we call

a cycle C of a graph G a Tutte maximal cycle of G if C is a Tutte cycle and a maximal cycle

of G. Note that if C ′ is a Tutte cycle (resp. a maximal cycle) of Gv, then C is a Tutte cycle

(resp. a maximal cycle) of G for any cycle C in G such that V (C) = V (C ′).

Corollary 7 Let G be a claw-free graph. If cl(G) has a Tutte maximal cycle with (∗)-property,

then G has a Tutte maximal cycle with (∗)-property.

By the definition of a weakly Tutte edge-maximal CT, the following holds.

Proposition 8 Let G be a claw-free graph, and let H be a graph with L(H) = cl(G). If H has

a weakly Tutte edge-maximal CT, then L(H) has a Tutte maximal cycle with (∗)-property.

Proof of Proposition 8. Let T be a weakly Tutte edge-maximal CT of H and H∗ = H[V (T )]+

EH(T, H − T ). Then by Lemma 1, L(H∗) has a Hamilton cycle C which is a maximal cycle of

L(H). Let e ∈ E(H∗). Then by the definition of H∗, if e ∈ EH(F, T ) for some F ∈ FH(T ),

then ve is not a simplicial vertex of L(H) ( = cl(G)). Also, if e /∈ EH(F, T ) for all F ∈ FH(T ),

then EH(e) ⊆ E(H∗), and hence NL(H)(ve) ⊆ V (C). This implies that C is a cycle with (∗)-
property of L(H). On the other hand, by the definition of a weakly Tutte CT, eH(F, T ) ≤ 3

for all F ∈ FH(T ). Since EH(F ) ∩ E(H∗) = EH(F, T ) for each F ∈ FH(T ), we have that

|NC(L(F ))| = |EH(F ) ∩ E(H∗)| = eH(F, T ) ≤ 3 for each F ∈ FH(T ). Moreover, by again the

definition of a weakly Tutte CT, V (C) = E(H∗) = EH(T ) = E(H) or |V (C)| = |E(H∗)| =

|EH(T )| ≥ 4 holds. These imply that C is a Tutte cycle of L(H). Thus C is a Tutte maximal

cycle with (∗)-property of L(H). �

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Suppose that statement (A11) is true. Let G be a 2-connected claw-free

graph. By Theorem E (ii), there exists a triangle-free simple graph H such that L(H) = cl(G).

If L(H) is complete, then L(H) clearly has a Hamilton cycle, and hence by Theorem E (iii), G

has a Hamilton cycle, that is, G has a Tutte maximal cycle. Thus we may assume that L(H)

is not complete, and hence H is essentially 2-edge-connected. Since we assumed that statement

(A11) is true, H has a weakly Tutte edge-maximal CT. Then, by Proposition 8, L(H) has a

Tutte maximal cycle with (∗)-property. Hence by Corollary 7, G has a Tutte maximal cycle.

Thus statement (A10) is also true and this completes the proof of Theorem 4. �
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4 Proof of Theorem 3

4.1 Set up for the proof of Theorem 3

In the end of this section, we will prove Theorem 3, that is, prove statement (A11) assuming

(A1), by induction on the number of elements of E2(H) ∪ E3(H), where H is a given essentially

2-edge-connected multigraph. In order to do that, we need the following for the first step of

the induction. Here for a graph H and a subset S of E(H) ∪ V (H), a closed trail T of H is

a called an S-closed trail (abbreviated as S-CT) if S ⊆ E(T ) ∪ V (T ). Furthermore, if T is a

dominating closed trail (resp. a weakly Tutte closed trail) and an S-closed trail of H, we call T

a dominating (resp. a weakly Tutte) S-closed trail of H.

Lemma 2 Statement (A1) is equivalent to the following statement.

(A14) Every essentially 4-edge-connected multigraph H has a dominating V≥4(H)-CT, i.e., H

has a Tutte edge-maximal CT.

Proof of Lemma 2. By Theorem C, it is easy to see that statement (A14) implies statement

(A1). So it suffices to show the converse. Assume that statement (A1) is true. Then by Theorem

C, every essentially 4-edge-connected graph has a dominating CT. Let H be an essentially 4-edge-

connected multigraph. Let H∗ be the graph obtained from H by adding a pendant edge to each

vertex in V≥4(H). Then H∗ is also essentially 4-edge-connected and V≥4(H∗) = V≥4(H). By the

assumption, H∗ has a dominating closed trail T . Since each vertex in V≥4(H∗) is incident with

a pendant edge, V≥4(H∗) ⊆ V (T ). Therefore by the definition of H∗, since V≥4(H∗) = V≥4(H),

we have that T is a dominating V≥4(H)-CT of H. �

We next prepare some results to prove the case of E2(H) = ∅ and E3(H) 6= ∅. To show this

case, we actually consider about weakly Tutte closed trails passing through specified vertices

and edges. Before mentioning the statement, we prepare the following terminology. Let H be a

multigraph. For three distinct edges e1, e2 and e3 in H, (e1, e2, e3) is called a 3-star of H if there

exists a vertex u of H such that dH(u) = 3, u ∈ V (e1)∩V (e2)∩V (e3) and V (e3)−{u} ⊆ V≥3(H),

and u is called the center of (e1, e2, e3).

(A15) Let H be an essentially 4-edge-connected multigraph, and let (e1, e2, e3) be a 3-star of H.

Then H has a dominating {e1, e2} ∪ V (e3) ∪ V≥4(H)-CT.

In order to consider statement (A15), we need the concept called “V2(H)-dominated”. A

graph H is said to be V2(H)-dominated if for any distinct four vertices u1, u2, v1 and v2 in H

with {u1, u2, v1, v2} = V2(H), the graph H + {u1u2, v1v2} has a dominating {u1u2, v1v2}-CT.

The following was proven by Kužel [13].

Theorem G (Kužel [13]) Statement (A1) is equivalent to the following statement.
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(A16) Any subgraph H of an essentially 4-edge-connected cubic graph with δ(H) = 2 and

|V2(H)| = 4 is V2(H)-dominated.

Actually, we show the following theorem in this section.

Theorem 9 If statement (A16) is true, then statement (A15) is also true.

We prove Theorem 9 in the next subsection and prove Theorem 3 in Subsections 4.3 and 4.4.

At the end of this subsection, we give another theorem as follows.

Theorem 10 If statement (A15) is true, then statement (A1) is also true.

Combining Theorem 10 with Theorems G and 9, statement (A1) is also equivalent to state-

ment (A15). Note that it is not necessary to prove Theorem 10 for the proof of Theorem 9, but

we prove it since it may itself be interesting (we will prove Theorem 10 in Section 5).

4.2 Proof of Theorem 9

We first prove Theorem 9. We need some concepts and results.

Let k ≥ 3 be an integer, and let H be an essentially 3-edge-connected graph such that L(H)

is not complete. Note that V≤2(H) is an independent set of H. The core of a graph H denoted by

core(H), is the graph obtained by recursively deleting all vertices of degree 1, recursively deleting

a vertex z with degree 2 in H and adding the edge xy with NH(z) = {x, y}, and recursively

deleting the created loops. It is easy to see that if H is an essentially k-edge-connected graph

such that L(H) is not complete, then core(H) is a 3-edge-connected essentially k-edge-connected

multigraph (in particular, δ(core(H)) ≥ 3). Moreover we can see that the following holds.

Lemma 3 Let H be an essentially 4-edge-connected graph such that L(H) is not complete, and

let H∗ = core(H). Suppose that H∗ has a dominating V≥4(H∗)-closed trail T ∗. Then H has a

dominating V≥4(H)-closed trail T which satisfies the following:

• If xy ∈ E(T ∗), then xy ∈ E(T ) or xz, yz ∈ E(T ) for some z ∈ V2(H).

Proof of Lemma 3. By the definition of a core, for each xy ∈ E(H∗), xy ∈ E(H) or there

exists a vertex z in V2(H) such that xz, yz ∈ E(H). Let X = {e ∈ E(H∗) | e /∈ E(H)}.
For each e = xy ∈ X, let ze be a vertex in V2(H) such that NH(ze) = {x, y}. Then by

replacing e with a path xzey for each e = xy ∈ E(T ∗) ∩ X, we can obtain a closed trail T

of H such that V (T ) = V (T ∗) ∪ {ze | e ∈ E(T ∗) ∩ X} and E(T ) = {xze, yze | e = xy ∈
E(T ∗) ∩ X} ∪ (E(T ∗) − X). Moreover, since V≥4(H∗) = V≥4(H) by the definition of a core

and the assumption, V≥4(H) = V≥4(H∗) ⊆ V (T ∗) ⊆ V (T ). Therefore, to complete the proof,

we have only to prove that T is a dominating CT of H. Note that |E(H)| ≥ 5 because H is

essentially 4-edge-connected. Let x ∈ V (H−T ). Since V (T ∗) ⊆ V (T ), x /∈ V (T ∗). Suppose that
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NH(x) 6⊆ V (T ), and let z ∈ NH(x)−V (T ). If {x, z} ⊆ V≥3(H), then by the definition of a core,

{x, z} ⊆ V (H∗) and xz ∈ E(H∗). Since x, z /∈ V (T ∗), this contradicts that T ∗ is a dominating

CT of H∗. Thus {x, z} ∩ V≤2(H) 6= ∅. Since H is essentially 4-edge-connected and L(H) is

not complete, we also have that {x, z} ∩ V≥3(H) 6= ∅. Since x, z ∈ V (H − T ) and xz ∈ E(H),

we may assume that x ∈ V≥3(H) and z ∈ V≤2(H). Since V≥4(H) ⊆ V (T ), x ∈ V3(H). Then

EH(xz)−{xz} ∈ E2(H)∪ E3(H), a contradiction. Thus NH(x) ⊆ V (T ). Since x is an arbitrary

vertex in H − T , this implies that T is a dominating CT of H. �

We also need the following operation (see [8] for more details). Let H be a graph and

z ∈ V≥4(H), and let u1, u2, . . . , ud (d = dH(z)) be an ordering of neighbors of z (we allow

repetition in case of parallel edges). Then the graph Hz obtained from the disjoint union of

G − z and the cycle Cz = z1z2 . . . zdz1 by adding the edges uizi for each 1 ≤ i ≤ d is called

an inflation of H at z. If δ(H) ≥ 3, then, by successively taking an inflation at each vertex

of degree greater than 3, we can obtain a cubic graph HI , called a cubic inflation of H. An

inflation of a graph at a vertex is not unique (since it depends on the ordering of neighbors of

z) and the operation may decrease the edge-connectivity. However, the following was proven in

[8].

Theorem H (Fleischner and Jackson [8]) Let H be an essentially 4-edge-connected graph

with δ(H) ≥ 3. Then some cubic inflation of H is also essentially 4-edge-connected.

Let HI be a cubic inflation of a graph H and for each z ∈ V (H), set I(z) = V (Cz) if

z ∈ V≥4(H); otherwise, set I(z) = {z}. Observing that a dominating cycle in HI must contain

at least one vertex in I(z) for each z ∈ V≥4(H), we immediately have the following fact (which

is implicit in [8]).

Lemma I (Fleischner and Jackson [8]) Let H be a graph with δ(H) ≥ 3, and let HI be a

cubic inflation of H. Suppose that HI has a dominating cycle C. Then H has a dominating

V≥4(H)-closed trail T which satisfies the following:

• If uv ∈ E(C) with u ∈ I(x) and v ∈ I(y) for some x, y ∈ V (H) (x 6= y), then xy ∈ E(T ).

Proof of Theorem 9. Suppose that statement (A16) is true. Let H be an essentially 4-edge-

connected multigraph, and let (e1, e2, e3) be a 3-star of H (note that V (e3) ⊆ V≥3(H) and that

V (e1)∪ V (e2) ⊆ V≥2(H) because H is essentially 4-edge-connected). We will find a dominating

{e1, e2} ∪ V (e3) ∪ V≥4(H)-CT of H.

If L(H) is complete, then we can easily see that (i) H is a star such that V (e1) = V (e2) =

V (e3), or (ii) H is a triangle such that e3 is an unique simple edge in H or V (ei) = V (e3) and

V (e3−i) 6= V (e3) for some i = 1 or 2. In either case, clearly H has a spanning closed trail T

such that {e1, e2} ⊆ E(T ), that is, H has a desired closed trail.
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Figure 1: The subgraph H ′ of HI

Thus we may assume that L(H) is not complete. Let u be the center of (e1, e2, e3). Let

H∗ = core(H). Then H∗ is an essentially 4-edge-connected graph with δ(H∗) ≥ 3. Note that

e3 ∈ E(H∗) since V (e3) ⊆ V≥3(H). Let e∗1 and e∗2 be two distinct edges incident with u in H∗

such that e∗i 6= e3 for each i = 1, 2, and let e∗3 = e3. Note that (e∗1, e
∗
2, e

∗
3) is a 3-star with center

u of H∗.

By Theorem H, there exists a cubic inflation HI of H∗ such that HI is essentially 4-edge-

connected. Note that HI is a simple graph. Note also that by the definition of a 3-star,

I(u) = {u}. For each i with 1 ≤ i ≤ 3, let vi ∈ V (e∗i ) − {u}, and let v′i ∈ I(vi) such that

uv′i ∈ E(HI). We claim that HI has a dominating cycle containing uv′1, uv′2 and v′3. Since HI

is essentially 4-edge-connected, if v′kv
′
l ∈ E(HI) for some k and l with 1 ≤ k < l ≤ 3, then it

is easy to check that HI ∼= K4, and hence HI has a desired dominating cycle. Thus we may

assume that v′kv
′
l /∈ E(HI) for each k and l with 1 ≤ k < l ≤ 3.

Let {w(3)
1 , w

(3)
2 } = NHI (v′3) − {u}. Then since H ′ := HI − {u, v′3} is a subgraph of HI such

that δ(H ′) = 2 and V2(H ′) = {v′1, v′2, w
(3)
1 , w

(3)
2 } and we assumed that statement (A16) is true,

H ′ + {v′1v′2, w
(3)
1 w

(3)
2 } has a dominating cycle C ′ containing v′1v

′
2 and w

(3)
1 w

(3)
2 (see Figure 1).

Hence (C ′ − {v′1v′2, w
(3)
1 w

(3)
2 }) + {uv′1, uv′2, v

′
3w

(3)
1 , v′3w

(3)
2 } is a desired dominating cycle of HI .

Thus the assertion holds. Then by Lemma I, H∗ has a dominating {e∗1, e∗2} ∪ V (e∗3) ∪ V≥4(H∗)-

CT. Hence by Lemma 3 and the definition of e∗1, e∗2 and e∗3, H has a dominating {e1, e2}∪V (e3)∪
V≥4(H)-CT. Therefore, statement (A15) is true, and this completes the proof of Theorem 9. �

4.3 Preparation for the proof of Theorem 3

In this subsection, we prepare some technical lemmas to prove Theorem 3.

In the proof of Theorem 3, we will restrict maximal cycles on H to some component. To

show that the resulting graph is a weakly Tutte CT, we use the following lemma.
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e
(1)
1

e
(1)
3

e
(1)
2

X = {e1, e2, e3} ∈ T3(H)

Figure 2: The graph HX
1

Lemma 4 Let H be a graph, and let T be a weakly Tutte CT of H. If T ′ is a CT of H such

that EH(T ′) = EH(T ), then T ′ is also a weakly Tutte CT of H.

Proof of Lemma 4. Let T ′ be a CT of H such that EH(T ′) = EH(T ), and suppose that

T ′ is not a weakly Tutte CT of H. Then there exists F ′ ∈ FH(T ′) with eH(F ′, T ′) ≥ 4.

Write EH(F ′, T ′) = {e1, . . . , el} (l ≥ 4). Since EH(F ′, T ′) ⊆ EH(T ′) = EH(T ), V (T ) ∩( ∪l
i=1 V (ei)

)
6= ∅. Let S = V (T ) ∩

( ∪l
i=1 V (ei)

)
, and suppose that S ⊆ V (T ′) ∩

( ∪l
i=1 V (ei)

)
.

Then {e1, . . . , el} = EH(F ′, T ′) ⊆ EH(T, H −T ) and there exists a component F of H −T such

that V (F ′) ⊆ V (F ), which contradicts the assumption that T is a weakly Tutte CT of H. Thus

S ∩ V (F ′) ∩
( ∪l

i=1 V (ei)
)
6= ∅, and hence E(F ′) ∩ EH(T ) 6= ∅. Since E(F ′) ∩ EH(T ′) = ∅, this

contradicts the assumption that EH(T ′) = EH(T ). �

In the rest of this subsection, we fix the following notation. Let k be an integer with

2 ≤ k ≤ 3, and let H be an essentially k-edge-connected graph.

To prove Theorem 3, we prepare the following terminology and notation. Let Tk(H) =

{(X, H1, H2) | X ∈ Ek(H) and, H1 and H2 are distinct components of G−X}. Let (X, H1,H2) ∈
Tk(H). We define two graphs HX

1 and HX
2 as follows. For each i = 1, 2, let HX

i be the graph

obtained from H by contracting H3−i to a vertex uH3−i . Note that HX
i is also an essentially k-

edge-connected multigraph. If X = {e1, . . . , ek}, then for each i, j with 1 ≤ i ≤ 2 and 1 ≤ j ≤ k,

let e
(i)
j be the edge in HX

i corresponding to ej (see Figure 2).

Now we fix the following notation. Let (X, H1,H2) ∈ Tk(H), and write X = {e1, . . . , ek}.

Lemma 5 Let 1 ≤ i ≤ 2. If HX
i has a weakly Tutte edge-maximal closed trail Ti such that

E(Ti)∩{e(i)
1 , . . . , e

(i)
k } = ∅, then Ti is a weakly Tutte edge-maximal closed trail of H, or HX

i has

a weakly Tutte edge-maximal closed trail Ri such that E(Ri) ∩ {e(i)
1 , . . . , e

(i)
k } 6= ∅.

Proof of Lemma 5. We may assume that i = 1. Note that T1 is a weakly Tutte CT of H because

E(T1) ∩ {e(1)
1 , . . . , e

(1)
k } = ∅. Suppose that T1 is not a weakly Tutte edge-maximal CT of H.

Then there exists an edge-maximal closed trail T ′ of H such that EH(T1) ( EH(T ′). Note that

E(T ′)∩X 6= ∅ because T1 is an edge-maximal CT of HX
1 such that E(T1)∩ {e(1)

1 , . . . , e
(1)
k } = ∅.

Note also that |E(T ′)∩X| = 2 because 2 ≤ k ≤ 3. We may assume that E(T ′)∩X = {e1, e2}, and

12
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Figure 3: The component F of H − T

let R1 = (T ′−V (H2))+{e(1)
1 , e

(1)
2 }. Then R1 is a CT of HX

1 . Since EH(T1) ⊆ EH(T ′), EHX
1

(T1)−
{e(1)

1 , . . . , e
(1)
k } = EH(T1) ∩ E(H1) ⊆ EH(T ′) ∩ E(H1). Moreover, by the definition of R1 and

since {e(1)
1 , . . . , e

(1)
k } ⊆ EHX

1
(R1) because uH2 ∈ V (R1), (EH(T ′) ∩ E(H1)) ∪ {e(1)

1 , . . . , e
(1)
k } =

EHX
1

(R1). This implies that EHX
1

(T1) ⊆ EHX
1

(R1). Since T1 is an edge-maximal CT of HX
1 , we

have that EHX
1

(T1) = EHX
1

(R1), and hence R1 is also an edge-maximal CT of HX
1 . Furthermore,

since T1 is a weakly Tutte CT of HX
1 and EHX

1
(T1) = EHX

1
(R1), it follows from Lemma 4 that

R1 is also a weakly Tutte CT of HX
1 . Thus R1 is a weakly Tutte edge-maximal CT of HX

1 such

that E(R1) ∩ {e(1)
1 , . . . , e

(1)
k } 6= ∅. �

We further fix the following notation in the following three lemmas (Lemmas 6 through 8).

Let ei = v
(1)
i v

(2)
i with v

(1)
i ∈ V (H1) and v

(2)
i ∈ V (H2) for each 1 ≤ i ≤ k. Let l1 and l2 be

integers with 1 ≤ l1 < l2 ≤ k, and for each i = 1, 2, let Ti be a {e(i)
l1

, e
(i)
l2
}-CT of HX

i and

T =
(
(T1 − uH2) ∪ (T2 − uH1)

)
+ {el1 , el2}.

Lemma 6 If Ti is a weakly Tutte CT of HX
i for each i = 1, 2 and {v(i)

1 , . . . , v
(i)
k } ⊆ V (Ti) for

some i = 1 or 2, then T is a weakly Tutte CT of H.

Proof of Lemma 6. We may assume that l1 = 1 and l2 = 2, and hence {v(i)
1 , v

(i)
2 } ⊆ V (Ti)

for each i = 1, 2. By the symmetry of T1 and T2, we also may assume that {v(1)
1 , . . . , v

(1)
k } ⊆

V (T1). Let F be a component of H − T . Since {v(1)
1 , . . . , v

(1)
k } ⊆ V (T1) − {uH2} ⊆ V (T ) and

{e1, e2} ⊆ E(T ), we have that if v
(2)
k /∈ V (F ), then F is a component of HX

i − Ti for some

i = 1 or 2, and hence EH(F, T ) = EHX
i

(F, Ti) for some i = 1 or 2; if v
(2)
k ∈ V (F ) (note that

in this case, k = 3), then F is a component of HX
2 − T2 and e

(2)
k ∈ EHX

2
(F, T2), and hence

EH(F, T ) =
(
EHX

2
(F, T2) − {e(2)

k }
)
∪ {ek} (see Figure 3). Since Ti is a weakly Tutte CT of HX

i

for each i = 1, 2, this implies that T is a weakly Tutte CT of H. �

Lemma 7 If Ti is an edge-maximal CT of HX
i for each i = 1, 2 and {v(i)

1 , . . . , v
(i)
k } ⊆ V (Ti) for

some i = 1 or 2, then T is an edge-maximal CT of H.

Proof of Lemma 7. If {v(1)
1 , . . . , v

(1)
k } ⊆ V (T1), then let A = {v(1)

1 , . . . , v
(1)
k }; otherwise, let
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A = {v(2)
1 , . . . , v

(2)
k }. Suppose that T is not an edge-maximal CT of H. Then there exists an

edge-maximal closed trail T ′ of H such that EH(T ) ( EH(T ′). Note that E(T ′)∩X 6= ∅. Let m1

and m2 be integers with 1 ≤ m1 < m2 ≤ k such that E(T ′)∩X = {em1 , em2}. For each i = 1, 2,

let Ri = (T ′ − V (H3−i)) + {e(i)
m1 , e

(i)
m2}. Then Ri is a CT of HX

i for each i = 1, 2. Let 1 ≤ i ≤ 2.

Since EH(T ) ⊆ EH(T ′), we have that EHX
i

(Ti) − {e(i)
1 , . . . , e

(i)
k } = EH(T ) ∩ E(Hi) ⊆ EH(T ′) ∩

E(Hi) = EHX
i

(Ri)−{e(i)
1 , . . . , e

(i)
k }. Since {e(i)

1 , . . . , e
(i)
k } ⊆ EHX

i
(Ti)∩EHX

i
(Ri) because uH3−i ∈

V (Ti) ∩ V (Ri), this implies that EHX
i

(Ti) ⊆ EHX
i

(Ri). Since Ti is an edge-maximal CT of HX
i ,

we obtain EHX
i

(Ti) = EHX
i

(Ri), i.e., EHX
i

(Ti)−{e(i)
1 , . . . , e

(i)
k } = EHX

i
(Ri)−{e(i)

1 , . . . , e
(i)
k }. Since

i is an arbitrary integer with 1 ≤ i ≤ 2, EHX
i

(Ti) − {e(i)
1 , . . . , e

(i)
k } = EHX

i
(Ri) − {e(i)

1 , . . . , e
(i)
k }

holds for each i = 1, 2. On the other hand, since A ⊆ (V (T1)−{uH2})∪(V (T2)−{uH1}) = V (T ),

X ⊆ EH(T ), and hence X ⊆ EH(T ′). Thus we obtain EH(T ) = (EHX
1

(T1) − {e(1)
1 , . . . , e

(1)
k }) ∪

(EHX
2

(T2)−{e(2)
1 , . . . , e

(2)
k })∪X = (EHX

1
(R1)−{e(1)

1 , . . . , e
(1)
k })∪ (EHX

2
(R2)−{e(2)

1 , . . . , e
(2)
k })∪

X = EH(T ′), a contradiction. �

We call (X, H1,H2) ∈ Tk(H) a minimal 3-tuple of H if there exists no X ′ ∈ Ek(H) such that

H − X ′ has a component H ′
2 such that V (H ′

2) ( V (H2). Then by the definition of a minimal

3-tuple, we can obtain the following.

Lemma 8 Suppose that k = 3 and (X, H1,H2) is a minimum 3-tuple of H. If dH(v(2)
j ) = 2 for

some j with 1 ≤ j ≤ 3, then H2 is isomorphic to K2.

Proof of Lemma 8. We may assume that j = 3. Since H is essentially 3-edge-connected,

X ∈ E3(H) and dH(v(2)
3 ) = 2, it follows that there exists an unique vertex v′ in NH(v(2)

3 )∩V (H2).

Note that v′ ∈ V≥3(H) and H2 − v
(2)
3 is connected. Then X ′ := {e1, e2, v

(2)
3 v′} is an edge-cut set

of H, and H1 + {e3} and H2 − v
(2)
3 are components of H − X ′. Therefore, since (X, H1,H2) is

a minimal 3-tuple of H, we have |V (H2 − v
(2)
3 )| = 1. �

4.4 Proof of Theorem 3

We finally prove Theorem 3.

Proof of Theorem 3. Assume that statement (A1) is true. Let H be an essntially 2-edge-

connected multigraph. We will prove that H has a weakly Tutte edge-maximal CT by induction

on g(H) := |E2(H) ∪ E3(H)|. If g(H) = 0, then H is essentially 4-edge-connected. By the

assumption that statement (A1) is true and Lemma 2, H has a desired CT, and we are done.

Hence we may assume that g(H) ≥ 1.

By way of a contradiction, suppose that

H has no weakly Tutte edge-maximal CT. (4.1)
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Suppose first that E2(H) 6= ∅, let (X,H1,H2) ∈ T2(H) and write X = {e1, e2}. Then HX
i is

also essentially 2-edge-connected and g(HX
i ) < g(H) for each i = 1, 2. Hence by the induction

hypothesis, HX
i has a weakly Tutte edge-maximal closed trail Ti for each i = 1, 2. By Lemma 5

and (4.1), we may assume that E(Ti) ∩ {e(i)
1 , e

(i)
2 } 6= ∅ for each i = 1, 2, and hence {e(i)

1 , e
(i)
2 } ⊆

E(Ti) for each i = 1, 2. Then by Lemmas 6 and 7, T :=
(
(T1 − uH2) ∪ (T2 − uH1)

)
+ {e1, e2} is

a weakly Tutte edge-maximal CT of H, which contradicts (4.1) again. Thus E2(H) = ∅.
Then H is essentially 3-edge-connected. Let (X, H1,H2) be a minimal 3-tuple of H in T3(H).

Write X = {e1, e2, e3} and ei = v
(1)
i v

(2)
i with v

(1)
i ∈ V (H1) and v

(2)
i ∈ V (H2) for each 1 ≤ i ≤ 3.

Note that HX
i is also essentially 3-edge-connected, and g(HX

i ) < g(H) for each i = 1, 2, and

hence by the induction hypothesis, HX
1 has a weakly Tutte edge-maximal CT. We define T =

{T1 | T1 is a weakly Tutte edge-maximal CT of HX
1 such that E(T1) ∩ {e(1)

1 , e
(1)
2 , e

(1)
3 } 6= ∅}. By

Lemma 5 and (4.1), T 6= ∅ (note that |E(T1) ∩ {e(1)
1 , e

(1)
2 , e

(1)
3 }| = 2 for all T1 ∈ T ).

We divide the proof of Theorem 3 into two cases.

Case 1. dHX
2

(v(2)
j ) ≥ 3 for each j with 1 ≤ j ≤ 3.

Let T1 ∈ T , and we may assume that E(T1) ∩ {e(1)
1 , e

(1)
2 , e

(1)
3 } = {e(1)

1 , e
(1)
2 }. Then by the

assumption of Case 1, (e(2)
1 , e

(2)
2 , e

(2)
3 ) is a 3-star with center uH1 in HX

2 . Moreover, by the

definition of a minimal 3-tuple and since E2(H) = ∅, HX
2 is essentially 4-edge-connected. Since

we assumed that statement (A1) is true, it follows from Theorems G and 9 that statement (A15)

is also true. Thus HX
2 has a dominating {e(2)

1 , e
(2)
2 }∪V (e(2)

3 )∪V≥4(HX
2 )-closed trail T2, i.e., T2 is a

weakly Tutte edge-maximal CT of HX
2 , {e(2)

1 , e
(2)
2 } ⊆ E(T2) and {v(2)

1 , v
(2)
2 , v

(2)
3 } ⊆ V (T2). Hence

by Lemmas 6 and 7, T :=
(
(T1 − uH2) ∪ (T2 − uH1)

)
+ {e1, e2} is a weakly Tutte edge-maximal

CT of H, which contradicts (4.1).

Case 2. dHX
2

(v(2)
j ) ≤ 2 for some j with 1 ≤ j ≤ 3.

We may assume that dHX
2

(v(2)
3 ) ≤ 2. Then by the denition of HX

2 and since X ∈ E3(H),

dH(v(2)
3 ) = dHX

2
(v(2)

3 ) = 2. Hence by Lemma 8, H2
∼= K2, i.e., v

(2)
1 = v

(2)
2 and v

(2)
1 6= v

(2)
3 . Let

T1 ∈ T . We choose T1 so that e
(1)
3 ∈ E(T1) or {v(1)

1 , v
(1)
2 , v

(1)
3 } ⊆ V (T1) if possible.

Suppose that e
(1)
3 ∈ E(T1). By the symmetry of e

(1)
1 and e

(1)
2 , we may assume that E(T1) ∩

{e(1)
1 , e

(1)
2 } = {e(1)

1 }. Let T2 = HX
2 −{e(2)

2 }. Then T2 is clearly a weakly Tutte {e(2)
1 , e

(2)
3 }∪V (e(2)

2 )-

CT of HX
2 such that EHX

2
(T2) = E(HX

2 ), i.e., T2 is a weakly Tutte edge-maximal CT of HX
2 ,

{e(2)
1 , e

(2)
3 } ⊆ E(T2) and {v(2)

1 , v
(2)
2 , v

(2)
3 } ⊆ V (T2). Hence by Lemmas 6 and 7, T :=

(
(T1−uH2)∪

(T2 − uH1)
)

+ {e1, e3} is a weakly Tutte edge-maximal CT of H, which contradicts (4.1). Thus

e
(1)
3 /∈ E(T1), that is, E(T1) ∩ {e(1)

1 , e
(2)
2 , e

(2)
3 } = {e(1)

1 , e
(2)
2 }.

Let T2 = HX
2 − v

(2)
3 and T =

(
(T1 − uH2)∪ (T2 − uH1)

)
+ {e1, e2} ( = (T1 − uH2) + {e1, e2}).

Then T2 is clearly a weakly Tutte {e(2)
1 , e

(2)
2 }-CT of HX

2 such that EHX
2

(T2) = E(HX
2 ), i.e., T2

is a weakly Tutte edge-maximal CT of HX
2 and {e(2)

1 , e
(2)
2 } ⊆ E(T2). Then by Lemma 6, we also

have that T is a weakly Tutte CT of H. Hence by Lemma 7 and (4.1), v
(1)
3 /∈ V (T1) and there

exists an edge-maximal closed trail T ′ of H such that EH(T ) ( EH(T ′). In particular, since
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v
(1)
3 /∈ V (T1),

EH(T ) = (EHX
1

(T1) − {e(1)
1 , e

(1)
2 , e

(1)
3 }) ∪ {e1, e2, v

(2)
1 v

(2)
3 } (see Figure 4). (4.2)

Note that since T1 is an edge-maximal closed trail of HX
1 and EH(T ) ( EH(T ′), EH(T ′) ∩

X 6= ∅. Let l1 and l2 be integers with 1 ≤ l1 < l2 ≤ 3 such that EH(T ′) ∩ X = {el1 , el2}.
Let R1 = (T ′ − V (H2)) + {e(1)

l1
, e

(1)
l2

}. Then R1 is a CT of HX
1 . Since EH(T ) ⊆ EH(T ′),

EHX
1

(T1) − {e(1)
1 , e

(1)
2 , e

(1)
3 } = EH(T ) ∩ E(H1) ⊆ EH(T ′) ∩ E(H1) = EHX

1
(R1) − {e(1)

1 , e
(1)
2 , e

(1)
3 }.

Since {e(1)
1 , e

(1)
2 , e

(1)
3 } ⊆ EHX

1
(T1) ∩ EHX

1
(R1) because uH2 ∈ V (T1) ∩ V (R1), this implies that

EHX
1

(T1) ⊆ EHX
1

(R1). Since T1 is an edge-maximal CT of HX
1 , we have EHX

1
(T1) = EHX

1
(R1).

Since T1 is a weakly Tutte CT of HX
1 , this together with Lemma 4 implies that R1 is a weakly

Tutte CT of HX
1 . Therefore R1 is a weakly Tutte edge-maximal CT of HX

1 such that E(R1) ∩
{e(1)

1 , e
(1)
2 , e

(2)
3 } 6= ∅, i.e., R1 ∈ T . Then by the choice of T1, we have that {l1, l2} = {1, 2} and

v
(1)
3 /∈ V (R1). Then by the definition of R1, E(T ′) ∩ X = {e1, e2} and v

(1)
3 /∈ V (T ′). Therefore

we obtain

EH(T ′) = (EHX
1

(R1) − {e(1)
1 , e

(1)
2 , e

(1)
3 }) ∪ {e1, e2, v

(2)
1 v

(2)
3 }. (4.3)

Since EHX
1

(T1) − {e(1)
1 , e

(1)
2 , e

(1)
3 } = EHX

1
(R1) − {e(1)

1 , e
(1)
2 , e

(1)
3 }, it follows from (4.2) and (4.3)

that EH(T ) = EH(T ′), which contradicts the fact that EH(T ) ( EH(T ′).

This completes the proof of Theorem 3. �

5 Proofs of Theorems 5 and 10

As mentioned in the paragraph following Theorem 5 and the paragraph following Theorem 10

in Sections 3 and 4, respectively, we prove Theorems 5 and 10 in this section.

Proof of Theorem 5. Assume that statement (A12) is true. Let H be an essentially 2-edge-

connected multigraph. Let H∗ be a graph obtained from H by adding a pendant edge to each

vertex in V≥4(H). Then H∗ is also essentially 2-edge-connected and V≥4(H∗) = V≥4(H). Since

we assumed that statement (A12) is true, H∗ has a weakly Tutte closed trail T . Then by the

definition of H∗, T is also a weakly Tutte CT of H. We show that T is a Tutte CT of H. Suppose
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Figure 5: The cubic graph to construct the example

that T is not a Tutte CT of H. Since T is a weakly Tutte CT of H, there exists a component

F of H − T such that |V (F )| = 1, say V (F ) = {x}, and x ∈ V≥4(H). Then by the definition of

H∗, there exists a vertex y in NH∗(x) ∩ V1(H∗). Since x /∈ V (T ) and V (H − T ) ⊆ V (H∗ − T ),

we have that xy is a graph in FH∗(T ) such that eH∗({x, y}, T ) = dH(x) ≥ 4, which contracts

that T is a weakly Tutte CT of H∗. Thus T is a Tutte CT of H∗. Hence statement (A13) is

also true, and this completes the proof of Theorem 5. �

Proof of Theorem 10. By Lemma 2, it is enough to show that statement (A15) implies

statement (A14). Assume that statement (A15) is true. Let H be an essentially 4-edge-connected

multigraph. We will find a dominating V≥4(H)-CT. If L(H) is complete, then H is a star or

a triangle, and hence we can easily see that H has a desired dominating CT. Thus, we may

assume that L(H) is not complete.

Then H∗ := core(H) is an essentially 4-edge-connected graph with δ(H∗) ≥ 3. By Theorem

H, there exists a cubic inflation HI of H∗ such that HI is essentially 4-edge-connected. Since

we assumed that statement (A15) is true, taking any vertex in HI as the center of a 3-star, we

can find a dominating cycle of HI . By Lemma I, H∗ has a dominating V≥4(H∗)-CT. By Lemma

3, H also has a dominating V≥4(H)-CT. Hence statement (A14) is also true, and this completes

the proof of Theorem 10. �

6 Concluding remarks

In 1992, Jackson posed the possible approach to the well-known conjecture on the existence of a

Hamilton cycle in 4-connected claw-free graphs (Conjecture A), using a Tutte cycle. Indeed, he

conjectured that statement (A9) “every 2-connected claw-free graph has a Tutte cycle” is true

(Conjecture D), which directly implies Conjecture A. In this paper, we have concentrated on a

Tutte cycle on claw-free graphs and seen that many statements (A1)–(A16) are equivalent (see

Theorems B, C, G, 1–5, 9, 10 and Lemma 2).

By the above fact, we have that statement (A10) “every 2-connected claw-free graph has a
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Figure 6: The cubic graph introduced by Kochol [12]

Tutte maximal cycle” is seemingly stronger than statement (A9), that is, if (A9) is true, then

we can always take a Tutte cycle so that it is maximal. However, as mentioned in Section

1, it is not always true that a 3-connected claw-free graph has a Tutte cycle which is longest

even if statement (A9) is true. The following is the 3-connected claw-free graph showing this.

Let G be the graph illustrated in Figure 5. Then it is easy to check that G is an essentially

3-edge-connected (3-connected) cubic graph which is not Hamiltonian. Moreover, the edges

depicted in Figure 5 by bold lines induce a cycle C such that V (C) = V (G) − {x, y} and C

is a maximal cycle of G. Let d ≥ 3 be an integer. Let G∗ be the graph obtained from G by

adding d − 2 pendant edges to each vertex in {x, y} and at least 2d − 2 pendant edges to each

vertex in V (G) − {x, y}, and let X be the set of pendant edges which are incident with {x, y}
in G∗. Note that |X ∪ {xy}| = 2d − 3. Then by the definition of G∗ and since G is essentially

3-edge-connected, we have that G∗ is also essentially 3-edge-connected and the minimum edge

degree of G∗ is just d. Furthermore, since G is not Hamiltonian and C is a maximal cycle

of G satisfying V (C) = V (G) − {x, y}, for every closed trail (cycle) T of G∗ with T 6= C,

|EG∗(T )| < |EG∗(C)| holds. These imply that L(G∗) is a 3-connected claw-free graph with

δ(L(G∗)) = d, and for any longest cycle D of L(G∗), V (D) = EG∗(C) = E(G∗) − (X ∪ {xy})
holds. Since |EG∗(C)∩EG∗(xy)| = eG∗({x, y}, V (G∗)−{x, y}) = 4, every cycle D of L(G∗) with

V (D) = EG∗(C) is not a Tutte cycle of L(G∗). Thus any Tutte cycle of L(G∗) is not longest.

In addition, if statement (A9) is true, then we can also take Tutte closed trails (weakly

Tutte closed trails, weakly Tutte edge-maximal closed trails) in essentially 2-edge-connected

graphs (see statements (A11)–(A13)). Moreover, it is also true that every essentially 4-edge-

connected graph has a Tutte edge-maximal CT if statement (A9) is true (see statement (A14)).
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However, it is not always true that an essentially 3-edge-connected graph has a Tutte edge-

maximal CT. We finally give the graph showing this. We use the methods of Kochol [12] for

constructions of snarks with a maximal cycle that is not a dominating cycle. (Note that by using

this method, we can also construct a 3-connected claw-free graph in which any Tutte cycle is

not longest other than the above graph.) Let G be the graph in the right side of Figure 6. It

arises from five copies of the graph H (H1, H2,H3,H4,H5) illustrated in the left side of Figure

6 after joining the vertices ai and bi of degree 2 as in depicted in the figure. Then G is an

essentially 3-edge-connected (3-connected) cubic graph and the cycle C depicted by bold lines is

a maximal cycle of G such that V (C) = V (G) − {x, y, z1, z2, z3}. Let G′ be the graph obtained

from G by contracting xy to a vertex vxy (see Figure 6), and let G∗ be the graph obtained

from G′ by adding a pendant edge to each vertex in V (G′) − {vxy, z1, z2, z3}. Then G∗ is also

essentially 3-edge-connected and C is a dominating CT of G∗, i.e., C is an edge-maximal CT

of G∗. Since each vertex in V (G′) − {vxy, z1, z2, z3} is incident with a pendant edge in G∗ and

EG∗(C) = E(G∗), every edge-maximal closed trail of G∗ contains V (G′) − {vxy, z1, z2, z3}. On

the other hand, since C is a maximal cycle of G satisfying V (G) − {x, y, z1, z2, z3} and by the

definition of H, G, G′ and G∗, we can see that for every closed trail T of G∗ with vxy ∈ V (T ),

V (G) − {x, y, z1, z2, z3} = V (G′) − {vxy, z1, z2, z3} 6⊆ V (T ) holds (note that there exists no

Hamilton path in H from a1 to {a2, b2} and H has no two disjoint paths covering V (H) from a1

to {a2, b2} and from b1 to {a2, b2}, respectively, see [12] for more details). Thus C is an unique

edge-maximal CT of G∗. But since C is not a Tutte CT of G∗, any Tutte CT of G∗ is not an

edge-maximal CT of G∗.
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On 1-Hamilton-connected claw-free graphs

Zdeněk Ryjáček1,2,3,4,5 Petr Vrána1,2,4,5

June 19, 2012

Abstract

A graph G is 1-Hamilton-connected if G − x is Hamilton-connected for every ver-

tex x ∈ V (G). In the paper we introduce a closure concept for 1-Hamilton-

connectedness in claw-free graphs. The closure of a graph G is the line graph of a

multigraph H such that, for some e ∈ E(H), H − e has at most two triagles or one

double edge, and is 1-Hamilton-connected if and only if G is 1-Hamilton-connected.

As an application, we prove that

(i) the Thomassen’s conjecture (every 4-connected line graph is hamiltonian)

is equivalent to the statement that every 4-connected claw-free graph is 1-

Hamilton-connected,

(ii) every 4-connected claw-free and hourglass-free graph is 1-Hamilton-connected.

1 Introduction

A well-known concept in Hamiltonian graph theory is the closure operation cl(G) for claw-

free graphs, introduced in [17]. The closure operation turns a claw-free graph into the

line graph of a triangle-free graph while preserving the hamiltonicity of the graph. While

cl(G) also preserves many weaker graph properties (such as traceability or the existence

of a 2-factor), stronger properties, such as Hamilton-connectedness, turn out not to be

preserved [4], [18]. The first attempt to develop a closure for Hamilton-connectedness was

by Brandt [3], the technique was further developed in [19] and [10]. In the present pa-

per, we further strengthen these techniques to the property of 1-Hamilton-connectedness

(where a graph G is k-Hamilton-connected if G−M is Hamilton-connected for any set of

vertices M ⊂ V (G) with |M | = k).

The concept of k-Hamilton-connectedness was introduced already in 1970 by Lick [15]

and since then, studied in many papers (see e.g. [12], [7]). The property of 1-Hamilton-

connectedness is closely related to a well-known conjecture by Thomassen [20] which states

1Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic
2Institute for Theoretical Computer Science (ITI), Charles University, Pilsen, Czech Republic
3School of Electrical Engineering and Computer Science, The University of Newcastle, Australia
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Centre of Excellence, CZ.1.05/1.1.00/02.0090.
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that every 4-connected line graph is hamiltonian, as it was recently shown [9] that the

Thomassen’s conjecture is equivalent with the statement that every 4-connected line graph

is 1-Hamilton-connected. Having in mind that 4-connectedness is a necessary condition

for a graph to be 1-Hamilton-connected, we observe that the Thomassen’s conjecture, if

true, would imply that a line graph is 1-Hamilton-connected if and only if it is 4-connected,

which means that 1-Hamilton-connectedness would be polynomial in line graphs. Note

that there are many further known equivalent versions of the conjecture (see [5] for a

survey on this topic).

In the present paper, we

• in Section 3, develop a closure concept for 1-Hamilton-connectedness in claw-free

graphs,

• in Section 4, as applications of the closure, prove that

– the Thomassen’s conjecture is equivalent with the statement that every 4-

connected claw-free graph is 1-hamilton-connected,

– every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected

(which gives a partial solution to the conjecture).

We follow the most common graph-theoretical terminology and for concepts and notations

not defined here we refer e.g. to [2]. Specifically, by a graph we mean a finite undirected

graph G = (V (G), E(G)); in general, we allow a graph to have multiple edges. The precise

way of using (simple) graphs and multigraphs will be specified later in Section 2. We use

dG(x) to denote the degree of a vertex x, and we set Vi(G) = {x ∈ V (G)| dG(x) = i}.
The neighborhood of a vertex x, denoted NG(x), is the set of all neighbors of x, and we

define the closed neighborhood of x as NG[x] = NG(x) ∪ {x}. For a set M ⊂ V (G), ⟨M⟩G
denotes the induced subgraph on M , and for a graph F , G is said to be F -free if G does

not contain an induced subgraph isomorphic to F . Specifically, for F = K1,3 we say that

G is claw-free.

If {x, y} ⊂ V (G) is a vertex-cut of G and K1, K2 are components of G− {x, y}; then
the subgraphs ⟨V (K1) ∪ {x, y}⟩G and ⟨V (K2) ∪ {x, y}⟩G are called the bicomponents (of

G at {x, y}).
For x ∈ V (G), G − x is the graph obtained from G by removing x and all edges

adjacent to it. If x, y ∈ V (G) are such that e = xy /∈ E(G), then G+ e is the graph with

V (G + e) = V (G) and E(G + e) = E(G) ∪ {e}, and, conversely, for e = xy ∈ E(G) we

denote G− e the graph with V (G− e) = V (G) and E(G− e) = E(G) \ {e}.
We use α(G) to denote the independence number of G, ν(G) to denote the matching

number of G (i.e., the size of a largest matching in G), and ω(G) stands for the number

of components of G. A clique is a set K ⊂ V (G) such that ⟨K⟩G is a complete graph.

A graph G is hamiltonian if G contains a hamiltonian cycle, i.e. a cycle of length

|V (G)|, and G is Hamilton-connected if, for any a, b ∈ V (G), G contains a hamiltonian

(a, b)-path, i.e., an (a, b)-path P with V (P ) = V (G). For k ≥ 1, G is k-Hamilton-connected

if G −X is Hamilton-connected for every set of vertices X ⊂ V (G) with |X| = k. Note

that a hamiltonian graph is necessarily 2-connected, a Hamilton-connected graph must

be 3-connected and if G is k-Hamilton-connected, then G must be (k + 3)-connected.
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2 Preliminary results

In this section we summarize some background knowledge that will be needed for our

results.

The line graph of a graph (multigraph) H, denoted L(H), is the graph with E(H) as

vertex set, in which two vertices are adjacent if and only if the corresponding edges have

a vertex in common. Recall that every line graph is claw-free.

It is well-known that if G is a line graph of a simple graph, then the graph H such

that G = L(H) (called the preimage of G) is uniquely determined, with one exception

of G = K3. However, in line graphs of multigraphs this is, in general, not true, as can

be seen from the graphs in Fig. 1, where L(H1) = L(H2) = G. This difficulty can be
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overcome by imposing an additional requirement that simplicial vertices in the line graph

correspond to pendant edges.

Proposition A [19]. Let G be a connected line graph of a multigraph. Then there is,

up to an isomorphism, a uniquely determined multigraph H such that a vertex e ∈ V (G)

is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

For a line graph G, we will always consider its preimage to be the unique multigraph

with the properties given in Proposition A; this preimage will be denoted L−1(G). This

means that, throughout the paper, when working with a claw-free graph or with a line

graph G, we always consider G to be a simple graph, while if G is a line graph, for its

preimage H = L−1(G) we always admit H to be a multigraph, i.e. we always allow H to

have multiple edges.

We will also use the notation e = L−1(a) and a = L(e) in situations whenH = L−1(G),

a ∈ V (G) and e ∈ E(H) is the edge of H corresponding to the vertex a. Note that

our special choice of the line graph preimage already implies some restrictions on its

structure: for example, it is not difficult to observe that H = L−1(G) can never contain

a triangle with two vertices of degree 2, for if ⟨{x1, x2, x3}⟩H is such a triangle with

dH(x1) = dH(x2) = 2, then L(x1x2) is a simplicial vertex in G, but x1x2 is not a pendant

edge inH (see the graphsH1 and G in Fig. 1). More generally, if ⟨{x1, x2}⟩H is a multiedge

in H = L−1(G), then both x1 and x2 must have a neighbor outside the set {x1, x2}, and
if ⟨{x1, x2, x3}⟩H is a triangle or a multitriangle (a triangle with some multiple edges)

in H, then at most one of the vertices x1, x2, x3 can have no neighbor outside the set

{x1, x2, x3} (for otherwise G contains a simplicial vertex corresponding to a nonpendant

edge of H).

We will need the following characterization of line graphs of multigraphs by Krausz [8].
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Theorem B [8]. A nonempty graph G is a line graph of a multigraph if and only if

V (G) can be covered by a system of cliques K such that every vertex of G is in exactly

two cliques of K and every edge of G is in at least one clique of K.

If G is a line graph and K = {K1, ..., Km} is a partition with the properties given in

Theorem B, then a graph H such that G = L(H) can be obtained from K as the intersec-

tion graph (multigraph) of the set system {V (K1), ..., V (Km)}, in which the number of

vertices shared by two cliques equals the multiplicity of the (multi)edge joining the corre-

sponding vertices of H. A system of cliques K = {K1, ..., Km} with the properties given

in Theorem B is called a Krausz partition of G, and its elements are called Krausz cliques.

Note that not every clique (and even not every maximal clique) in a line graph G has to

be a Krausz clique. If G = L(H), then such non-Krausz cliques in G can correspond to

(some of the) triangles, multiple edges or multitriangles (i.e., triangles with some multiple

edges) in H.

In general, for a given line graph G, a Krausz partition is not uniquely determined, but

every such partition uniquely determines a graph H with the property G = L(H) as its

intersection graph. However, by Proposition A, every line graph G has a unique Krausz

partition K such that a vertex x ∈ V (G) is simplicial if and only if one of the two cliques

containing x is of order 1. Thus, whenever we will be working with Krausz cliques and

Krausz partitions, we will be always using this particular uniquely determined partition

(which gives the unique preimage L−1(G)).

Harary and Nash-Williams [6] showed that a line graph G of order at least 3 is hamil-

tonian if and only if H = L−1(G) contains a dominating closed trail, i.e. a closed trail

(eulerian subgraph) T such that every edge of H has at least one vertex on T . A similar

argument gives the following analogue for Hamilton-connectedness (see e.g. [13]). Here

an internally dominating trail (abbreviated IDT) is a trail T such that every edge of H

has one vertex on T as its internal vertex, and, for e1, e2 ∈ E(H), an (e1, e2)-IDT is an

IDT having e1v and e2 as terminal edges.

Theorem C [13]. A line graph G of order at least 3 is Hamilton-connected if and only

if H = L−1(G) has an (e1, e2)-IDT for any pair of edges e1, e2 ∈ E(H).

An edge cut R of a graphH is essential ifH−R has at least two nontrivial components.

For an integer k > 0, H is essentially k-edge-connected if every essential edge cut R of G

contains at least k edges. Obviously, a line graph G = L(H) is k-connected if and only if

the graph H is essentially k-edge-connected.

A vertex x ∈ V (G) is locally connected (eligible), if ⟨N(x)⟩ is a connected (connected

noncomplete) subgraph of G, respectively. The set of all eligible vertices in G will be

denoted VEL(G). It is an easy observation that in the special case when G is a line

graph and H = L−1(G), a vertex x ∈ V (G) is locally connected if and only if the edge

e = L−1
G (x) is in a triangle or in a multiedge in H, and G

∗
x = L(H|e), where the graph H|e

is obtained from H by contraction of e into a vertex and replacing the created loop(s) by

pendant edge(s).
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For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G) ∪

{y1y2| y1, y2 ∈ NG(x)}), i.e. the graph obtained from G by adding all the missing edges

with both vertices in NG(x)).

As shown in [17], if G is claw-free and x ∈ VEL(G), then G
∗
x is hamiltonian if and only

if G is hamiltonian. The closure cl(G) of a claw-free graph G is then defined [17] as the

graph obtained from G by recursively performing the local completion operation at eligible

vertices, as long as this is possible (more precisely: cl(G) = Gk, where G1, . . . , Gk is a

sequence of graphs such thatG1 = G, Gi+1 = (Gi)
∗
xi
for some xi ∈ VEL(G), i = 1, . . . , k−1,

and VEL(Gk) = ∅). We say that G is closed if G = cl(G).

The following result from [17] summarizes basic properties of the closure operation.

Theorem D [17]. For every claw-free graph G:

(i) cl(G) is uniquely determined,

(ii) cl(G) is the line graph of a triangle-free graph,

(iii) cl(G) is hamiltonian if and only if G is hamiltonian.

Recall that the closure operation cl(G) does not preserve the Hamilton-connectedness

of G [18], [4]. Thus, more generally, for k ≥ 1, we say that a vertex x is k-eligible if ⟨N(x)⟩
is k-connected noncomplete. The following fact was conjectured in [1] and proved in [18].

Proposition E [18]. If G is claw-free and x ∈ V (G) is 2-eligible, then G is Hamilton-

connected if and only if G∗
x is Hamilton-connected.

We will often use the following observation. Let T1, T2 be the graphs shown in Fig. 2

(the graph T1 will be referred to as the diamond and T2 as the multitriangle). Let G =

•
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e
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Figure 2

L(H), suppose that H contains a subgraph F isomorphic to T1 or T2 (in case of T2

such that at least vertex of e has a neighbor outside F ), and set x = L(e). Then it is

easy to see that x is 2-eligible in G and, consequently, by Proposition E, G = L(H) is

Hamilton-connected if and only if G∗
x = L(H|e) is Hamilton-connected (or, equivalently,

H has an (f1, f2)-IDT for any f1, f2 ∈ E(H) if and only if H|e has an (f1, f2)-IDT for any

f1, f2 ∈ E(H|e)).

By recursively performing the local completion operation at k-eligible vertices, we can

define [1] the k-closure clk(G) of G, which is uniquely determined [1] and, if G is claw-free,

cl2(G) is Hamilton-connected if and only if so is G [18].

It can be easily seen that, in general, cl2(G) is not a line graph, and even not a

line graph of a multigraph. To overcome this drawback, the authors developed in [19]

the concept of the multigraph closure (or briefly M-closure) clM(G) of a graph G: the
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graph clM(G) is obtained from cl2(G) by performing local completions at some (but

not all) eligible vertices, where these vertices are chosen in a special way such that the

resulting graph is a line graph of a multigraph while still preserving the (non-)Hamilton-

connectedness of G. We do not give technical details of the construction since these will

not be needed for our proofs; we refer the interested reader to [18], [19].

The concept of M -closure was further strengthened in [10] in such a way that the

closure of a claw-free graph is the line graph of a multigraph with either at most two

triangles and no multiedge, or with at most one double edge and no triangle.

For a given claw-free graph G, we construct a graph GM by the following construction.

(i) If G is Hamilton-connected, we set GM = cl(G).

(ii) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-

connected, as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk

such that

• G1 = G,

• Gi+1 = (Gi)
∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,

• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),

• for any x ∈ VEL(Gk), (Gk)
∗
x is Hamilton-connected,

and we set GM = Gk.

A graph GM obtained by the above construction will be called a strong M -closure (or

briefly an SM -closure) of the graph G, and a graph G equal to its SM -closure will be

said to be SM -closed.

The following theorem summarizes basic properties of the SM -closure operation.

Theorem F [10]. Let G be a claw-free graph and let GM be its SM -closure. Then

GM has the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),

(ii) GM is obtained from G by a sequence of local completions at eligible vertices,

(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,

(iv) if G is Hamilton-connected, then GM = cl(G),

(v) if G is not Hamilton-connected, then either

(α) VEL(G
M) = ∅ and GM = cl(G), or

(β) VEL(G
M) ̸= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(G

M),

(vi) GM = L(H), where H contains either

(α) at most 2 triangles and no multiedge, or

(β) no triangle, at most one double edge and no other multiedge,

(vii) if G contains no hamiltonian (a, b)-path for some a, b ∈ V (G) and

(α) X is a triangle in H, then E(X) ∩ {L−1
GM (a), L−1

GM (b)} ≠ ∅,
(β) X is a multiedge in H, then E(X) = {L−1

GM (a), L−1
GM (b)}.
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Note that, by (vi), the structure of L−1(GM) is very close to that of L−1(cl(G)) (only

at most two triangles or at most one double edge). In some cases (specifically, in cases

(iv) and (v)(α) of Theorem F), we have VEL(G
M) = ∅ and GM = cl(G), implying that

GM is uniquely determined. However, if VEL(G
M) ̸= ∅, then, for a given graph G, its

SM -closure GM is in general not uniquely determined and, as will be seen from the proof,

the construction of GM requires knowledge of a pair of vertices a, b for which there is no

hamiltonian (a, b)-path in G. Consequently, there is not much hope to construct GM in

polynomial time (unless P=NP). Nevertheless, the special structure of GM will be very

useful for our considerations in the next sections.

3 Closure for 1-Hamilton-connectedness

Let G be a claw-free graph and let x ∈ V (G) be such that G−x is not Hamilton-connected.

Let G̃x be a graph obtained by the following construction.

(1) Set G0 := G, i := 0.

(2) If there is a ui ∈ V (Gi) such that ui is eligible in Gi − x and (Gi)
∗
ui

− x is not

Hamilton-connected, then set Gi+1 = (Gi)
∗
ui

and go to (3),

otherwise set G̃x := Gi and stop.

(3) Set i := i+ 1 and go to (2).

Then we say that G̃x is a partial x-closure of the graph G.

The following proposition summarizes main properties of a partial x-closure of a claw-

free graph. Here the 5-wheel, denoted W5, is the graph consisting of a 5-cycle C5 and a

vertex (the center of the W5) adjacent to all vertices of the C5.

Proposition 1. Let G be a claw-free graph, let x ∈ V (G) be such that G − x is not

Hamilton-connected, and let G̃x be a partial x-closure of G. Then G̃x−x is an SM -closed

line graph and G̃x satisfies one of the following:

(i) G̃x is a line graph;

(ii) x is a center of an induced W5, and there are u1, u2 ∈ NG̃x
(x) such that

(α) {u1, u2} is a cut set of G̃x − x,

(β) one of the bicomponents of G̃x − x at {u1, u2} is isomorphic to K3 − e,

(γ) the graph (G̃x + {u1, u2})− x contains no induced W5 with center at x,

(δ) the graph (G̃x + {u1, u2})− x is SM -closed;

(iii) there are Krausz cliques K1, K2 in G̃x − x such that

(α) NG̃x
(x) ⊂ K1 ∪K2,

(β) the graph (V (G̃x), E(G̃x) ∪ {xv| v ∈ K1 ∪K2}) is a line graph.

Proof of Proposition 1 is postponed to Section 5.
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Note that if G is such that G̃x satisfies (ii) of Proposition 1, then the graph G̃x + uv

contains no inducedW5 with center at x, hence G̃x+uv satisfies (i) or (iii) of Proposition 1.

It is also easy to see that, in case (ii), {L−1(u1), L
−1(u2)} is a 2-element edge cut of

H = L−1(G̃x − x) separating a single edge from the rest of H.

Let now G be a claw-free graph, and let G be a graph obtained by the following

construction:

(1) If G is 1-Hamilton-connected, set G = cl(G).

(2) If G is not 1-Hamilton-connected, choose a vertex x ∈ V (G) such that G− x is not

Hamilton-connected and a partial x-closure G̃x of G.

(3) If G̃x satisfies (ii) of Proposition 1 (i.e., x is a center of an induced W5 in G̃x), choose

a cut set {u1, u2} of G̃x − x, add the edge u1u2 to G̃x (i.e., set G̃x := G̃x + u1u2),

and proceed to (4).

(4) If G̃x is a line graph, set G = G̃x.

Otherwise, G̃x satisfies (iii) of Proposition 1, i.e. some two Krausz cliques K1, K2

in G̃x − x cover all vertices in NG(x), and then set G = (V (G̃x), E(G̃x) ∪ {xv| v ∈
(K1 ∪K2)}).

Then we say that the resulting graph G is a 1HC-closure of the graph G.

The following result summarizes basic properties of a 1HC-closure of a graph G.

Theorem 2. Let G be a claw-free graph and let G be its 1HC-closure. Then

(i) G is a line graph,

(ii) for some x ∈ V (G), the graph G− x is SM -closed,

(iii) G is 1-Hamilton-connected if and only if G is 1-Hamilton-connected.

Proof. Properties (i) and (ii) follow immediately by the definition of G. Also clearly

G is 1-Hamilton-connected if so is G, and if G is not 1-Hamilton-connected, then neither

is G̃x (for some x ∈ V (G) which is used in the construction). It remains to show that

G is not 1-Hamilton-connected if G̃x is not. This is clear if G̃x satisfies (i) or (iii) of

Proposition 1. Finally, if G̃x satisfies (ii), then G is not 1-Hamilton-connected since

neither G̃x nor G is 4-connected.

Note that (ii) is equivalent to the statement that H = L−1(G) contains an edge

e ∈ E(H) such that L(H − e) is SM -closed.

Also note that, for a given claw-free graph G, its 1-Hamilton-connected closure is not

uniquely determined.

We finish this section with a result which shows that steps (3) and (4) in the defi-

nition of a 1HC-closure of a graph can be also accomplished by adding (some) edges in

neighborhoods of eligible vertices.
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Proposition 3. Let G be a claw-free graph. Then there is a sequence of graphs

G0, . . . , Gk such that

(i) G0 = G,

(ii) V (Gi) = V (Gi+1) and E(Gi) ⊂ E(Gi+1) ⊂ E((Gi)
∗
xi
) for some xi ∈ V (Gi) eligible

in Gi,

(iii) Gk is a 1HC-closure of G.

Proof. Steps (1) and (2) of the definition of a 1HC-closure clearly satisfy the conditions

of the proposition, and so does step (3), since the added edge has both vertices in NG(x)

and x is eligible. It remains to verify the statement in step (4). Suppose, to the contrary,

that, in step (4), for some Krausz clique Ki in G̃x − x, adding the edges joining Ki to x

does not satisfy the conditions.

If |Ki ∩ NG(x)| ≥ 2, then Ki and ⟨NG(x)⟩G̃x
share an edge, say, v1v2, but then v1

is eligible, a contradiction. Hence |Ki ∩ NG(x)| = 1. Let Ki ∩ NG(x) = {u}. By the

properties of the Krausz partition, u is, besides Ki, in some other Krausz clique Kj. If

⟨NG(x)⟩G̃x
is disconnected, then u is a simplicial vertex in G−x (otherwise u centers a claw

in G) and, since simplicial vertices in G−x correspond to pendant edges in H = L−1(G),

one of Ki, Kj (say, Kj) is of size 1. But then, extending Kj to x adds no new edge to G̃x.

Finally, if ⟨NG(x)⟩G̃x
is connected, then there is an edge e in ⟨NG(x)⟩G̃x

containing u,

and necessarily e is in Kj. But then, for the clique Kj, we have |Kj ∩NG(x)| ≥ 2 and we

are in the previous case.

4 Applications of the closure

In this section we show two applications of the 1HC-closure. The first of them, Theorem 4,

is related to a famous conjecture by Thomassen [20] stating that every 4-connected line

graph is hamiltonian. There are many known equivalent versions of the conjecture (see [5]

for a survey on this topic). We show the following equivalence.

Theorem 4. The following statements are equivalent:

(i) Every 4-connected line graph is hamiltonian.

(ii) Every 4-connected claw-free graph is 1-Hamilton-connected.

Proof. Obviously, (ii) implies (i). Conversely, first recall that, by a recent result

[9], (i) is equivalent to the statement that every 4-connected line graph is 1-Hamilton-

connected. Thus, if G be a counterexample to (ii), then its 1HC-closure provides a

counterexample to (i).

As another application, we prove a theorem on hourglass-free graphs. Our result,

Theorem 5, is a strengthening of the main result of [14] and can be considered as a

partial solution to the statement (ii) of Theorem 4, i.e., equivalently, to the Thomassen’s

conjecture.
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Here the hourglass is the unique graph Γ with degree sequence 4, 2, 2, 2, 2. The vertex

x ∈ V (Γ) of degree 4 is called the center of Γ and we also say that Γ is centered at x.

Note that Γ is a line graph and, in multigraphs, it has three nonisomorphic preimages

(see Fig. 3).
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Figure 3

The following theorem is our second application.

Theorem 5. Every 4-connected claw-free and hourglass-free graph is 1-Hamilton-

connected.

For the proof of Theorem 5, we will need several auxiliary results.

Lemma 6. Let G be a claw-free graph such that every induced hourglass in G is

centered at an eligible vertex and let G be a 1HC-closure of G satisfying the statement of

Proposition 3. Then every induced hourglass in G is centered at an eligible vertex.

Proof. Let G0, . . . , Gk be a sequence of graphs with the properties given in Propo-

sition 3, let G = Gk, and let i, 0 ≤ i ≤ k − 1, be the smallest integer such that

Gi+1 contains an induced hourglass Γ centered at a locally disconnected vertex. De-

note V (Γ) = {u0, u1, u2, u3, u4} such that E(Γ) = {u0u1, u0u2, u0u3, u0u4, u1u2, u3u4} (i.e.,

u0 is the center of Γ). By the choice of i, E(Γ) ̸⊂ E(Gi). If Gi contains all the edges of Γ

containing u0, then u0 centers a claw in Gi; hence we can choose the notation such that

u0u1 /∈ E(Gi). By Proposition 3, there is a vertex v eligible in Gi such that u0u1 ∈ NGi
(v).

Let u5 be the first vertex of a (u0, u1)-path in ⟨NGi
(v)⟩Gi

. Then ⟨{u0, v, u5, u3, u4}⟩Gi
is

an induced hourglass in Gi, centered at u0. This contradicts the choice of i since u0 is

locally disconnected in Gi.

Lemma 7. Let G be a 4-connected claw-free hourglass-free graph. Then there is a

1HC-closure G of G such that L−1(G) has at most three vertices of degree three.

Proof. Let G be a 1HC-closure of G with the properties given in Proposition 3 and

let H = L−1(G). Recall that H is essentially 4-edge-connected and that a vertex of G is

eligible if and only if the corresponding edge of H is in a triangle or in a multiedge.

Claim 1. Let x ∈ V (H) be of degree 3 in H. Then there is a subgraph T ⊂ H such

that T is isomorphic to the graph T1 or T2 of Fig. 2 and dT (x) = 3.
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Proof. Let NH(x) = {u, v, w}. We distinguish two possibilities.

First suppose that u, v, w are distinct. SinceH is essentially 4-edge-connected, we have

dH(w) ≥ 3, and since the vertex L(xw) does not center in G a hourglass with a locally

disconnected center, xw is in a triangle. Since dH(x) = 3, we have, up to a symmetry,

uw ∈ E(H). The same idea, applied to the edge xv, implies vw ∈ E(H). But then

x,w, u, v are vertices of a T1 in H.

Secondly, let u = v. Similarly as before, the edge xw is in a triangle, implying

uw ∈ E(H) and then x, u, v are vertices of a T2 in H. �

Let now x ∈ V (H) be of degree 3 in H. We distinguish two cases.

Case 1: All vertices of degree 3 in H are in NH [x].

If x is in a T2, then |NH [x]| = 3 and we are done. Thus, suppose x is in a T1 ⊂ H.

If all vertices of T1 are of degree 3, then either T1 is connected to H − T1 with exactly

two edges, in which case H is not essentially 4-edge-connected, or H is in a K4, but then

removal of any edge from H yields a diamond, contradicting the fact that G contains a

vertex the removal of which yields an SM -closed graph. Hence H contains at most three

vertices of degree 3.

Case 2: There is y ∈ V (H) such that dH(y) = 3 and xy /∈ E(H).

By Claim 1, there are subgraphs Tx and Ty of H (not necessarily induced) such that

x or y is of degree 3 in Tx or Ty, respectively, and each of Tx, Ty is isomorphic to T1 or to

T2. By the properties of the 1HC-closure, there is an edge e ∈ E(H) such that L(H−e) is

SM -closed, i.e., H − e contains at most two triangles or at most one double edge. Thus,

e is an edge of both Tx and Ty and, since x, y are nonadjacent, e contains neither x nor

y. Now, if one of Tx, Ty is a T2, then removal of any edge leaves in H − e two double

edges or a double edge or a triangle, which is not possible. Hence both Tx and Ty is the

diamond T1.

Denote e = wz, and let u and v be the fourth vertex in Tx and Ty, respectively. Then

we have, up to a symmetry, the following two possibilities (see Fig. 4):

(a) dTx(w) = dTy(w) = 3 (implying dTx(z) = dTy(z) = 2),

(b) dTx(w) = dTy(z) = 3 (implying dTx(z) = dTy(w) = 2).

We consider these possibilites separately.
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Figure 4

(a) Let first dTx(w) = dTy(w) = 3. If u = v, then H − e contains a diamond, hence

u ̸= v. If dH(u) = 3, then, by the previous observations, u is a vertex of degree 3

of a diamond Tu. This implies either uu′ ∈ E(H) and u′w ∈ E(H) for some other

vertex u′, or uz ∈ E(Tu), but then, in both cases, Tu is a diamond also in H − e, a
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contradiction. If dH(u) = 2, then {uw, xw, xz} is an edge-cut separating the edge ux, a

contradiction. Hence dH(u) > 3 and, symmetrically, dH(v) > 3. Thus, among the vertices

in V (Tx) ∪ V (Ty), only x, y and possibly z are of degree 3. If H contains another vertex

t of degree 3, then t is adjacent to neither x nor y and, by Claim 1, t is in a diamond T1.

But then, for any edge f ∈ E(H), H−f contains at least three triangles, a contradiction.

(b) Secondly, let dTx(w) = dTy(z) = 3. For u = v immediately dH(u) = dH(v) > 3;

for u ̸= v, similarly as before, dH(u) = 3 implies that uz ∈ E(H) and H − e contains a

diamond, and dH(u) = 2 contradicts the connectivity assumption. Thus, in both cases,

we have dH(u) > 3 and, symmetrically, dH(v) > 3. Hence x and y are the only vertices

of degree 3 in V (Tx) ∪ V (Ty). Similarly, if dH(t) = 3 for some other t ∈ V (H), then t is

adjacent to neither x nor y, t is in a diamond and, for any f ∈ E(H), H − f contains at

least three triangles, a contradiction.

The core of a graph H, denoted co(H), is the graph obtained from H by deleting all

vertices of degree 1 and suppressing all vertices of degree 2 (i.e., contracting exactly one

of the edges xy, yz for each path xyz with dH(y) = 2). Note that, by the definition of

the core, all vertices of degree one or two are deleted or suppressed, hence δ(co(H)) ≥ 3.

For the proof of Theorem 5, we will need two more results.

Theorem G [11]. Let H be a graph such that co(H) has two edge-disjoint spanning

trees and G = L(H) is 3-connected. Then, for any any pair of edges e1, e2 ∈ E(H), H

has an internally dominating (e1, e2)-trail.

Theorem H [16], [21]. A graph G has k edge-disjoint spanning trees if and only if

|E0| ≥ k(ω(G− E0)− 1)

for each subset E0 of the edge set E(G).

Proof of Theorem 5. Let G be a 4-connected claw-free hourglass-free graph and, by

Lemma 7, let G be a 1HC-closure of G such that H = L−1(G) has at most three vertices

of degree 3. Recall that H is essentially 4-edge-connected.

By Theorem C, we need to show that for any f, e1, e2 ∈ E(H), the graph H−f has an

(e1, e2)-IDT. Since the graph L(H − f) = G−x (where x = L(F )) is clearly 3-connected,

by Theorem G, it is sufficient to show that the graph co(H − f) has two edge-disjoint

spanning trees. Thus, let f ∈ E(H).

Claim 1. The graph co(H)− f has two edge-disjoint spanning trees.

Proof. First note that possibly f /∈ E(co(H)) if f is a pendant edge of H; in this case

co(H)− f = co(H). Obviously, co(H) is essentially 4-edge-connected (since so is H) and

has at most three vertices of degree 3 (since, by the connectivity assumption, pendant

edges in H can be incident only to vertices of degree at least 4 in co(H)). Hence, for any

12



set E ⊂ E(co(H)), every component C of co(H) − E is connected to (co(H) − E) − C

by at least 4 edges, except for the case when C is a trivial component consisting of one

of the at most three vertices of degree 3. This implies 2|E| ≥ 4(ω(co(H) − E) − 3) +

3 · 3 = 4ω(co(H) − E) − 3, from which, by parity, 2|E| ≥ 4ω(co(H) − E) − 2, i.e.,

|E| ≥ 2ω(co(H)− E)− 1.

Now, set H ′ = co(H) − f and let E0 ⊂ E(H ′). Set E = E0 ∪ {f} if f ∈ E(co(H))

and E = E0 otherwise . Then clearly |E0| ≤ |E| ≤ |E0| + 1, E ⊂ E(co(H)) and

ω(co(H)−E) = ω(H ′−E0). Hence |E0| ≥ |E|−1 ≥ 2ω(co(H)−E)−2 = 2ω(H ′−E0)−2.

By Theorem H, H ′ has two edge-disjoint spanning trees. �

Claim 2. The graph co(co(H)− f) has two edge-disjoint spanning trees.

Proof. Suppose that f ∈ E(co(H)) (otherwise there is nothing to do by Claim 1)

and note that, since V1(co(H)) = V2(co(H)) = ∅, we have V1(co(H) − f) = ∅ and

V2(co(H)− f) = V3(co(H))∩ V (f). By Claim 1, let T1, T2 be two edge-disjoint spanning

trees in co(H)− f , let u ∈ V2(co(H)− f) and let u1, u2 be the neighbors of u. Then each

of the edges u1u, u2u is in one of T1, T2, say, u1u ∈ E(T1) and u2u ∈ E(T2) and, removing

for every u ∈ V2(co(H) − f) the edge uiu from Ti, i = 1, 2, we obtain two edge-disjoint

spanning trees in co(co(H)− f). �

Claim 3. co(H − f) = co(co(H)− f).

Proof. The claim is trivially true if f is a pendant edge ofH, so suppose f is nonpendant.

As already noted, we have V1(co(H) − f) = ∅ and V2(co(H) − f) = V3(co(H)) ∩ V (f),

from which V (co(co(H)− f)) = V (H) \ [V1(H)∪ V2(H)∪ (V3(H)∩ V (f))]. On the other

hand, V1(H−f) = V1(H)∪ (V2(H)∩V (f)) (note that V2(H) is an independent set by the

connectivity assumption) and V2(H − f) = (V2(H) \ V (f))∪ (V3(H)∩ V (f)), from which

V1(H − f) ∪ V2(H − f) = V1(H) ∪ V2(H) ∪ (V3(H) ∩ V (f)), implying V (co(H − f)) =

V (H) \ [V1(H)∪V2(H)∪ (V3(H)∩V (f))]. Thus, co(H− f) and co(co(H)− f) are graphs

on the same vertex set.

In the construction of co(H−f), each of the vertices in V1(H−f) = V1(H)∪ (V2(H)∩
V (f)) was removed together with a pendant edge; in co(co(H)− f), in the construction

of co(H), the set V1(H) was removed, and in the step from co(H)− f to co(co(H)− f),

V2(H)∩V (f) was removed. Thus, in the construction of both graphs, the sets of removed

vertices are the same. Consequently, the sets of suppressed vertices are also the same and

the claim follows. �

Now, co(H − f) has two edge-disjoint spanning trees by Claims 3 and 2.

5 Proof of Proposition 1

For our proof we will need four lemmas describing subgraphs that cannot occur in the

preimage of an SM -closed graph.
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Lemma 8. Let G be an SM -closed graph and let H = L−1(G). Then H does not

contain a triangle with a vertex of degree 2 in H.

For the proof of Lemma 8, we will need the following proposition from [4].

Proposition I [4]. Let x be an eligible vertex of a claw-free graph G, G
∗
x the local

completion of G at x, and a, b two distinct vertices of G. Then for every longest (a, b)-

path P ′(a, b) in G
∗
x there is a path P in G such that V (P ) = V (P ′) and P admits at

least one of a, b as an endvertex. Moreover, there is an (a, b)-path P (a, b) in G such that

V (P ) = V (P ′) except perhaps in each of the following two situations (up to symmetry

between a and b):

(i) There is an induced subgraph F ⊂ G isomorphic to the graph S in Fig. 5 such

that both a and x are vertices of degree 4 in F . In this case G contains a path Pb

such that b is an endvertex of P and V (Pb) = V (P ′). If, moreover, b ∈ V (F ), then

G contains also a path Pa with endvertex a and with V (Pa) = V (P ′).

(ii) x = a and ab ∈ E(G). In this case there is always both a path Pa in G with

endvertex a and with V (Pa) = V (P ′) and a path Pb in G with endvertex b and

with V (Pb) = V (P ′).
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Proof of Lemma 8. Let G be an SM -closed graph. If G is Hamilton-connected, the

lemma is obvious since H = L−1(G) is triangle-free by the definition of the SM -closure.

Thus, suppose that G is not Hamilton-connected. Let, to the contrary, T = ⟨{v1, v2, v2}⟩H
be a triangle in H with dH(v1) = 2, and set xi = L(vivi+1), i = 1, 2, 3 (indices mod 3).

Observe that L−1(S) (where S is the graph in Fig. 5) is isomorphic to the net N , i.e.

the graph obtained by attaching a pendant edge to each vertex of a triangle. Since

dH(v1) = 2, T is not contained in a copy of N , hence the triangle L(T ) = ⟨{x1, x2, x3}⟩G
is not contained in an induced subgraph of G = L(H) isomorphic to S = L(N).

Since the edge L−1(x2) = v2v3 is in the triangle T , and T cannot have two vertices of

degree 2 by the definition of the preimage L−1, x2 is eligible in G and, by the definition

of the SM -closure, G∗
x2

is not Hamilton-connected, i.e., there is no hamiltonian (a, b)-

path in G∗
x2

for some a, b ∈ V (G) for which there is no hamiltonian (a, b)-path in G.

By Proposition I(ii), for every such hamiltonian (a, b)-path in G∗
x2
, one of a, b is x2 (say,

a = x2), and b ∈ N(x2).

Now, x1 is also eligible in G, and since NG(x1) ⊂ NG(x2) (this follows easily from

dh(v1) = 2), also G∗
x1

⊂ G∗
x2
, hence every hamiltonian path in G∗

x1
is also a hamiltonian

path in G∗
x2
. We already know that every such (a, b)-path satisfies a = x1, and, applying

Proposition I(ii) to x1, we have b = x1.

Thus, we conclude that the only possible vertices for which there is a hamiltonian

path in G∗
x2

but not in G are the vertices x1 and x2. However, x3 is also eligible in G and
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NG(x3) ⊂ NG(x2), thus, by a symmetric argument, we obtain the same conclusion for x3

and x2, a contradiction.

In the proof of the next three lemmas we will need the following slight extension of a

technical lemma from [10].

For a graph H, u ∈ V (H) with dH(u) = 2 and NH(u) = {v1, v2}, H|(u) denotes the

graph obtained from H by suppressing the vertex u (i.e., by replacing the path v1uv2 by

the edge v1v2) and by adding one pendant edge to each of v1 and v2.

Lemma J [10]. Let H be a graph and u ∈ V (H) of degree 2 with NH(u) = {v1, v2}
and hi = uvi, i = 1, 2. Set H ′ = H|(u), h = v1v2 ∈ E(H ′), and let f1, f2 ∈ E(H ′) \ E(H)

be the two pendant edges attached to v1 and v2, respectively.

(i) If L(H) is Hamilton-connected, thenH ′ has an (e1, e2)-IDT for every e1, e2 ∈ E(H ′)

such that either

(α) h /∈ {e1, e2}, or
(β) h ∈ {e1, e2} and {e1, e2} ∩ {f1, f2} ̸= ∅.

(ii) If L(H ′) is Hamilton-connected, then H has an (e1, e2)-IDT for every e1, e2 ∈ E(H)

such that {e1, e2} ̸= {h1, h2}.
(iii) If moreover H contains a pendant edge attached to v1 and H has an (h1, e)-IDT

for every e ∈ E(H), then H ′ has an (h, e′)-IDT for every e′ ∈ E(H ′)

Proof. Parts (i) and (ii) are a reformulation of Lemma 3 from [10]. We prove (iii).

Thus, for any e′ ∈ E(H ′), we construct an (h, e′)-IDT in H ′. Let f denote the pendant

edge at v1 in H. If e′ ∈ {f, f1, f2}, then, for any (h1, h2)-IDT in H, an appropriate

replacement of h1 and h2 with h and e′ gives the desired (h, e′)-IDT in H ′. Thus, let

e′ /∈ {f, f1, f2}. Let e ∈ E(H) be the edge corresponding to e′, and let T be an (h1, e)-

IDT in H. If h2 ∈ E(T ), then necessarily v1 ∈ V (T ) (otherwise f is not dominated),

and then T ′ obtained from T by replacing h1, h2 with h is an (h, e′)-IDT in H ′. Similarly,

if h2 /∈ E(T ), then necessarily v2 ∈ V (T ) (otherwise h2 is not dominated), and then T ′

obtained from T by replacing h1 with h is a desired (h, e′)-IDT in H ′.

Lemma 9. Let G be an SM -closed graph and let H = L−1(G). Then H does not

contain a subgraph H isomorphic to a cycle C5 with a vertex of degree 2 in H and with

a chord.

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is

not Hamilton-connected and let, to the contrary, H ⊂ H be a graph consisting of a

cycle C = v1v2v3v4v5v1 with a chord e, and choose the notation such that dH(v4) = 2.

If e = v3v5, we have a contradiction with Lemma 8, hence without loss of generality

suppose that e = v2v5. First observe that e is the only chord of C in H, for otherwise

H contains a diamond, a contradiction. Denote vivi+1 = hi+1, i = 1, . . . , 5 (indices mod

5) and set H1 = H|(v4). Then L(H1) is not Hamilton-connected by Lemma J(ii). It is

straightforward to see that in L(H1), the neighborhood of the vertex L(e) is 2-connected.

By Proposition E, the graph (L(H1))
∗
L(e) = L(H1|e) is not Hamilton-connected. Set
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H2 = H1|e (denoting v2 the vertex obtained by merging v2, v5 ∈ V (H1)). Now, the

subgraph of H2 corresponding to H ⊂ H consists of three vertices v1, v2, v3, a double edge

h1, h2 joining v1 and v2, a double edge h3, h4 joining v1 and v2, two pendant edges at v2
and one pendant edge at v3.

Now we return back the suppressed vertex v4: let H3 be the graph obtained from H2

by subdividing the edge h4 with a vertex v4 (denoting h5 = v4v2) and removing a pendant

edge from each of v2, v3. If L(H3) is Hamilton-connected, then H2 has, for e1, e2 ∈ E(H2),

an (e1, e2)-IDT for e1, e2 ̸= h4 by Lemma J(i), and for h4 ∈ {e1, e2} by Lemma J(iii), hence

L(H2) is Hamilton-connected, a contradiction. Thus, L(H3) is not Hamilton-connected.

But H3 can be alternatively obtained from H by contracting the chord e, i.e., H3 = H|e,
or, equivalently, L(H3) = G∗

L(e). As L(H3) is not Hamilton-connected and L(e) is eligible

in G (since e is in a triangle in H), we have a contradiction with the fact that G is

SM -closed.

Lemma 10. Let G be an SM -closed graph and let H = L−1(G). Then H does not

contain a cycle C of length 5 such that some two vertices of C are of degree 2 in H and

some edge of C is in a double edge or in a triangle in H.

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is

not Hamilton-connected, let C = v1v2v3v3v5v1 ⊂ H and let vj, vk, j < k, be of degree 2

in H. Set vivi+1 = hi+1, i = 1, . . . , 5 (indices mod 5).

Suppose first that vj, vk are consecutive on C, say, j = 1, k = 2. Then R = {h1, h2} is

an essential edge-cut separating h2 from the rest of H. By the assumptions, some of h4,

h5 (say, h4), is in a triangle or in a double edge, implying L(h4) is eligible in G. But R is

an essential edge-cut also in H|h4 = L−1(G∗
L(h4)

), hence G∗
L(h4)

is not Hamilton-connected,

contradicting the definition of SM -closure. Thus, vj, vk are not consecutive on C.

Choose the notation such that j = 3 and k = 5, i.e., dH(v3) = dH(v5) = 2. Then the

only possible chords of C are the edges v1v4 and v2v4, but if some of them is present, we

have a contradiction with Lemma 8. Thus, C is chordless. This implies that either

(i) h2 is in a double edge, or

(ii) h2 is in a triangle T = v1v2z with z ∈ V (H) \ V (C).

In case (i), we use h′
2 to denote the edge parallel with h2 and H to denote the graph with

V (H) = V (C) and E(H) = E(C) ∪ {h′
2}; in case (ii) we set h′

2 = zv1, h
′′
2 = zv2, V (H) =

V (C)∪{z} and E(H) = E(C)∪{h′
2, h

′′
2}. Recall that in both cases dH(v3) = dH(v5) = 2.

By the properties of the SM -closure, for each pair e, fE(H), for which there is no

(e, f)-IDT in H, we have {e, f} = {h2, h
′
2} in case (i), or {e, f} ∩ {h2, h

′
2, h

′′
2} in case (ii),

respectively. Thus, by Lemma J(ii), for the graph H1 = H|(v5) (in which we denote v1v4 =

h1), L(H1) is not Hamilton-connected. Similarly, the graph L(H2), where H2 = H1|(v3)
(in which we set v2v4 = h3) is also not Hamilton-connected. But now ⟨{v1, v2, v4}⟩H2

is a triangle with a double edge h2, h
′
2 in case (i), or ⟨{v1, v2, v4, z}⟩H2 is a diamond in

case (ii). In both cases, it is straightforward to verify that, in L(H2), the neighborhood

of the vertex x2 = L(h2) is 2-connected. Thus, setting H3 = H2|h2 , we obviously have

L(H3) = (L(H2))
∗
x2

and, by Proposition E, L(H3) is also not Hamilton-connected. Note
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that in H3 the subgraph corresponding to H consists of: in case (i) two vertices v1, v4
joined by h1 and h3, 4 pendant edges at v1 and 2 pendant edges at v4, or in case (ii) three

vertices z, v1, v4, where z, v1 are joined by h′
2, h

′′
2 and v1, v4 are joined by h1, h3, and there

are 3 pendant edges at v1 and 2 pendant edges at v4.

Now we return back the suppressed vertices of degree 2: H4 is obtained from H3 by

subdividing h3 with v3 (denoting v3v4 = h4) and removing a pendant edge from each of

v1, v4, and, similarly, H5 is obtained from H4 by subdividing h1 with v5 (denoting v4v5 =

h5), and removing a pendant edge from each of v1, v4. If L(H4) is Hamilton-connected,

then H3 has, for e, f ∈ E(H3), an (e, f)-IDT for e, f ̸= h34 by Lemma J(i), and for

h3 ∈ {e, f} by Lemma J(iii), hence L(H3) is Hamilton-connected, a contradiction. Thus,

L(H4) is not Hamilton-connected. By a similar argument, L(H5) is also not Hamilton-

connected. But now we observe that H5 = H|h2 , or, equivalently, L(H5) = G∗
x2
. As h2 is

in a double edge or in a triangle, x2 is eligible in G and we have a contradiction with the

fact that G is SM -closed.

Lemma 11. Let G be an SM -closed graph, let H = L−1(G) and let F be the graph

with V (F ) = {v1, v2, v3, v4, v5, z} and E(F ) = {v1v2, v2v3, v3v4, v4v5, v5v1, v3v5, zv1, zv2}
(see Fig. 6). Then H does not contain a subgraph H isomorphic to the graph F such that

NH({v1, v2, v3, v5}) ⊂ V (H).
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Figure 6

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is

not Hamilton-connected and let H be a subgraph of H with the properties given in the

lemma. Let h1, . . . , h8 denote the edges of H as shown in Fig. 6 and denote T1 = v1v2zv1
and T2 = v3v4v5v3 the two triangles in H. Observe that H contains no multiple edge since

H already contains two triangles, and that neither of the vertices v1, v2, v3, v5 can have

another neighbor in H for otherwise H contains a diamond, a contradiction. Thus, H is

either induced, or ⟨V (H)⟩H = H+zv4. Moreover, if zv4 /∈ E(H), then, by the connectivity

assumption, the graph H−{v1, v2, v3, v5} contains a (z, v4)-path (since otherwise {h1, h3}
is an essential edge-cut of size 2 in H). Specifically, we have dH(z) ≥ 3 and dH(v4) ≥ 3.

Since h2 is in a triangle, x2 = L(h2) is eligible in G, implying G∗
x2

= L(H|h2) is

Hamilton-connected since G is SM -closed. Thus, the graph H1 = H|h2 has an (e1, e2)-

IDT for any e1, e2 ∈ E(H1). We will show that H has an (f1, f2)-IDT for any f1 ∈ E(T1)

and f2 ∈ E(T2), contradicting the fact that G = L(H) is SM -closed.

Thus, choose any e1, e2 ∈ E(H1), let T
′ be an (e1, e2)-IDT in H1 and let T be the part

of T ′ that is outside H|h2 (in the special case when V (H) dominates all edges of H and
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T ′ ⊂ H|h2 , necessarily zv4 ∈ E(H) or zw,wv4 ∈ E(H) for some w ∈ V (H) \ V (H), and

we choose T = zv4 or T = zwv4, respectively).

Then T is also a trail in H −H, with initial and terminal edges incident to z and/or

v4 and dominating all edges in H −H. We distinguish two possibilities:

(α) both dT (z) and dT (v4) is odd,

(β) both dT (z) and dT (v4) is even (possibly zero).

In the case (β), only one of dT (z), dT (v4) can be zero and, by symmetry, we choose the

notation such that dT (z) ̸= 0. Up to a symmetry, we have the following possibilities for

f1 ∈ E(T1) and f2 ∈ E(T2). In each of them, we find an (f1, f2)-IDT in H for both

possibilities (α) and (β).

An (f1, f2)-IDT for the possibility

Case f1 f2 (α) (β)

1 h7 h5 zv1v2zTv4v3v5v4 v1zTzv2v1v5v3v4v5
2 h7 h4 zv1v2zTv4v5v3v4 v1zTzv2v1v5v4v3
3 h7 h6 zv1v2zTv4v3v5 v1zTzv2v1v5v4v3v5
4 h2 h4 Symmetric to 3(α) v2v1zTzv2v3v5v4v3
5 h2 h6 v2v1zTv4v3v5 v2v1zTzv2v3v4v5v3

Proof of Proposition 1. Let G0 be a claw-free graph and x ∈ V (G0) such that G0 − x

is not Hamilton-connected, and let (G̃0)x be a partial x-closure of G0. In the rest of the

proof, we will simply denote G := (G̃0)x.

Immediately by the construction of G, G is claw-free and G− x is SM -closed. Thus,

it remains to show that G satisfies (i), (ii) or (iii).

We introduce the following notation:

NG(x) = {x1, . . . , xd} (i.e., dG(x) = d),

K – Krausz partition of G− x,

K ′
1, . . . , K

′
k – all cliques in K with K ′

i ∩NG(x) ̸= ∅, i = 1, . . . , k,

H ′ = L−1(G− x),

Ki = K ′
i ∩NG(x), i = 1, . . . , k.

The cliques K1, . . . , Kk ⊂ ⟨NG(x)⟩G satisfy the conditions of Theorem B (applied on

⟨NG(x)⟩G), and we use H to denote the intersection graph of the system {K1, . . . , Kk}.
Then we have H ⊂ H ′ and L(H) = ⟨NG(x)⟩G. However, note that not necessarily

H = L−1(⟨NG(x)⟩G) (since the graph H can be another “preimage” of ⟨NG(x)⟩G, see e.g.
the example in Fig. 1).

Using the correspondence between a line graph and its preimage, we will identify

Krausz cliques in G − x with the vertices of H ′ (the centers of the stars in H ′ that

correspond to the cliques in K). Thus, {K ′
1, . . . , K

′
k} ⊂ V (H ′) and {K1, . . . , Kk} = V (H).

Note that if NG(x) can be covered by two Krausz cliques, then at most two cliques

from K have at least two vertices in NG(x) (hence at least one edge in ⟨NG(x)⟩G), and
extending these cliques to x we get a Krausz partition of G. Thus, to show that G satisfies

(iii), it is sufficient to show that NG(x) can be covered by two Krausz cliques.
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Suppose first that ⟨NG(x)⟩G is disconnected, and let F1, F2 be its components. Then

both F1 and F2 are cliques since G is claw-free. If F1, F2 are subcliques of Krausz cliques

in G − x, we are done; so, suppose that, say, F1 is not. Then, as noted in Section 2,

L−1(F1) is a (multi)triangle or a multiedge in H ′ = L−1(G−x); since G−x is SM -closed,

L−1(F1) is a triangle or a double edge.

If L−1(F1) is a double edge, then L−1(F1) = ⟨{K ′
a, K

′
b}⟩H for some a, b ∈ {1, . . . , k},

and since F1 is a clique, one of K ′
a, K

′
b, say, K

′
b, has no neighbor w with L(K ′

bw) ∈ NG(x),

but then F1 is a subclique of K ′
a ∈ K, a contradiction. So, suppose that L−1(F1) is a

triangle, set L−1(F1) = ⟨{K ′
a, K

′
b, K

′
c}⟩H (where a, b, c ∈ {1, . . . , k}), and let z ∈ V (F2)

be arbitrary. By the properties of the preimage L−1 (see Section 2), at least two of the

vertices K ′
a, K

′
b, K

′
c have a neighbor outside {K ′

a, K
′
b, K

′
c}. Let, say, K ′

aw1, K
′
bw2 ∈ E(H ′),

where w1, w2 ∈ V (H ′) \ {K ′
a, K

′
b, K

′
c}. Then w1 ̸= w2 (otherwise H ′ contains a diamond),

both L(K ′
aw1) /∈ NG(x) and L(K ′

bw2) /∈ NG(x) (for if e.g. L(K ′
aw1) ∈ NG(x), then

⟨{x, L(K ′
aw1), L(K

′
bK

′
c), z}⟩G is a claw), but then ⟨{L(K ′

aK
′
b), L(K

′
aw1), L(K

′
bw2), z}⟩G is

a claw, a contradiction again.

Thus, we can suppose that ⟨NG(x)⟩G (and therefore also H) is connected.

Claim 1. If H contains a triangle and does not contain a C5, then L(H) = ⟨NG(x)⟩G
can be covered by two Krausz cliques.

Proof. Let, say, T = ⟨{K ′
1, K

′
2, K

′
3}⟩H be a triangle in H and denote h1 = K ′

1K
′
3,

h2 = K ′
1K

′
2, h3 = K ′

2K
′
3. By Lemma 8, dH′(K ′

i) ≥ 3, i = 1, 2, 3. Let ei ∈ E(H ′) \ E(T )

be an edge incident to K ′
i, and set yi = L(ei) and xi = L(hi), i = 1, 2, 3. Since H ′ does

not contain a diamond, the edges e1, e2, e3 have no vertex in common, i.e., {e1, e2, e3} is

a matching in H ′. Hence the vertices y1, y2, y3 are independent in G− x.

Now, if all yi, i = 1.2.3, are in NG(x), then ⟨{x, y1, y2, y3}⟩G is a claw in G, and

if, say, y1, y2 ∈ V (G) \ NG(x), then ⟨{x2, y1, y2, x}⟩G is a claw in G, a contradiction.

Hence exactly two xi’s are in NG(x). Choose the notation such that x1, x2 ∈ NG(x) and

x3 ∈ V (G) \NG(x). Then, since the edge e3 was chosen arbitrarily, we have dH(K
′
3) = 2.

If all other edges of H are incident to K ′
1 or K ′

2, then E(H) can be covered by two

stars centered at K ′
1, K

′
2, hence ⟨NG(x)⟩G can be covered by two cliques and we are done.

Hence suppose that there is an f ∈ E(H) that is incident to none of K ′
1, K

′
2, K

′
3. since

H is connected, we can choose f such that f has a common vertex with, say, e1. Set

L(f) = z.

But now, if f has a common vertex with e2, then e1, h1, h3, e2, f determine a C5 in H,

contradicting the assumption, and if f does not share a vertex with e2, then {f, h1, e2} is

a matching in H, implying ⟨{x, z, x1, y2}⟩G is a claw in G, a contradiction again. �

We now distinguish two cases.

Case 1: ⟨NG(x)⟩G does not contain an induced cycle of length 5.

Then, equivalently, H does not contain a cycle C5 (not necessarily induced).

First observe that α(⟨NG(x)⟩G) = ν(H) ≤ 2, for otherwise x is a center of an induced

claw in G, This immediately implies that H does not contain a cycle Cℓ of length ℓ ≥ 6,
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since such a cycle contains a matching of size 3. If H contains a triangle, then ⟨NG(x)⟩G
can be covered by two cliques by Claim 1 and we are done. Thus, the only possible cycles

in H are of length 4.

Let C = x1x2x3x4x1 be a cycle of length 4 inH. SinceH is triangle-free, C is chordless.

If V (H) = V (C), then H can be covered by two stars (hence ⟨NG(x)⟩G can be covered by

two cliques) and we are done; if H contains an edge e = uv with {u, v} ∩ V (C) = ∅, then
e together with two edges from E(C) form a matching of size 3 in H, a contradiction.

Hence every edge in E(H) \ E(C) has exactly one vertex in V (C).

Now, if some two consecutive vertices of C have a neighbor outside C, say, x1y1 ∈ E(H)

and x2y2 ∈ E(H) for some y1, y2 ∈ V (H) \ V (C), then y1 ̸= y2 (since H is triangle-free)

and {x1y1, x2y2, x3x4} is a matching in H, a contradiction. Hence all edges in E(H)\E(C)

are incident to some pair of nonconsecutive vertices of C, implying H can be covered by

two stars.

Thus, it remains to consider the case when H is a tree. Let D = {d1, . . . , dγ} be a

minimum dominating set in H. By the minimality of D, for every i, 1 ≤ i ≤ γ, there

is a vertex wi ∈ V (H) \ D such that di is the only neighbor of wi in D. If γ ≥ 3, then

{d1w1, d2w2, d3w3} is a matching in H, hence γ ≤ 2, implying {d1} (if γ = 1) or {d1, d2}
(if γ = 2) are centers of stars covering all edges of H.

Case 2: ⟨NG(x)⟩G contains an induced cycle of length 5.

Let C be an induced cycle of length 5 in ⟨NG(x)⟩G. Then L−1(C) is a C5 (not necessarily

induced) in H. If k ≥ 6, then there is an edge e ∈ E(H) \ E(C) with at least one vertex

outside C, but then e together with two edges of C form a matching of size 3 in H, a

contradiction. Hence k = 5 and NG(x) = V (C).

We choose the notation such that C = x1x2x3x4x5x1 and xixi+1 ∈ E(K ′
i) (i.e.,

xi+1 ∈ K ′
i ∩ K ′

i+1), i = 1, . . . , 5 (indices mod 5). Then CH = K ′
1K

′
2K

′
3K

′
4K

′
5K

′
1 is the

corresponding 5-cycle in H ′ = L−1(G − x), and we denote its edges hi = L−1(xi) (i.e.,

hi+1 = K ′
iK

′
i+1), i = 1, . . . , 5 (indices mod 5).

Claim 2. For any y ∈ NG(x), y ∈ Ki ∩Kj for some i, j = 1, . . . , 5, i ̸= j.

Proof. If e.g. y ∈ K1\(∪5
i=2Ki) for some y ∈ NG(x), then y ∈ K ′ for some other K ′ ∈ K

(since every vertex is in 2 Krausz cliques), implying k ≥ 6, a contradiction. �

We introduce the following notation:

Kx = {K ′
1, . . . , K

′
5},

Kx = ∪5
i=1K

′
i,

R = V (G) \ ({x} ∪Kx),

KR = K \ Kx,

I(K ′
i) = K ′

i \ (∪j∈({1,...,5}\{i})K
′
j), i = 1, . . . , 5.

The vertices in I(K ′
i) will be referred to as the internal vertices of the clique K ′

i. Note

that, by Claim 2, I(K ′
i) ∩NG(x) = ∅, i = 1, . . . , 5.

Claim 3. If y ∈ Kx has a neighbor in R, then y ∈ I(K ′
i) for some i = 1, . . . , 5.
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Proof. By the properties of the Krausz cliques and by Claim 2, only vertices in I(K ′
i)

can have a neighbor in R, since if a vertex y ∈ K ′
i ∩ K ′

j (for some i, j ∈ i, . . . , 5) has a

neighbor in R, then y is in three Krausz cliques, a contradiction. �

Claim 4. If y1 ∈ I(K ′
i) and y2 ∈ I(K ′

i+1) for some i = 1, . . . , 5, then

(i) y1y2 ∈ E(G),

(ii) y1y2 ∈ E(⟨K⟩G) for some K ∈ KR,

(iii) ⟨{K ′
i, K

′
i+1, K}⟩G is a traingle in H ′ = L−1(G− x),

(iv) |I(K ′
i)| = |I(K ′

i+1)| = 1.

Proof. Let e.g. y1 ∈ I(K ′
1) and y2 ∈ I(K ′

2).

(i) If y1y2 /∈ E(G), then ⟨{x2, x, y1, y2}⟩G is a claw in G.

(ii) If y1y2 ∈ E(⟨K ′
i⟩G) for some i = 2, . . . , 5, then y1 ∈ K ′

1 ∩ K ′
i, contradicting the

assumption y1 ∈ I(K ′
i). Hence y1y2 ∈ E(⟨K⟩G) for some K ∈ KR,

(iii) Follows immediately by the structure of K ′
1, K

′
2 and K.

(iv) If e.g. y1, y
′
1 ∈ I(K ′

1), y1 ̸= y′1, then y1, y
′
1 ∈ Ki∩K, implying H ′ contains a triangle

and a double edge, a contradiction. �

Claim 5. There is no j, 1 ≤ j ≤ 5, such that I(K ′
i) ̸= ∅ for i = j, j + 1, j + 2.

Proof. Let e.g. I(K ′
i) ̸= ∅ for i = 1, 2, 3. By Claim 4, the edge y1y2 is in some clique

K1 ∈ KR, and y2y3 is in some K2 ∈ KR. Since y2 cannot be in three Krausz cliques,

we have K1 = K2, implying that y1y3 ∈ E(G) and y1y3 is also in K1. Then we have

y1 ∈ K1 ∩K ′
1, y2 ∈ K1 ∩K ′

2, y3 ∈ K1 ∩K ′
3, x2 ∈ K ′

1 ∩K ′
2 and x3 ∈ K ′

2 ∩K ′
3, implying

that K1, K ′
1, K

′
2, K

′
3 are vertices of a diamond in H ′, a contradiction. �

Claim 6. |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| ≤ 3.

Proof. Otherwise we have I(K ′
i) ̸= ∅ for some three consecutive cliquesK ′

i, contradicting

Claim 5. �

Claim 7. |K ′
i ∩K ′

i+1| = 1, i = 1, . . . , 5.

Proof. Let, to the contrary, e.g. |K ′
1 ∩ K ′

2| ≥ 2. Then ⟨{K ′
1, K

′
2}⟩H′ is a multiedge,

implying |K ′
1 ∩ K ′

2| = 2 and |K ′
i ∩ K ′

i+1| = 1 for i = 2, 3, 4, 5. Moreover, there is no i,

1 ≤ i ≤ 5, such that both I(K ′
i) ̸= ∅ and I(K ′

i+1) ̸= ∅, for otherwise, by Claim 4, H ′

contains a triangle, contradicting the fact that H ′ already contains a double edge. Hence

|{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| ≤ 2, and the vertices K ′

i with I(K ′
i) ̸= ∅ are nonconsecutive

on the 5-cycle CH = K ′
1K

′
2K

′
3K

′
4K

′
5K

′
1 in H ′. Moreover, if I(K ′

i) ̸= ∅ and I(K ′
j) ̸= ∅ for

some i, j, then K ′
i ∩ K ′

j = ∅, for otherwise the edge K ′
iK

′
j ∈ E(H ′) is a chord in CH ,

contradicting again the properties of SM -closed graphs.

This means that the 5-cycle CH is chordless, ⟨{K ′
1, K

′
2}⟩H′ is the only double edge, at

most two vertices of CH can have a neighbor outside CH (namely, those for which the

corresponding clique in G − x has some internal vertices), and these verties are noncon-

secutive.
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Now, if I(K ′
1) = I(K ′

2) = ∅, then {K ′
1K

′
5, K

′
2K

′
3} is an essential edge-cut in both H ′

andH|K′
1K

′
2
, implying that neither G−x = L(H ′) nor (G−x)∗x2

= L(H ′|K′
1K

′
2
) is Hamilton-

connected, contradicting the fact that G − x is SM -closed (note that x2 is eligible since

x2 = L−1(K ′
1K

′
2) and K ′

1K
′
2 is in a double edge). Thus, we can suppose I(K ′

1) ̸= ∅. But

then at least two vertices of CH are of degree 2 in H ′ and we have a contradiction with

Lemma 10. �

Now we can finish the proof of Proposition 1. Clearly, I(K ′
i) ̸= ∅ for at least one i,

1 ≤ i ≤ 5, for otherwise V (G) = NG(x) and there is nothing to do. Thus, by Claim 6,

one, two or three cliques K ′
i have I(K ′

i) ̸= ∅. We consider these possibilities separately.

Subcase 2.1: |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| = 3.

By Claim 5, we have I(K ′
i) ̸= ∅ for at most two consecutive cliques K ′

i. Thus, with-

out loss of generality let I(K ′
i) ̸= ∅ for i = 1, 2, 4 (i.e., I(K ′

3) = I(K ′
5) = ∅). By

Claim 4, there is a vertex y ∈ V (H ′) \ V (H) such that ⟨{K ′
1, K

′
2, y}⟩H′ is a triangle.

If dH′(K ′
3) = dH′(K ′

5) = 2, we have a contradiction by Lemma 10. Thus we have,

say, dH′(K ′
3) ≥ 3, i.e., besides K ′

2 and K ′
4, K ′

3 has at least one more neighbor, say,

z. Then z ∈ {K ′
1, K

′
2, K

′
4, K

′
5} since I(K ′

3) = ∅, and the only possibility that does

not create a double edge or a diamond (recall that H ′ already contains a triangle) is

z = K ′
5 and dH′(K ′

3) = dH′(K ′
5) = 3. Set H = ⟨{K ′

1, K
′
2, K

′
3, K

′
4, K

′
5, y}⟩H′ and note that

T1 = ⟨{K ′
1, K

′
2, y}⟩H′ and T2 = ⟨{K ′

3, K
′
4, K

′
5}⟩H′ are two triangles in H (hence also in

H ′) and, by Claim 4(iv), y and K ′
4 are the only vertices of H that can have adjacencies

outside H. But then H (or possibly H − yK ′
4, if yK

′
4 ∈ E(H ′)), has the structure shown

in Fig. 6 and we have a contradiction by Lemma 11.

Subcase 2.2: |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| = 2.

By symmetry, we can choose the notation such that I(K ′
1) ̸= ∅ and either I(K ′

2) ̸= ∅ or

I(K ′
3) ̸= ∅.
Let first I(K ′

1) ̸= ∅, I(K ′
2) ̸= ∅. By Claim 4, there is a vertex y ∈ V (H ′) \ V (H) such

that ⟨{y,K ′
1, K

′
2}⟩H′ is a triangle and y is the only neighbor of K ′

1 and K ′
2 outside H. If

the cycle CH is cordless, we have a contradiction by Lemma 10, and if CH has a chord,

we have a contradiction by Lemma 8.

Thus, suppose that I(K ′
1) ̸= ∅, I(K ′

3) ̸= ∅. By Claim 7 and by the properties of SM -

closed graphs, CH has no multiedge and at most one chord, but if CH has a chord, we

have a contradiction with Lemma 9. Hence CH is chordless. Then {h1, h4} is an essential

edge-cut in H ′, separating h5 from the rest of H ′, hence {x1, x4} is a vertex-cut in G− x,

separating x5 from the rest of G − x. The graph (G − x) + x1x4 is SM -closed, since it

is the line graph of a graph obtained from H ′ by contracting the edge h5 and adding a

pendant edge to the contracted vertex, and this operation creates neither a triangle nor

a multiedge. Thus, the graph G− x satisfies all conditions of part (ii) of Proposition 1.

Subcase 2.3: |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| = 1.
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If CH has a chord, we have a contradiction with Lemma 9, hence CH is chordless. But

then again, e.g. {h1, h4} is an edge-cut in H ′ and we can add the edge x1x4 to G− x to

satisfy all conditions of part (ii) of Proposition 1.
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