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ABSTRACT

To efficiently handle the continuously increasing raw point data-set sizes from high-resolution laser-range scanning devices
or baseline stereo and multi-view 3D object reconstruction systems, powerful geometry processing solutions are required.
We present a flexible and run-time configurable system for efficient out-of-core geometry processing of point cloud data that
significantly extends and greatly improves the stream-based point processing framework introduced in [29]. In this system
paper we introduce an optimized and run-time extensible implementation, a number of algorithmic improvements as well as
new stream-processing functionality. As a consequence of the novel and improved system architecture, implementation and
algorithms, a dramatically increased performance can be demonstrated as shown in our experimental results.
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1 INTRODUCTION
Points as rendering and modeling primitives have be-
come a powerful alternative to polygonal object repre-
sentation [34, 13, 14]. Note that point samples are the
natural raw output data primitives of 3D scanning and
reconstruction systems. In fact, 3D point samples are
the fundamental geometry-defining entities. Satisfying
provably correct sampling criteria as discussed in [26],
a set of 3D points fully defines the geometry as well as
the topology of a surface including boundaries, compo-
nents and genus. Here we assume that input point data
sets reasonably sample the represented surfaces.

With the continually increasing density and extent
of raw point cloud data, effective algorithms and sys-
tems are required to cope efficiently with the massive
amounts of point samples. Basic data and geome-
try processing operations must be supported such as
smoothing, outlier detection, normal estimation, or data
decimation with many more being conceivable. These
operations can only be performed efficiently on large
data if memory trashing [9] is avoided. Therefore, data
must be paged efficiently into main memory and pro-
cessed coherently with respect to randomly accessing
memory locations.

In [29] the concept of stream-processing point data
was introduced, which we will discuss and extend in
Section3. The basic idea was to sequentialize the unor-
ganized raw input point data and then feed the resulting
point stream through a pipeline of local stream opera-
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tors. While the approach in [29] is conceptually well
designed and showed promising results, it nevertheless
has a number of limitations that we address in this work.
First of all, the configuration of the pipeline (chain)
of stream operators had to be defined at compile-time,
and in fact, all selectable operators had to be known
and implemented as well at that time. Furthermore,
there was no concept of an operator-chain overarching
data structure to maintain any global information about
all points currently residing in main memory. Third,
the previous implementation left some room for perfor-
mance improvements, e.g. pooling of dynamic memory
resources. Also, the initial organization of point data
for stream-processing has been left to an offline pre-
process, which has now been integrated seamlessly into
the system. Hence in this system paper we present an
improved stream-processing framework that addresses
all these issues, and eventually also introduces some
new stream-processing functionality. The main tech-
nical contributions are:

i) A novel flexible C++-classes framework that defines
run-time configurable geometry processing stream
operators.

ii) New concept of chain-operators overarching a chain
of individually configured stream operators.

iii) Improved implementation of neighborhood search
operator and dynamic memory handling.

iv) Seamless integration of the previously separate pre-
processing stage.

2 RELATED WORK
Points as 3D surface modeling and rendering primitives
have been introduced as early as in [23] and [15]. A
number of efficient hardware supported rendering algo-
rithms such as [36, 35, 5, 4, 30] have been proposed and
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subsequently further improved. The fundamental the-
ory and algorithms for point-based modeling and ren-
dering are described in [14], and surveys on point-based
rendering (PBR) have been presented in [39, 38] and
[22]. Apart from rendering which has been well stud-
ied and extended to out-of-core [37, 12, 31] or trans-
parent rendering [45, 46], low-level geometry process-
ing techniques for point data have been discussed in
[32, 25, 33, 20, 43]. However, these methods are aimed
at processing only moderately sized point sets that fit
into main memory.

Sequential organization of point data has been ad-
dressed specifically for rendering and network trans-
mission in [7, 31] and [37]. More general low-level
geometric operations are applied to a stream of points
in [29], which we will discuss in the following section.

Streaming has chiefly been used in processing digital
audio and video data which in contrast to 3D geom-
etry is inherently sequentially organized, i.e. in time.
The sweep-line concept in geometry processing [8] is
conceptually closer than multimedia streaming, since
our basic stream-processing follows a similar idea of
sweeping a plane over the point cloud data. In the con-
text of 3D geometry, streaming has been introduced for
simplification and compression operations on polygo-
nal meshes [17, 44, 18, 42], which generally grow and
process mesh regions sequentially in an order that lim-
its main memory usage. Specifically for rendering,
a streaming mesh layout has been proposed in [16].
These streaming approaches on meshes, however, do
not support low-level geometry processing operations,
and more importantly, do not directly apply to raw point
data processing as mesh connectivity is required.

Recently, different streaming frameworks for surface
reconstruction from points have been presented. In [3]
a Poisson-based multi-resolution streaming framework
based on an sparse octree is used in which multiple
streams are processed concurrently. In [19] and [2]
slice-based streaming algorithms are proposed for De-
launay triangulations. There, the space is partitioned
into explicit regions as opposed to the implicit region
partitioning used in this paper by using a sweep plane.

Finally, in graphics the concept of streaming images
and geometry data has been used in the context of re-
mote rendering where 3D data is to be displayed on a
remote display (e.g. [10], [27] or [6]). Again, low-level
data processing is not the focus in these approaches but
the network transmission of data to a remote device.

3 STREAM-PROCESSING
3.1 Sequential Processing
The basic idea behind stream-processing point data as
introduced in [29] is to order and process the data se-
quentially in such a way that: (1) points can be read
from an input-stream into main memory one at a time,

(2) the so called active points in main memory can effi-
ciently be processed independently1 from others given
only some local spatial information, and (3) points are
written to an output-stream as soon as they have been
fully processed. Since all data processing is limited to
the points in the active working set A , at any time only
a very limited fraction of data is kept in main memory,
which together with the sequential processing supports
efficient out-of-core operation on huge point data sets.

Since raw point data sets rarely come in a spatially
ordered sequence, a sorting process is required to lin-
early order them. Given an ordering measure along one
direction in space, such sorting can be achieved effi-
ciently for very large data by external sort techniques
[24, 21, 41]. Our solution is presented in Section 3.3.

3.2 Stream Operators
The operations supported in the above described stream-
processing framework are defined in [29] as local oper-
ators Φ(pi) that perform a computation on a point pi
and its attributes only taking the point pi itself and a
limited set of neighbors p j into account. The neighbor-
hood Ni is typically defined as a k-nearest neighbors
or points p j within a given range r. The attributes Ai
associated with a point pi can include a wide range of
parameters such as color, normal orientation or curva-
ture. From this definition it is clear that a local operator
Φ(pi) can be applied to any point if pi itself as well as
all neighbors Ni are part of the current working set A .
This includes a large group of important geometry pro-
cessing operators ranging from surface parameter esti-
mation to filtering operations.

Furthermore, the stream-processing framework is de-
signed to chain together a series of stream operators
Φ1, . . . ,Φp that are applied in succession to a stream of
points as illustrated in Figure 1. Each stream operator
Φk itself acts as a FIFO queue, passing the points from
one to the next operator. The so defined concept then
postulates that a stream operator Φk(pi) can be exe-
cuted on pi as soon as no preceding operator Φl<k mod-
ifies any neighbor points p j ∈Ni anymore, or still de-
pends on pi for its completion. Moreover, each stream
operator Φk only passes a point pi to the next opera-
tor Φk+1 if the point and its attributes have fully been
processed. More details are given in [29].

The fundamental stream operators introduced in [29]
include the basic I/O operators for reading (ΦR) and
writing (ΦW ) points from and to the input and output
streams respectively, as well as a neighborhood opera-
tor (ΦX ) that generates the nearest neighbor sets Ni for
any incoming point pi. Additional geometry process-
ing operators that have been presented include surface
normal estimation (ΦN), curvature estimation (ΦC), el-

1 or more exactly the dependency is strictly limited to a well defined
local spatial neighborhood relation
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Figure 1: Chain of streamable operators acting on the
points passing through the active set.

liptical point splat extent determination (ΦE ) as well as
feature preserving surface smoothing (ΦS).

3.3 Sorting
As for sweep-plane algorithms in computational geom-
etry [8], a stream-processing framework requires the
points to be ordered along a spatial direction. In princi-
ple, any direction could be used as for example any of
the three principal axis of the point data’s modeling co-
ordinate system. However, it is typically advantageous
to align the data such that the sweep-plane intersection
with the object exhibits a smaller outline. Hence for
objects with a biased spatial extend, the sweep direc-
tion should be aligned accordingly.

Sorting in the direction of the longest axis of a data-
aligned tight bounding box can efficiently be achieved
in two phases as follows. In the first linear pass over
the data points p1, . . . ,pn ∈ IR3, a generic homogeneous
covariance M̂ = ∑

n
i=1 p̂i · p̂T

i and center of mass of the
points c = 1

n ∑
n
i=1 pi are accumulated, with p̂ denoting

the homogeneous coordinate extension of p. As shown
in [28, 30] this allows us to express and post-compute
the actual covariance matrix M = 1

n ∑
n
i=1(pi− c) · (pi−

c)T elegantly and efficiently in homogeneous space by
M = 1

n T(−c) ·M̂ ·TT(−c) with T(−c) being the trans-
lation matrix moving the center of mass c to the origin.
The sorting axis is now given by the eigenvector v cor-
responding to the largest eigenvalue of M. In the second
phase, the points are transformed and sorted along their
projection onto v.

Instead of applying the above transformation and
sorting offline as in [29], we have integrated it into the
stream-processing framework as an online preprocess.
For this purpose we have implemented an efficient out-
of-core sorting algorithm based on the radix-sort tech-
nique. Besides supporting out-of-core sorting on very
large data, a major goal of the sorting preprocess was to
provide an incrementally growing sorted stream of data.
With radix-sort we can choose to inspect the next bit of
one partition first, in a depth-first way, before continu-
ing work on the other partition. Hence sorting can com-
plete and progress from one end of the data range to the
other, which is why it was chosen over other out-of-core
sorting algorithms. For performance reasons, insertion-

sort is used when the partially-sorted partitions fall be-
low a certain size.

Taking advantage of this progressive online sorting
approach, the stream-processing pipeline can be fed
with the early available sorted data partitions. Thus
point processing operations, e.g. such as the costly
neighborhood search, can be overlapped with the sort-
ing phase and can start with only minimal latency be-
fore the whole data has been preprocessed.

Furthermore, in order to utilize the common avail-
ability of multiple cores, the sorting preprocess was
not only integrated into the main stream processor, but
also adapted to use threadpool-based efficient multi-
threading. This improves performance as well as sim-
plifies usage of the stream processor.

4 SYSTEM ARCHITECTURE
4.1 Run-time Configurability
In the original stream-processing approach [29], the op-
erator chain was set up at compile-time. A stream oper-
ator defined a set of per-point attribute parameters that
it depends on or modifies, some auxiliary data fields
used while executing the operator and some attributes
that it adds permanently to a point element, which are
added to the output stream at the end of the stream op-
erator chain. Every stream operator defines a struct that
contains members variables for all required data, and
the temporary as wellas the final stream-point structures
are defined by multiple inheritance. While the main ad-
vantage of this approach is its simplicity, it also lacks
in flexibility and consistency. Separate executables for
all possible combinatorial configurations of the differ-
ent stream operators are necessary, which grows expo-
nentially by 2p with the number p of operators. For
an increasing and extensible library of stream operators
this is clearly a limiting constraint. Furthermore, there
is no automatic mechanism to verify consistency of at-
tribute fields, e.g. such as ensuring that an attribute xy
which operator X depends on is provided by another
operator Y . A similar problem arises with the order of
operators: While including the normal attribute field al-
lows the use of a curvature operator at compile time, it
does not make sure that the normal estimation operator
is actually applied first in the chain of stream operators.

Therefore, the stream-processing framework was re-
designed to allow setting up an arbitrary operator chain
at run-time, by using either an external configuration
file or by specifying stream operators as command line
arguments. Also, since attribute fields of different oper-
ators are now specified dynamically at run-time, a regis-
tration mechanism can verify that no required attributes
are missing, and that the operators are specified in a
compatible order.

In the new framework, dependencies between stream
operators are defined solely by dependencies on certain
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data elements. This has the advantage that every oper-
ator can be replaced as long as the replacement opera-
tor can generate the same output data fields. Addition-
ally, since there are no direct code-level dependencies
between operators, new operators can be integrated by
loading them as separate plugins or dynamic shared li-
braries at run-time.
Run-time Structures In the dynamic run-time con-
figurable version of the stream-processing framework,
the size of the structure holding the attribute fields is
unknown at compile-time. Therefore, a new rt_structs
(for run-time structures) concept for the streaming three-
dimensional point data structure was designed that en-
ables the use of efficient, type-safe and run-time config-
urable member variables. Each stream operator stores
the accessor objects it needs to extract the required
member variables.

Accessors are template classes which are configured
with the required data type. This means that the actual
type of all dynamic member is fields clearly defined
in the header of the operator, and standard C++ type
checking can be used when using the run-time struc-
tures.
Setup Stage In the first part of the setup stage, each
stream-processing operator registers the name and data
type of the member fields it requires as input and those
it generates as output. This allows simple and effi-
cient consistency checking of the operator chain. Addi-
tionally, some configuration settings such as minimum
number of neighbors can be negotiated between opera-
tors. After that, the size of the point structure is com-
puted and the run-time structure accessors are config-
ured.
Processing Stage Using the templatized run-time struc-
ture accessors, each variable can be accessed efficiently.
Trying to access a field using a wrong type is detected
at compile-time, and the additional cost of accessing a
variable as compared to standard C++ classes is only an
(inlined) function call and a reinterpret_cast<>().

4.2 Memory Mangement
Pools of objects are used where possible to optimize
performance by preventing continuous construction and
destruction of objects. Memory pools are used for
rt_struct objects, for the kd-tree nodes in the kd-heap-
neighbor operator and for all node types in the new
chain operator.

5 OPERATORS
The basic semantic of stream operators has been re-
tained from [29] in the new proposed system architec-
ture. In addition to the standard read and deferred-write
I/O and the various geometry operators, we have im-
plemented one new local stream operator ΦO(pi) for
outlier detection and removal.

Moreover, the new stream-processing system has an
additional novel chain-operator type Ψ which in its
scope overarches the entire chain of individual local
stream operators Φ. A stream operator Φk(pi) is de-
fined as a local operation on the geometry of point pi
and its attributes, and is but one element in a chain
of stream operators Φ1, . . . ,Φp not knowing about the
other selected operators. Furthermore, a stream opera-
tor only has direct access to the points within its own
FIFO queue of points, which is only a subset of all
points in the active set A . On the other hand, the
chain-operator Ψ(A ), which is discussed in more de-
tail in Section 5.4, in its scope spans the entire set of
active points A and has knowledge of all elements in
the chain of stream operators Φ1, . . . ,Φp as illustrated
in Figure 2.

output stream active set A input stream

p1 pj pn

pj-m

ΦW(p) Φ…(p) ΦX(p) ΦR(p)

Ψ(A)
spatial data structure, statistics, …

Figure 2: Conceptual diagram of the chain operator Ψ

overarching a chain of individual stream operators Φk.

5.1 I/O Operators
The read operator ΦR acts on the input stream of point
data. During the setup phase, it reads and parses the
data header and maps the point data input file to the
input stream. Typically, this is done via memory map-
ping of the input file and sequential traversal through
the input data. During the point processing phase, ΦR
reads the input point data and (optionally) converts it to
the proper format. By definition, the read operator ΦR
must be the first in a chain of operators. It uses a pool
of rt_struct point objects as mentioned in Section 4.2 to
efficiently create the new objects.

In the setup phase, the write operator ΦW creates and
memory maps the output file. During processing, the
write operator uses the deferred writing strategy de-
scribed in [29] to write points out to disk and remove
them from main memory as soon as this can be done
safely. ΦW shares a pool of rt_struct point objects with
the read operator, as indicated above, to avoid unneces-
sary memory allocation and deallocation overhead.

5.2 Neighborhood Operator
In the extended stream-processing framework we intro-
duce a new neighborhood operator ΦX that takes ad-
vantage of the spatial data structure provided by the
new chain operator ΨX , see also below. Upon inser-
tion of a new point p j into the active-set A , it will
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also be inserted into a spatial data structure maintained
by ΨX . Moreover, the stream operator ΦX (p j) then
queries ΨX (A ) immediately for an initial left-sided
nearest neighbors set N j which at that point contains
the closest points pi with index i < j in the input stream.
At the same time, the new point p j is tested with exist-
ing neighborhood sets Ni and included if appropriate to
update their missing right-sided closest neighbors.

The spatial data structure in the chain operator ΨX
also allows for within-range neighborhood queries. As
soon as the next new point p j is farther away from an
active point pi ∈ A than the query range r along the
streaming dimension, a range query for pi can be in-
voked on A to find all neighbors within distance r.

While the new nearest neighbor operator is now the
default to establish closest points neighborhoods, a kd-
heap approximate k-nearest-neighbor operator as in [29]
is still available, but deprecated for performance rea-
sons. See also experimental results in Section 7.

5.3 Geometry Operators
The normal estimation ΦN , curvature estimation ΦC,
elliptical point splat-extent estimation ΦE and smooth-
ing ΦS operators have been ported from [29] to the
new dynamic rt_struct member attributes architecture
described in Section 4.

A new local outlier detection stream operator ΦO(pi)
has been added which quantifies the likeliness of any
nearest neighbor p j ∈Ni to be an outlier. The outlier
quantifier is defined as

Oi(p j) = hi(|pi−p j|) · |p j−Πi(p j)|, (1)

with hi(x) being a smooth weighting function, e.g. a
Gaussian, and Πi(p j) the projection of p j onto the plane
with normal ni through point pi. The outlier operator
ΦO(pi) compares the values Oi(p j) for all p j ∈Ni to a
threshold value ε and if greater discards p j as a nearest
neighbor of pi.

Therefore, the outlier operator ΦO(pi) measures the
offset of p j from the tangent plane at pi and quantifies a
degree of co-planarity. However, it penalizes points p j
farther away from pi less, so they are allowed to deviate
more from the tangent plane. Hence with the support
radius of the weighting function hi(x) being adjusted
relative to an estimated local curvature at point pi, the
outlier detection can be made adaptive to the local sur-
face feature size.

5.4 Chain Operators
The main new chain operator ΨX (A ) sorts all the points
in the active set A into a spatial tree structure. By de-
fault, a bucketed PR KD-Tree [40] is used, but the op-
erator can be templatized with other spatial index struc-
tures. Any regular stream operator can interact with this
tree operator by providing a visitor object [11]. Cur-
rently, the tree operator is used by the neighborhood

operator ΦX for efficient k-nearest-neighbor searching
or range queries. Additionally, the smoothing operator
ΦS uses the new chain operator ΨX to update the spa-
tial data structure for point locations modified by the
smoothing operation.

The statistics operator ΨS(A ) collects data about
current and maximum data size, extent and memory us-
age of the active set. Having all statistical functional-
ity in an operator makes data collection optional, and
statistics can easily be disabled for performance rea-
sons. This also allows the implementation of different
operators to customize statistics collection (complete
debug and optimization statistics vs. minimal release-
mode statistics).

6 RUN-TIME PROCESS
Setup To demonstrate the run-time procedure of the
stream-processing application, a simple processing job
will be explained in detail. A raw point data set is to
be processed to compute the normal of each point. The
resulting pipeline consists of the following stream oper-
ators: read, neighborhood, normal and write. The input
data set contains only point positions.

During the setup phase, the read operator will be ini-
tialized first, reads and parses the input point header and
registers a dynamic member field called position. Next,
the neighboorhood operator is initialized. This opera-
tor requires the chain tree operator and so requests the
system to instantiate the chain operator. Then, it will
reserve the neighbor-list and neighbor-count dynamic
members, and register position as input-dependency.
Additionally, it will check for a user-specified neighborhood-
size option, or set a default. Next the normal operator
is initialized, reserves the normal-vector dynamic mem-
ber field and adds position, neighbor-list and neighbor-
count to the input-dependencies. Finally, the write op-
erator is instantiated. Optionally, a statistics chain op-
erator may be set up. After all operators are set up, the
system will run a dependency check that makes sure all
requirements for each operator are met. The pipeline
specified above is valid and therefore passes that check.

The size of the run-time structure used in this pipeline
is computed, the offsets to the dynamic members in all
accessor objects of each stream operator are set and an
initial pool of memory for points is allocated. The read
operator memory-maps the input data file, and the write
operator creates and memory-maps a file large enough
to contain the final point data, including all the newly
created member fields that were marked as persistent
output data fields. This phase concludes the setup stage
and stream processing can now begin.
Processing The read operator reads the point position
from the input data file into factory-allocated new run-
time structure instances. The points are inserted into
all chain operators, including the tree operator contain-
ing a spatial data structure. The neighborhood oper-
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ator then receives the points and performs a k-nearest
neighbor query by sending a visitor object to the tree
operator’s data structure. See Section 5.2 for how the k-
nearest neighbor search is performed. The normal op-
erator then receives the point from the output buffer of
the previous operator and computes an estimated nor-
mal based on the neighboring points. Finally, the de-
ferred write operator buffers the processed point until it
is not referenced anymore in the previous stream oper-
ators. The point-data is written to the output stream and
the run-time structure instance is returned to the pool.
This process continues until all the input points have
been processed.
Notes The new stream-processing system depends on
two libraries: boost [1] and an in-house library with
some vector-matrix geometry functions. The stream-
processing system runs on most UNIX-like operating
systems including Mac OS X, GNU/Linux and FreeBSD.

7 EXPERIMENTAL RESULTS
All reported experimental results were achieved on a
Apple Xserve with dual Intel Xeon 2.0GHz processors.
The models that have been tested are listed in Table 1.

model name number of sample points
david2mm 4’129’534
lucy 14’022’961
scene 21’749’996
david1mm 28’168’109
st. matthew 102’965’801

Table 1: The point-cloud test models.

In Figure 3 we compare the performance of the new
stream-processing system architecture to the original
approach introduced in [29]. As we can see, the new
architecture is not only much more flexible with its run-
time configurability of the stream-operator chain, but it
is also significantly more efficient, especially for large
point-cloud data sets. The performance differences are
mainly due to two factors: the new improved nearest
neighborhood operator, and the memory pooling used
in the read- and write-operators.

With the new neighborhood operator and other im-
provements, the average time a point stays active in
main memory has also been reduced significantly as
shown in Figure 4.

Many of todays point-cloud models are too big to
process efficiently all in main memory. One advantage
of stream-processing is that only a minimal required
subset of the model data has to be in-core. In Fig-
ures 6 and 5 the relative sizes of the active set with re-
spect to the total size of the point data set are displayed.
The (office) scene model is a worst-case model since
it has a well defined direction of longest extent, how-
ever, at the same time it exhibits large co-planar point
regions exactly perpendicular to the major object ex-
tent. Therefore, the basic alignment and sorting leads to
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Figure 3: Performance comparison between the orig-
inal and the new system using a read-neighborhood-
normal-curvature-splatsize-write operator chain.
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Figure 4: Comparison of average time each point
spends in main memory.

a stream-processing where at isolated locations a large
number of points get passed by the sweep-plane, lead-
ing to few individual spikes in memory consumption.
Figure 6 shows the typical in-core effectiveness as well
as the above indicated worst-case. Figure 7 displays the
spikes in active set size for the worst-case scene model.
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Figure 5: Comparison of average active-set sizes in re-
lation to total point-set-size.

Applying a chain of operators consisting of read (ΦR),
nearest-neighbor search (ΦX ), normal estimation (ΦN),
curvature estimation (ΦC), splat-extent estimation (ΦE )
and deferred-write (ΦW ) the out-of-core effectiveness
of the stream-processing system has remained excellent
as in [29]. As shown in Figure 7, the goal of dramat-
ically reducing the number of data elements actively
maintained in main memory has well been achieved,
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Figure 7: Percentage of active set of points maintained
in main memory during stream-processing.
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Figure 8: Performance comparison of neighbor detec-
tion in large models using 8- and 64-neighborhoods.

as rarely ever more than 1% of data is kept active in
main memory. To more efficiently handle worst-case
models such as the office scene outlier, the sorting pre-
process should in the future take into account specifi-
cally expressed dimensions of co-planar data and sim-
ply perturb the sweep-plane direction slightly to avoid
this worst-case scenario.

8 CONCLUSION
In this paper we have presented a novel stream-processing
system architecture, extending and implementing the
conceptual framework introduced in [29] more effi-
ciently. The new architecture allows for efficient and
flexible run-time configurability of geometry process-
ing operators that can be applied to an ordered stream of

point cloud data. This novel definition and implemen-
tation of local stream-processing operators allows oper-
ators to be dynamically defined and configured at run-
time, and not statically at compile-time as previously
required. Through our novel stream-operator imple-
mentation, the main stream-processing application pro-
gram can be compiled without specification of which
geometric operators and in what order they will even-
tually be applied to the point data. In fact, at run-
time, the available local geometry processing opera-
tors can dynamically be selected and configured on-
demand. Moreover, the stream-processing application
can automatically check for consistency of the selected
chain of stream operators.

In addition to a few new and modified stream-operators,
we have introduced the new concept of a chain opera-
tor. In the context of stream-processing points by pass-
ing them from one geometry processing operator to the
next in a chain of multiple successive stream operators,
a chain operator acts as a global operator overarching
the chain of individual stream operators and thus intro-
duces a new stream-processing functionality.

With respect to a seamless integration of the neces-
sary preprocessing task, we have included the stream-
sorting operation into the stream-processing framework.
A parallel radix-sort based algorithm provides a stream-
ing result of sorted point data which can be operated
on by the main stream-operators with minimal latency.
Finally, the new system architecture has demonstrated
significant performance improvements.
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