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ABSTRACT

Subdivision surfaces are an established modeling tool in computer graphics and computer-aided design. While the theoretical
foundations of subdivision surfaces are well studied, the correlation between a control mesh and its subdivided limit surface
still has some open-ended questions: Which topology should a control mesh have? Where should control vertices be placed?
A modeler — human or software — is confronted with these questions and has to answer them.

In this paper we analyze four characteristic situations. Each one consists of an analytical reference surface S and several
variants of control meshes C;. In order to concentrate on the topology of the control meshes, the geometrical positions of their
control vertices have been determined and optimized automatically. As a result we identified the best topology of all C; to
represent the given surface S. Based on these results we derived heuristics to model with subdivision surfaces. These heuristics

are beneficial for all modelers.
Keywords:

1 INTRODUCTION

Subdivision surfaces have gained a lot of attention
within the last decades. Especially artists and designers
prefer subdivision surfaces to other free-form surface
representations. The way how to model with subdi-
vision surfaces is described in various tutorials and
courses [4]. These tutorials pursue a plan which can be
summarized by the sequence

idea — subdivision surface model — real 3d object,

whereas the last production step is omitted, if only the
virtual object is of interest. Within the last few years
subdivision surfaces are also used in reverse engineer-
ing at a progressive rate. Reverse engineering is the
inverse situation of the sequence above. A real 3d ob-
ject is the starting point and its corresponding subdi-
vision surface model is the desired result. During the
re-modeling phase the modeler — either human or al-
gorithm — has to tackle two problems: geometry and
topology. These are the two ingredients of a subdivi-
sion surface. While many articles are about geomet-
ric optimization, we concentrate on topological ques-
tions. Choosing the right topology to represent a given
object by a subdivision surface reduces the number of
needed control vertices significantly. The choice of a
good topology is a distinction between an experienced,
skilled modeler and a beginner. In this article we ana-
lyze some characteristic objects and test different, topo-
logical variants of control meshes. A geometrical op-
timization allows us to determine the best vertex po-
sitions automatically and to concentrate on topological
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aspects. Based on these optimizations we determine the
appropriateness of each topological variant to represent
a certain object. Consequently, we derive heuristics to
model with subdivision surfaces.

2 RELATED WORK

Modeling with subdivision surfaces is the main topic of
many tutorials and courses [16], [15]. A good overview
on subdivision surfaces has been presented by WEIYIN
MA [7] whereas details on the mathematical back-
ground can be found in the book Subdivision Surfaces
by JORG PETERS and ULRICH REIF [11]. Furthermore
a variety of articles is about topological robustness [1]
or handling “special” situations such as filling n-sided
regions [10].

In this article we concentrate on the more general
situation from the reverse engineering point of view.
From this perspective a subdivision surface reconstruc-
tion method has to tackle two problems, a topological
problem (the layout of the control mesh) and a geo-
metrical problem (the position of the control vertices in
3D). Unfortunately, in most articles about subdivision
surface fitting [3], [2] the topological problem plays a
minor role [8]. In this article we address this topolog-
ical problem; i.e. we start with a topological setting;
then we optimize the geometry of the control mesh by
calculating the best vertex positions to approximate a
given surface. The optimization results establish a rela-
tionship between topological layout and approximation
quality, which allows to identify the best topology. In
order to concentrate on the topological aspects the ge-
ometry is optimized automatically. The optimization
uses a distance based error function [14], [12] which is
minimized by a standard approach of numerical mini-
mization [9], [5]. The minimization process is straight
forward and operates on the vector of all vertex coor-
dinates of all vertices to position. As the geometrical
optimization is not within the scope of this article we



refer to RAINER STORN and KENNETH PRICE [13] for
the algorithmic details of the minimization routine (see
http://www.icsi.berkeley.edu/~storn/code.html for im-
plementations).

3 MODELING

The case studies in the following section cover the
four most important situations when modeling with
Catmull-Clark subdivision surfaces:

Modeling Edges The first case examines smooth
edges. While sharp edges can be modeled easily
with special feature rules for subdivision surfaces,
smooth edges offer at least two possibilities to be
designed: with a row of control vertices along the
edge or with two rows of control vertices alongside
the edge.

Modeling Non-Quadrilateral Configurations
Almost each type of subdivision surface has a
topology for which it suits best. Loop subdivision
prefers triangles, Catmull-Clark subdivision gen-
erates quads, etc. Unfortunately, not every object
has a favorable geometric primitive to be modeled
with. Several strategies for such a configuration are
possible.

Modeling Curvature The third case inspects a surface
with different curvatures: hyperbolic, parabolic and
elliptic. It addresses the issue of quad orientation
with respect to the surface’s principle curvature di-
rections.

Modeling Inflection Points The last case analyzes a
surface which is defined by a cut curve. This is a
standard situation in CAD modeling.

Each case examines different variants of control
meshes that are adjusted by a number of parameters.
These parameters are set by a numerical optimization
routine based on differential evolution [13]. It mini-
mizes the distance [14] between the nominal surface
and the actual subdivision surface.

3.1 Smooth Edges

The first nominal surface is defined by the implicit
equation
S84y 4+05=1. (1

The resulting surface looks like a cube with round edges
and corners (see Figure 1). In order to analyze how to
model beveled edges two variants are inspected.

Variant 1 The first variant of possible control meshes
has a cube-like topological layout. It consists of 3 x 3
quads on each side. Due to symmetries the geometry
is defined by only six parameters of three initial control
points. Three parameters are used for the three coor-
dinates (x1,y1,z1) of the first control point. The fourth
and the fifth parameter define the second control point.
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Figure 1: The implicit surface x® +y° +z° = 1 has a de-
gree which cannot be reached by a cubic patch. There-
fore, Catmull-Clark subdivision can only approximate
it. The best way to approximate it is analyzed by test-
ing different topologies.

In order to avoid self-intersections as well as optimiza-
tions with constraints, these parameters are defined as
positive offsets to the first control point. Consequently,
they have a fixed domain and the second control point
is calculated via (x; +x2,y2,x1 +x2). As the second
control point defines an edge of the control mesh cube,
and as the faces of the cube are connected at/over this
edge, the x and z components have to be equal. Finally
the last parameter x3 again defines an offset from x;.
Due to symmetries this is the only value needed for the
third control point: (xj + x3,x] + x3,Xx] +x3). As the
third control point is at the corner of the control mesh
cube, all coordinate components must be equal. Figure
2 shows the initial three control points that are gener-
ated by the six parameters.

The optimization routine minimizes the distance be-
tween the generated surface and the reference surface
(Equation 1) based on uniformly-distributed samplings.
The error function f 1 is a sum of point-to-subdivision
surface distances. The optimum is

fia( 0.33633, 0.33526, 0.99830,
0.66616, 0.32615, 0.66319 )=7.45141.
P3 (x1+4x3, x1+x3, x 1+x3)
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Figure 2: Due to symmetries six parameters are enough
to define three different control points. The complete
subdivision control mesh is composed of rotations and
mirrorings of these points. Each of the six cube sides
consists of 3 x 3 faces.
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Figure 3: In comparison to each other the first variant performs better than the second one. Explicit modeling of
beveled edges increases the risk of “over-modeling” — a high frequency fluctuation which is spread out from the
beveled edge and which disturbs the low frequency parts of the surface.

The three control points, which generate the complete
subdivision control mesh by rotations and mirrorings,
have the coordinates

(0.33633,0.33526,0.99830),
(1.00249,0.32615,1.00249),
(0.99952,0.99952,0.99952).

Variant 2 Also the second variant is a cube-like con-
trol mesh derived from three initial control points but
with five parameters. This time every side of the cube
consists of four quads, the six sides of the cube are con-
nected through beveled faces at the edges and with tri-
angles at the corners. Figure 4 illustrates this control
mesh.

The first parameter, z;, is the z component of the first
control point, which is located at (0,0,z; ). Due to sym-
metries the first control point is centered on each side
of the control mesh cube. The second and third pa-
rameters, x, and z, define the second control point at
(x2,0,x2 + z2). This time the sides of the cube are con-
nected via beveled faces, therefore the offset z; is added
to the z component of the second control point. Using
the last two parameters, x3 and z3, the third control point

Figure 4: This variant uses a control mesh with explic-
itly beveled edges to approximate an implicit surface of
degree 6.
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is (x3,x3,x3 +z3). The error of the best control mesh of
this variant — according to the optimization routine — is
7.79202:

fia( 0.99686, 0.83273,

0.74912, 0.33157)

0.14743,
=7.79202.

Comparison Figure 3 illustrates both variants. Each
variant is rendered with a color scheme indicating its
distance to the nominal surface which is included in
each rendering. It is visualized with a transparent, gray-
ish style. The illustration shows that the first variant
performs better than the second one. The second variant
uses beveled edges to model the reference surface. This
topology is not suitable to approximate the given sur-
face. Even its geometrically optimized version shows
“over-modeling” effects — a high frequency fluctuation
which is spread out from the over-modeled parts. In this
case the beveled edges disturb the low frequency parts
of the surface. An in-depth analysis of the distances
confirms the visualization. The average and the maxi-
mum of all distances between the nominal surface and
points on the actual surface are:

| avg. distance | max. distance
Variant #1 0.00079 0.00204
Variant #2 0.00130 0.00519
3.2 Modeling Non-Quadrilateral
Configurations
The second surface analysis investigates non-

quadrilateral configurations. The reference surface is a
so-called monkey saddle. It is a height field defined by
3 2
x> —3x
Sa(x.y) =5 @
This surface is axially symmetric at a degree of 120°;
i.e. aftera %Tc rotation the surface is congruent to itself.
The point at the origin is a parabolic, umbilic point.

Within this analysis the parameters x and y may range
from —1.0to 1.0.



As the following variants have different numbers of
control vertices, the area of every control mesh is cho-
sen to be proportional to the number of its vertices. So
control meshes with more vertices have to approximate
a larger area of the reference surface.

Variant 1 The first variant has 19 vertices and seven
parameters, which define their heights (z component).
The symmetric configuration is illustrated in Figure 5
which shows the topology of the control mesh and the
parameters (height) of each vertex. All vertices with
x = 0 have a fixed height of 0.0. The best optimized
Y
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Figure 5: The topology of this control mesh is arranged
in a 120° symmetric layout to adapt the subdivision sur-
face to the reference.

version of this variant has an error of 0.44914. Its pa-
rameters are

foa( —0.27195,  —0.00007, 0.00001,
~0.27193, —0.00007, 0.27181,
—0.0001) = 0.44914.

Variant 2  For the second variant a predefined mesh
with 27 vertices is used as control mesh. The heights
of its vertices are controlled by twelve parameters. Fig-
ure 6 shows the parameters and the topology which is
(in the inner part) dual to the first variant. Again, all
vertices with x = 0 have a fixed height of 0.0.

The smallest possible error of this topological config-
uration is

foa( 000148,  —0.07632, —0.25658
~0.37829, —0.07681, 0.07507,
0.00052, —0.37787, —0.25613,
0.25710,  0.37745, —0,00072)
= 0.69362.

Variant 3  The third variant for this surface does not
adapt to the reference’s axial symmetry of %n in any
way. It uses a regular quadratic grid centered on the
reference surface. There are five vertices along each
side of the grid, so 25 vertices in total. Fixing the ver-
tices at x = 0 six parameters are enough to describe all
vertices. Figure 7 illustrates this topology. The opti-
mization returns the optimum of this topology with an
error of f>3 = 0.80376.
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Figure 6: The topology of the second variant has a con-
figuration which is dual to the first one (except for the
border).

Comparison Taking the number of control vertices into
account, each surface has been normalized; i.e. the area
of every control mesh is proportional to the number of
its vertices. Therefore, all subsequent error values are
normalized and comparable to each other. In this situ-
ation the case study does not reveal a best topology but
a worst one. The regular gird does not approximate the
given surface well. The two variants whose topologies
reflect the nominal surface’s symmetry perform much
better (see Figure 8):

| avg. distance | max. distance

Variant 1 0.00241 0.00624
Variant 2 0.00153 0.01037
Variant 3 0.00330 0.01555

3.3 Modeling Curvature

The third modeling study inspects a torus due to its
characteristic curvatures: hyperbolic, parabolic, and el-
liptic [6]. The reference is described by the formula:

(a+bcos(2mv)) - cos(2mu)
(a+bcos(2mv)) - sin(2mu) 3)
b sin(27v)

S3(u,v) =

with major radius a = 5.0 and minor radius b = 3.0.
The parameters u and v are within the range 0.0 to 1.0.
Variant 1  For the first variant the parameter domain
is sampled at a fixed, regular grid to get the control
point positions. Two parameters, that can be set by

Figure 7: A rectangular topology leads to a very high
error. Topologies that reflect the nominal surface’s sym-
metry perform much better.
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Figure 8: The nominal surface (upper left) is invariant to 120° rotations. The topology of variant #1 (upper right)
and #2 (lower right) reflect this property whereas variant #3 (lower left) uses a simple rectangular grid. In this case
topologies, which reflect the main symmetries of the reference surface, perform better.

the optimization, define the major and the minor radius
of the control mesh torus. This is probably the most
commonly used parameterization of a torus in model-
ing software.

The error of this variant after the optimization is
824.82012. The two parameters defining the major and
minor radius have their optimum at 5.42375 respec-
tively 3.38278. This variant is compared to slanted
torus control mesh.

Variant 2 A slanted torus uses a slightly different
parameterization than the first one. Again, the values
u and v are a regular grid in the parameter domain, but
this time an offset depending on u is added to v each

Figure 9: A slanted torus control mesh is a “non-
standard” way to model a torus. This variant is com-
pared to the most commonly used parameterization
with a rectangular grid layout of the parameter domain.
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time. For this variant, the offset is defined as %u This
introduces a slant in the control mesh.

The optimization routine calculates a minimum error
of 1474.60738 for this variant. The parameters defin-
ing the resulting control mesh are a = 5.62499 and
b = 3.43444. Figure 9 shows the slanted control mesh
created with these parameters.

Variant 3  This variant of the torus control mesh is
basically the same as variant 2, except that the offset
defining the slant is defined as %u. Even the optimized
geometry (a = 6.24999,b = 3.56744) leads to a large
error f33 = 4290.40374.

Variant 4 As it is difficult to determine appropriate
slant offsets, the fourth variant also optimizes this pa-
rameter; i.e. in addition to the two parameters defining
the radii of the torus control mesh, it has a third param-
eter defining the slant offset. The optimization process
returns

f3,4(5.42399,3.38277,0.00000) = 826.65427.

Comparison The easiest way to model a torus seems
to be the best way. All variations in topology increase
the approximation error (see Figure 10). The in-depth
analysis of distances confirms this heuristic:
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Figure 10: A torus can be modeled with a slant offset and without one (upper left). With increasing slant offset
(upper right, lower left) the approximation error increases. If the optimization routine is allowed to set the slant

offset by itself, it is set to zero (lower right).

H avg. distance ‘ max. distance
Variant 1 0.07806 0.12925
Variant 2 0.11145 0.19450
Variant 3 0.19887 0.35382
Variant 4 0.07806 0.12904

3.4 Modeling Inflection Points

The last case analyzes a surface which is defined by a
cut curve. Blended with a straight line the result has the
formula:

y . [(2xm
Sa(x,y) = 10 -s1n< 3 arctanx) 4
The parameter x describes the cut curve in the range
from —5.0 to 5.0 whereas the parameter y blends be-
tween the straight line and the curve from 0.0 to 10.0.
The surface is plotted in Figure 11.

Variant 1 The control mesh of the first variant gets 20
parameters — 10 pairs of x position and height value z.
The range of the x values (—5.0 to 5.0) has been parti-
tioned into 10 equally-sized intervals. In each interval

Figure 11: This surface is defined by a cut curve which
is blended with a straight line. This is a standard situa-
tion in CAD modeling.
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one and only one parameter pair is allowed. For each
pair p; = (x;,z;) two control points are generated: one
at (x;,10,z;) to approximate the cut curve and one at
(x1,0,0) on the straight line. The error of the optimized
variant is 6.73931:

fai( —435546, —0.30532,
~3.05017, —0.48656,
~2.93309, —0.50592,
~1.58539, —0.82026,
—0.37453, —1.29349,
0.38362,  1.32794,
171154,  0.78575,
2.30383,  0.65748,
3.00657,  0.48136,
4.02755,  0.35095 ) =6.73931.

Variant 2 This variant uses a regular 10 x 3 grid cov-
ering the whole reference surface. All heights are spec-
ified as a parameter and the (x,y)-positions are fixed.
Consequently, this variant operates on 30 parameters.
The optimization calculates an error of 14.70749 for
the best geometry. The best parameters for the control
mesh are:

—0.00257, —0.13120, —0.27108,
0.00131, —0.17258, —0.33910,
~0,00099, —0.28033, —0.55752,
0,00048, —0.36468, —0.74336,
—0,00057, —0.72072, —1.40922,
~0,00022, 0.72074,  1.41115,
0.00191,  0.36363,  0.74169,
—0.00244, 0.28386,  0.55652
0.00267,  0.16798,  0.34212,
~0.00105, 0.13555,  0.26656.
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Figure 12: In this comparison approximations with fixed x positions are more erroneous than approximations with

x positions as free parameters. The interval spacing (upper left) of the first variant and the prominent-values-of-
the-cut-curve variant with additional offsets (lower right) are the best results, whereas the regular grid (upper right)
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and the fixed prominent-values-of-the-cut-curve (lower left) are the worst results.

Variant 3 ~ The third variant has fixed x positions
at prominent values of the cut curve: —5.00000 (end
of range), —3.31764, —1.63528 (inflection point),
—0.93159 (minimum), 0.00000 (inflection point,
root), 0.93159 (maximum), 1.63528 (inflection point),
3.31764, 5.00000 (end of range). For each x position
there is again one control point at y = 0 with height 0
and another one at y = 10 with the height value which
has to be optimized. So this variant has nine height
parameters, one for each x position. The result is

faz( —0.22288, —0.47240, —0.67730,
—1.37479, —0.00353, 1.37625,
0.67573, 0.47305,  0.22281)
= 11.91346.
Variant 4  The fourth variant is very similar to the

third variant. It uses the same configuration but in con-
trast to fixed x positions, the optimization routine is al-
lowed to modify these positions within an offset of :l:%.
Therefore, this variant takes 18 parameters, nine for the
height values at each x position and nine offsets for the
initial x positions.

For this variant, the minimum error after the opti-
mization is 6.17020. The parameters for this control
mesh are

fia( —0.25058, —0.46790, —0.74541,
—1.18889, —0.38835, 1.29557,
0.76445, 036971,  0.26533,
0.04882,  0.33053, —0.25836,
0.28352, —0.17465, —0.33332,
—0.01570, 0.32223, —0.03218)
= 6.17020.
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Comparison The in-depth distance analysis reveals
the following values:

avg. distance ‘ max. distance

Variant 1 H 0.00264 0.01044
Variant 2 0.00718 0.04152
Variant 3 0.01826 0.09219
Variant 4 0.00323 0.01460

If the area of the approximated surface is taken into
account, the fourth variant is even slightly better then
the first one. The approximation with the highest er-
ror level is the variant which has fixed x positions at
prominent values of the cut curve (see Figure 12 (lower
left)). Consequently, the best result and the worst result
can be created with the same topology and minor dif-
ferences in geometry. The additional offsets which dis-
tinguish a good from a bad result are plotted in Figure
13. The figure shows some very important properties
when modeling with subdivision surfaces.

e At the extreme values (minimum and maximum at
+0.93159) the control points have been moved by
the optimization routine towards the direction of
higher absolute gradients.

Having moved the control points, the control poly-
gon has fewer intersections with the nominal curve
than the fixed-x-positions version.

e All versions with a small error (also the first variant
with interval spacing) intersect the reference curve
very close to (at x = —1.63528 and at x = 0.0) or
nearby (at x = 1.63528) inflection points.



Figure 13: The cut curve which defines the fourth nom-
inal surface is plotted in this diagram. Furthermore it
shows the positions of the control vertices of the worst
approximation (red) and the best approximation (blue).
Their differences are visualized by gradients.

4 CONCLUSION

Based on the four case studies we arrive at several con-
clusions. The first case examines smooth edges and
demonstrates the “over-modeling” effect. Modeling a
local surface feature always takes the risk to disturb
large parts of a model by spreading high-frequency fluc-
tuations from the “over-modeled” parts. This effect can
be avoided by a better topology, which does not model
rounded edges explicitly, or by barrier lines — two or
three consecutive lines of control vertices of low fre-
quency, which suppress fluctuations due to the locally
limited influence of a vertex to a subdivision surface.

While simple geometric properties — such as beveled
edges — should not be considered in the topological
layout of a control mesh, high-level geometric aspects
play an important role. The second case study shows
that global symmetries should be reflected in the con-
trol mesh. All control meshes, which did not reflect the
global symmetry of the surface to approximate, caused
higher errors than those with symmetrical layout. The
third study approves this fact.

The last case analyzes a surface on the geometrical
— not topological — level to explore the best positions
for control vertices. Besides the conclusions already
presented in the previous section the last study demon-
strates the difficulties in predicting a good subdivision
approximation without iterative optimization. All solu-
tions with partly-fixed control vertices have a high error
value. All heuristics derived from the last case reduce
the error but do not reach the quality of the automatic
optimization. As the optimization is time consuming
(up to several hours for complex configurations) this is
a problem for interactive modeling tools.

S FUTURE WORK

Any surface can be approximated with a sufficient num-
ber of control points. Reducing this number keeps a
subdivision surface model manageable. In the future
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we will concentrate on topological improvements and
address the question whether it is possible to get accu-
rate conclusions based on these case studies.
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