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Abstrakt

Diplomová práce se zabývá transportní rovnicí na semidiskrétních oblastech. V první části se
věnujeme lineární rovnici, kde nejdříve představíme základní vlastnosti klasické transportní par-
ciální diferenciální rovnice, potom zkoumáme semidiskrétní případ s diskrétním prostorem a
spojitým časem a poté opačný problém s diskrétním časem a spojitým prostorem. Nakonec
studujeme transportní diferenční rovnici. U těchto lineárních úloh se zaměříme na zachování
znaménka, sumy a integrálu a jejich souvislosti v teorii pravděpodobnosti. Dále se zde věnujeme
periodicitě řešení a směru šíření extrémů. V druhé části analyzujeme nelineární semidiskrétní
transportní rovnici s diskrétním prostorem a spojitým časem. Zde zkoumáme existenci a jednoz-
načnost řešení a odvozujeme principy maxima a minima s jejich důsledky.

Klíčová slova

transportní rovnice, semidiskrétní oblasti, diferenční rovnice, diferenciální rovnice, nelineární
rovnice, zachování znaménka, zachování integrálu, zachování sumy, periodicita, existence, jed-
noznačnost, principy maxima

Abstract

This diploma thesis deals with the transport equation on semidiscrete domains. In the first part
we focus on the linear equation. We present basic properties of the classical transport partial
differential equation, then we study the semidiscrete case with discrete space and continuous
time and then the opposite problem with discrete time and continuous space. Finally, we deal
with the transport difference equation. In these linear problems we are concerned with sign, sum
and integral preservation and their consequences to the probability theory. Further, we analyze
the periodicity of solution and the direction of extremum propagation. In the second part we
study the nonlinear semidiscrete transport equation with discrete space and continuous time. We
concentrate on the existence and uniqueness results and we derive the maximum and minimum
principles with their applications.

Key words

Transport Equation, Semidiscrete Domains, Difference Equations, Differential Equations, Nonlin-
ear Equations, Sign Preservation, Integral Preservation, Sum Preservation, Periodicity, Existence,
Uniqueness, Maximum Principles
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Preface

Mathematical models are often expressed by differential equations. In case of more complicated
processes we generally need partial differential equations. These models are mainly continuous
but the world around us is principally discrete. We can mention problems from economics and
biology. For example the compound interest in economics leads to the simple difference equa-
tion which is solved by geometric sequence or population problems in biology have obviously
discrete structure.

The continuous approach is simpler and more intuitive but we can ask what happens if we use
discrete models. Moreover, we deal with problems that combine both cases, we study semidis-
crete equations. If we understand problems of basic partial equations on semidiscrete domains
we can use these models better and more effectively.

Why could be the discrete structure interesting and important? We live in the world where
the capabilities of IT are higher and higher. Therefore, the usage of numerical methods is per-
manently more powerful. In these numerical methods the discretization is the main tool. As the
second example we can mention the probability theory. Discrete random variables are structural
elements of this field of study.

In numerical methods we often consider continuous variables as discrete and in models we
use the difference instead the derivative. But the differential equation and equivalent difference
equation can have completely different behavior. For example we can mention the logistic equa-
tion (see Elaydi [7]). This is the first-order equation which can be simply solved in the form of
differential equation. But in the discrete form its behavior is more complicated and can lead up
to chaos. This is the reason why we have to appreciate the differences between the continuous
and discrete models. The study of semidiscrete case could help.

We study the transport equation on various domains. The transport equation describes ad-
vective transport of fluid and it also forms the base for the study of wave equation (see Drábek,
Holubová [3]). Semidiscrete equations appear in special numerical methods that uses the dis-
cretization only for some variables and others are considered continuous (e.g. Galerkin or Rothe
method, see Rektorys [15]).

In this diploma thesis we extend the problems that are studied in the bachelor thesis Volek
[21]. In the first section we present some results from the theory of classical transport partial dif-
ferential equation. The following three chapters study the linear transport equation with discrete
variables. Section 2 studies the semidiscrete equation with discrete space and continuous time,
Section 3 deals with the opposite case with discrete time and continuous space and Section 4
presents the transport difference equation with discrete space and discrete time. Finally, Section
5 studies the nonlinear semidiscrete transport equation with discrete space and continuous time.

In sections that deal with linear equations we focus on the sign preservation and on the sum
and integral preservation. These results have interesting consequences to the probability the-
ory. Further, we study the periodicity of solution and the direction of extremum propagation. In
the final section which deals with the nonlinear transport equation we are concerned with the
existence and uniqueness results and with maximum and minimum principles and their appli-
cations.

We hope that the reader finds our text, assertions and results interesting. Knowledge of math-
ematical analysis, theory of ordinary differential and difference equations and basic knowledge
of theory of partial differential equations are expected.
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1 Transport Partial Differential Equation

In the first section we present basic facts about the classical transport partial differential equation.
Transport equation is the first-order hyperbolic equation which describes the signal propagation.
The basic idea which is common for hyperbolic equations is the idea of characteristics. If we as-
sume one dimensional space these are curves in the xt-plane along that the signal is propagated.
The idea of characteristics helps us to reduce the partial equation to a simpler form, e.g. to an
ordinary equation that we can solve. We focus on initial value problems in the one space variable
and their classical solution. We mention basic properties of linear and nonlinear problems. More
details could be found in Logan [10].

1.1 Linear Transport Equation with Constant Coefficients

In this subsection we study the following initial value problem

(1.1)

{
ut(x, t) + kux(x, t) = 0, x ∈ R, t ∈ (0,+∞), k ∈ R \ {0} ,
u(x, 0) = φ(x), φ ∈ C1(R).

THEOREM 1.1. The solution of (1.1) is given by

(1.2) u(x, t) = φ(x− kt).

Proof. We apply a basic fact from elementary mathematical analysis that if we consider a func-
tion u(x, t) and a smooth curve C in the xt-plane defined by x = x(t) then the total derivative of
u(x, t) along the curve C is given by

d
dt

u(x(t), t) = ut(x(t), t) + ux(x(t), t)
dx(t)

dt
.

Hence, the left-hand side of equation in (1.1) is the total derivative of u(x, t) along the curves
defined by

dx(t)
dt

= k.

Therefore, u(x, t) is constant along straight lines

x− kt = c

when c ∈ R is arbitrary. Finally, because u(x, t) is constant along these lines we get by application
of the initial condition

u(x, t) = u(c, 0) = φ(c) = φ(x− kt).

2

REMARK 1.2. Curves C mentioned in Proof of Theorem 1.1 are called characteristics.
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THEOREM 1.3. The initial value problem (1.1) possesses unique solution which is given by (1.2).

Proof. We prove the statement by contradiction. Let us assume there exist two distinct solutions
u(x, t) and v(x, t) of (1.1). We set h(x, t) = u(x, t)− v(x, t) and thus, h(x, t) solves (1.1) with the
vanishing initial condition φ(x),

(1.3) φ(x) = 0 for all x ∈ R.

Problem (1.1) + (1.3) is solved only by the trivial solution h(x, t) = 0 for all x ∈ R and t ∈ [0,+∞).
Indeed, if we assume that h(x, t) solves (1.1) + (1.3) and that there exist x0 ∈ R and t0 ∈

[0,+∞) such that

h(x0, t0) 6= 0

then from the idea of characteristics and from the fact that h(x, t) is constant along characteristics
there exists c ∈ R such that

h(x0, t0) = h(c, 0) = φ(c) 6= 0.

This contradicts (1.3).
Consequently, h(x, t) = 0 and then u(x, t) = v(x, t) which is the final contradiction. 2

EXAMPLE 1.4. Let us consider problem (1.1) for k = 1 when

φ(x) = x2e−x.

By application of Theorem 1.1 we get solution

u(x, t) = (x− t)2et−x

and characteristics

x− t + c = 0, c ∈ R.

Some solution cuts and characteristic for c = 0 are shown on Figure 1. �

Now we present few properties of solution of (1.1) that are interesting and important for later
comparison to semidiscrete models. The following assertions deal with the sign and integral
preservation.

PROPOSITION 1.5. Let u(x, t) be the solution of (1.1) with the initial condition φ(x) that satisfies

φ(x) ≥ 0 for all x ∈ R.

Then

u(x, t) ≥ 0

holds for all x ∈ R and t ∈ [0,+∞).
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Figure 1: Some solution cuts and characteristic x− t = 0 from Example 1.4.

Proof. The statement is the direct consequence of Theorem 1.1. 2

THEOREM 1.6. Let u(x, t) be the solution of (1.1) with the initial condition φ(x) that satisfies

(1.4)
+∞∫
−∞

φ(x)dx = K, K ∈ R.

Then for all t ∈ [0,+∞) the following holds

(1.5)
+∞∫
−∞

u(x, t)dx = K.

Proof. The statement can be proved by direct computation of (1.5) with help of substitution,

+∞∫
−∞

u(x, t)dx =

+∞∫
−∞

φ(x− kt)dx =

∣∣∣∣∣ s = x− kt,
ds = dx,

∣∣∣∣∣
=

+∞∫
−∞

φ(s)ds
(1.4)
= K.

2

THEOREM 1.7. Let u(x, t) be the solution of (1.1) and let x ∈ R be arbitrary and fixed. Then for k > 0
the following holds

+∞∫
0

u(x, t)dt =
1
k

x∫
−∞

φ(s)ds

and for k < 0 there is

5



+∞∫
0

u(x, t)dt = −1
k

+∞∫
x

φ(s)ds.

Proof. We use the substitution again and we can compute

+∞∫
0

u(x, t)dt =

+∞∫
0

φ(x− kt)dt =

∣∣∣∣∣ s = x− kt,
ds = −kdt,

∣∣∣∣∣

=



−1
k

−∞∫
x

φ(s)ds =
1
k

x∫
−∞

φ(s)ds, k > 0,

−1
k

+∞∫
x

φ(s)ds, k < 0.

2

REMARK 1.8. We see that integral in the space variable x is preserved in general. Integral in the time
variable t is preserved in the following sense. If there is k > 0 and φ(x) = 0 for all x ≥ x0 (or for k < 0
there is φ(x) = 0 for all x ≤ x0) then the integral in the time variable t is preserved for x ≥ x0 (or for
x ≤ x0).

We later compare these properties with results from semidiscrete and discrete models.
The following two paragraphs show basics about the linear transport equation with noncon-

stant coefficients and about the nonlinear equation. We concentrate only on the solution there
because these problems are not included in our comparison later.

1.2 Linear Transport Equation with Nonconstant Coefficients

This is the second paragraph about the linear transport equation. We extend here the statement of
Theorem 1.1 for equation with nonconstant coefficients. We consider the following initial value
problem

(1.6)

{
ut(x, t) + k(x, t)ux(x, t) = 0, x ∈ R, t ∈ (0,+∞), k ∈ C(R× (0,+∞)),
u(x, 0) = φ(x), φ ∈ C1(R).

Again the left-hand side of equation in (1.6) is the total derivative of u(x, t) along the curves
defined by

dx(t)
dt

= k(x, t).

Let us mention that for nonconstant k(x, t) these are not straight lines. Along these curves there
is

du(x(t))
dt

= ut(x(t), t) + ux(x(t), t)
dx(t)

dt
= ut(x(t), t) + k(x, t)ux(x(t), t) = 0.

6



In other words, u(x, t) is constant along these curves. Therefore, we finally get

u(x, t) is constant on
du(x(t))

dt
= k(x, t).

EXAMPLE 1.9. We consider the following initial value problem

(1.7)

{
ut(x, t)− xtux(x, t) = 0,
u(x, 0) = φ(x).

The characteristics are described by

dx(t)
dt

= −x(t)t

which is the ordinary differential equation with solution (by separation of variables)

x(t) = ce−
t2
2 , c ∈ R.

Hence, with help of idea of characteristics there is

u(x, t) = u(c, 0) = φ(c) = φ

(
xe

t2
2

)
.

Figure 2 shows some solution cuts and characteristics for the initial value problem (1.7) with the
initial condition

(1.8) φ(x) = e−x2
.

�

Figure 2: Some solution cuts and characteristics from Example 1.9 for initial condition φ(x) = e−x2
.
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REMARK 1.10. In the analogous way we can solve even nonhomogeneous initial value problem{
ut(x, t) + k(x, t)ux(x, t) = f (x, t),
u(x, 0) = φ(x)

when f ∈ C(R× (0,+∞)). In this case u(x, t) is not constant along characteristics but u(x, t) satisfies
the following ordinary differential equation along them,

du(x(t), t)
dt

= f (x, t) on
dx(t)

dt
= k(x, t).

1.3 Nonlinear Transport Equation

Final paragraph of this section is about the following nonlinear initial value problem

(1.9)

{
ut(x, t) + F(u(x, t))ux(x, t) = 0, x ∈ R, t ∈ (0,+∞), F ∈ C1(R),
u(x, 0) = φ(x), φ ∈ C1(R).

For analysis of (1.9) we assume that there exists unique solution for all t > 0. By the same
process as in the previous linear part we define characteristics by differential equation

(1.10)
dx(t)

dt
= F(u(x, t)).

But we do not know the right-hand side of (1.10) a priory and hence, we cannot determine char-
acteristics in advance. But along curves given by (1.10) we have

ut(x, t) + F(u(x, t))ux(x, t) = ut(x, t) + ux(x, t)
dx(t)

dt
=

du(x(t), t)
dt

= 0,

i.e. u(x, t) is constant. Because u(x, t) is constant along characteristics we get

d2x(t)
dt2 =

dF(u(x(t), t))
dt

= F′(u(x(t), t))
du(x(t), t)

dt
= 0

and therefore, the characteristics are straight lines. Consequently, we can construct them from an
arbitrary point (x, t) ∈ R× (0,+∞) to a point (c, 0) ∈ R× (0,+∞) on axis x. The equation of
characteristics is

x− c = F(φ(c))t, c ∈ R,

and it follows that

u(x, t) = u(c, 0) = φ(c).

Finally, we derive the solution of (1.9) in the implicit form by following parametric equations

(1.11)
x− c = F(φ(c))t,

u(x, t) = φ(c), c ∈ R.

We have to appreciate that the previous process we do under the assumption that there exits
an unique solution of (1.9) for all t > 0. The proof of the following Theorem 1.11 is more technical
and can be found in Logan [10].

8



THEOREM 1.11 ([10], THEOREM, P. 70). Let functions F and φ are both C1(R) and both decreasing
or increasing on R (not necessarily strictly). Then the initial value problem (1.9) has unique solution
defined implicitly by (1.11).

EXAMPLE 1.12. We consider the following initial value problem
ut(x, t) + u(x, t)ux(x, t) = 0,

u(x, 0) =

{
0, x ≤ 0,
e−

1
x , x > 0.

In this problem the functions F and φ are both C1(R) and increasing on R. The characteristic that
begins at a point (c, 0) is the straight line defined by

dx(t)
dt

= F(φ(c)) = φ(c) =

{
0, c ≤ 0,
e−

1
c , c > 0,

and by application of Theorem 1.11 we get the unique solution given implicitly by

u(x, t) =

{
0, x ≤ 0,
e−

1
c where x− c = te−

1
c for x > 0.

Some solution cuts and characteristics are shown on Figure 3. �

Figure 3: Some solution cuts and characteristics from Example 1.12.
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2 Linear Transport Equation with Discrete Space and Continu-
ous Time

In this section we consider the semidiscrete domain with discrete space and continuous time. We
focus on the initial-boundary value problem. Main problems that we study are the preservation
of sum in the space variable, the preservation of integral in the time variable, the sign preserva-
tion and their consequences to the probability theory. We derive that under certain assumptions
the solution forms the probability distribution in both variables. We also study the direction of
extremum propagation for special initial conditions.

2.1 Problem

In this section we concentrate on the following initial-boundary value problem

(2.1)


ut(x, t) + k∇xu(x, t) = 0, x ∈ Z, x > x0, t ∈ (0,+∞), k > 0,

u(x, 0) = φx, φx ∈ R for all x ∈ Z, x > x0,
u(x0, t) = 0, t ∈ [0,+∞).

2.2 Solution

We provide an explicit solution of (2.1) and show its behavior on some examples in this para-
graph.

THEOREM 2.1. The function

(2.2) u(x, t) =
x

∑
i=x0+1

φi
kx−i

(x− i)!
tx−ie−kt, x > x0.

is a solution of (2.1).

REMARK 2.2. We deal with the uniqueness of (2.2) in Section 5.

Proof. We prove the statement by induction on x ∈ Z, x > x0.

1. For x = x0 + 1 we apply the boundary condition u(x0, t) = 0 to (2.1). We get the homoge-
neous equation

{
ut(x0 + 1, t) + ku(x0 + 1, t) = 0,
u(x0 + 1, 0) = φx0+1

with the solution

u(x0 + 1, t) = φx0+1e−kt.

11



2. We perform the inductive step. Let us suppose that (2.2) holds for all x < x when x > x0 + 1.
We plug the induction hypothesis into (2.1) and the problem has the form

(2.3)

 ut(x, t) + ku(x, t) = k
x−1

∑
i=x0+1

φi
kx−1−i

(x− 1− i)!
tx−1−ie−kt,

u(x, 0) = φx.

This is the linear nonhomogeneous ordinary differential equation. The solution of the ho-
mogeneous equation is

uH(x, t) = Cxe−kt, Cx ∈ R.

We search for the particular solution in the form

uP(x, t) = te−kt
x−x0−2

∑
j=0

Djtj.

Now we specify real constants Dj. We plug uP(x, t) into the equation in (2.3) and get

e−kt
x−x0−2

∑
j=0

Djtj − kte−kt
x−x0−2

∑
j=0

Djtj + te−kt
x−x0−2

∑
j=1

jDjtj−1

+kte−kt
x−x0−2

∑
j=0

Djtj = ke−kt
x−1

∑
j=x0+1

φj
kx−1−j

(x− 1− j)!
tx−1−j

and after the simplification

(2.4) e−kt
x−x0−2

∑
j=0

(j + 1)Djtj = ke−kt
x−1

∑
j=x0+1

φj
kx−1−j

(x− 1− j)!
tx−1−j.

We compare the powers of t in (2.4) for the computation of Dj.

D0 = kφx−1, i.e. D0 = φx−1k,

2D1 = kφx−2
k
1!

, i.e. D1 = φx−2
k2

2!
,

3D2 = kφx−3
k2

2!
, i.e. D2 = φx−3

k3

3!
,

...

We have

Dj = φx−(j+1)
kj+1

(j + 1)!

12



in general. Thus, we know the particular solution uP(x, t) and the solution of (2.3) is

u(x, t) = uH(x, t) + uP(x, t) = Cxe−kt +
x−x0−2

∑
j=0

φx−(j+1)
kj+1

(j + 1)!
tj+1e−kt.

After the application of the initial condition u(x, 0) = φx we get the required relation

u(x, t) =
x−x0−1

∑
j=0

φx−j
kj

j!
tje−kt (i=x−j)

=
x

∑
i=x0+1

φi
kx−i

(x− i)!
tx−ie−kt.

2

In the following three examples we suppose the vanishing boundary condition in x0 = −1, i.e.

(2.5) u(−1, t) = 0, t ∈ [0,+∞).

EXAMPLE 2.3. First, we study the solution of (2.1), x0 = −1, with one-point initial condition φx,
i.e. φ is defined as

(2.6) φx =

{
A, x = 0,
0, x ∈N.

Then the solution is

u(x, t) = A
kx

x!
txe−kt,

for x ∈N∪ {0} and t ∈ (0,+∞). The computation follows directly from Theorem 2.1.
We try to find a curve χ along which maximums are propagated. We search the local maxi-

mum of functions

f (t) = txe−kt.

The first derivative

f ′(t) = xtx−1e−kt − ktxe−kt = tx−1e−kt(x− kt)

gives us stationary points t1 = 0 and t2 =
x
k

. The point t1 lies on the boundary and is not

interesting. For the point t2 the derivative f ′(t) changes the sign from positive to negative. Thus,
the point t2 is the local maximum.

We see that the mentioned curve χ is the straight line

(2.7) t =
x
k

in this case. The solution u(x, t) of (2.1) with the initial condition (2.6) when k = 1, A = 1 and the
curve χ is shown on Figure 4. �

13



Figure 4: The solution u(x, t) of the initial-boundary value problem (2.1) when k = 1 with the initial
condition given by (2.6). The straight line χ (2.7).

The following example studies the constant two-point initial condition.

EXAMPLE 2.4. Let us suppose the problem (2.1), x0 = −1, with constant two-point initial condi-
tion φ. Therefore, φx is given as follows

(2.8) φx =

{
1, x = 0 or x = 1,
0, x = 2, 3, 4, . . .

The solution is

u(x, t) =


kx

x!
txe−kt +

kx−1

(x− 1)!
tx−1e−kt, x ≥ 1,

e−kt, x = 0,

directly from Theorem 2.1.
Now we try to find a curve χ along which maximums are propagated again. We limit our-

selves to the case x ≥ 1. First, we compute the derivative

ut(x, t) =


kx

(x− 1)!
tx−1e−kt − kx+1

x!
txe−kt +

kx−1

(x− 2)!
tx−2e−kt − kx

(x− 1)!
tx−1e−kt, x ≥ 2,

ke−kt − k2te−kt − ke−kt = −k2te−kt, x = 1.

We see that for x = 1 there is the trivial solution t = 0. For x ≥ 2 we put ut(x, t) = 0 and assume
t 6= 0,

(2.9)
kx

(x− 1)!
tx−1e−kt − kx+1

x!
txe−kt +

kx−1

(x− 2)!
tx−2e−kt − kx

(x− 1)!
tx−1e−kt = 0.

We multiply (2.9) by the term (x!) and divide by (kx−1tx−2e−kt) and we get

14



kxt− k2t2 + x(x− 1)− kxt = 0

and after the conversion

(2.10)
(

x− 1
2

)2
− k2t2 =

1
4

.

This is the hyperbola with the center ( 1
2 , 0). Hence, the curve χ is the curve of the second order.

It is clear from the preceding computation that, in general, for the n-point initial condition we
get the curve of nth order.

The solution of (2.1) with the initial condition (2.8) for k = 1 and the hyperbola (2.10) are on
Figure 5 and Figure 6. �

Figure 5: The solution u(x, t) of the initial-boundary value problem (2.1) when k = 1 with the initial
condition (2.8). The hyperbola (2.10).

Figure 6: The hyperbola (2.10) in xt-plane.
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As the last example we investigate the nonconstant two-point initial condition.

EXAMPLE 2.5. We study the problem (2.1), x0 = −1, with the following initial condition

(2.11) φx =


A, x = 0,
B, x = 1,
0, x = 2, 3, 4, . . .

The solution has the form

u(x, t) =


A

kx

x!
txe−kt + B

kx−1

(x− 1)!
tx−1e−kt, x ≥ 1,

Ae−kt, x = 0,

by application of Theorem 2.1.
For finding a curve χ we can make analogous steps as in Example 2.4. We get the hyperbola

again

(2.12) B
(

x− 1
2

)2
− Ak2t2 + (A− B)kxt =

B
4

.

Figures 7, 8 show the solution of the problem (2.1) with the nonconstant two point initial
condition (2.11) and hyperbola (2.12). �

Figure 7: The solution u(x, t) of the initial-boundary value problem (2.1) when k = 1 with the initial
condition (2.11) for A = 2, B = 1. The hyperbola (2.12).
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Figure 8: The hyperbola (2.12) for A = 2, B = 1 in xt-plane.

2.3 Sum and Integral Preservation

We study the sum preservation in the discrete variable and the integral preservation in the con-
tinuous variable. Before we provide these two results we deal with the sign preservation at first.

PROPOSITION 2.6. Let u(x, t) be the solution of (2.1) given by (2.2) with the assumption

φx ≥ 0 for all x ∈ Z, x > x0.

Then

u(x, t) ≥ 0

holds for all x ∈ Z,x > x0 , and for all t ∈ (0,+∞).

Proof. The statement is the direct consequence of Theorem 2.1. 2

The following two results give us the interesting relation with the theory of probability distribu-
tions. This is the goal of this section. We study the problem from Example 2.3, i.e. the problem

(2.13)



ut(x, t) + k∇xu(x, t) = 0, k > 0,

u(x, 0) =

{
A, x = 0,
0, x ∈N,

u(−1, t) = 0, t ∈ [0,+∞).

The solution of (2.13) is

(2.14) u(x, t) = A
kx

x!
txe−kt.

17



THEOREM 2.7. Let u(x, t) be the solution of (2.13) given by (2.14). Then

+∞

∑
x=0

u(x, t) = A

holds for all t ∈ (0,+∞).

Proof. We compute the mentioned sum,

+∞

∑
x=0

u(x, t) =
+∞

∑
x=0

A
kx

x!
txe−kt.

We use the Taylor series definition of the exponential function ey = ∑+∞
n=0

yn

n! and get

+∞

∑
x=0

u(x, t) =
+∞

∑
x=0

A
kx

x!
txe−kt = Ae−kt

+∞

∑
x=0

(kt)x

x!︸ ︷︷ ︸
=ekt

= A.

2

THEOREM 2.8. Let u(x, t) be the solution of (2.13) given by (2.14). Then

+∞∫
0

u(x, t)dt =
A
k

.

holds for all x ∈N∪ {0}.

Proof. We prove the statement by induction on x ∈N∪ {0}.

1. For x = 0 we have

+∞∫
0

u(0, t)dt =
+∞∫
0

Ae−ktdt = A
[
−1

k
e−kt

]+∞

0
=

A
k

.

2. We assume that the assertion holds for all x < x, i.e.

(2.15)
+∞∫
0

u(x, t)dt =
+∞∫
0

A
kx

(x)!
txe−ktdt =

A
k

.

We use integration by parts and the preceding induction hypothesis to compute the integral

+∞∫
0

u(x, t)dt

for x ≥ 1. Hence, we get
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+∞∫
0

u(x, t)dt =

+∞∫
0

A
kx

x!
txe−ktdt =

∣∣∣∣∣∣∣∣∣∣∣∣

D I

tx e−kt

xtx−1 − 1
k e−kt

∣∣∣∣∣∣∣∣∣∣∣∣
= A

kx

x!

[
−1

k
txe−kt

]+∞

0︸ ︷︷ ︸
=0

+A
kx

x!

+∞∫
0

1
k

xtx−1e−ktdt

=

+∞∫
0

A
kx−1

(x− 1)!
tx−1e−ktdt

(2.15)
=

A
k

.

2

Therefore, if we assume the solution u(x, t) given by (2.14) of the problem (2.13) for A = k =

1 then Proposition 2.6, Theorem 2.7 and Theorem 2.8 imply that u(x, t) makes the probability
distribution in both variables. It is the Poisson probability distribution in the discrete variable
x and the Erlang distribution in the continuous variable t (see Ross [16]). Together it forms so
called Poisson stochastic process.

The problem (2.13) can be generalized on time scales. More informations about this gener-
alization and its consequences to the probability theory with several examples can be found in
Stehlík, Volek [20].
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3 Linear Transport Equation with Discrete Time and Continu-
ous Space

In this section we suppose the opposite semidiscrete domain with the discrete time and contin-
uous space. First, we deal with the relationship to the previous section with discrete space and
continuous time. Then we consider the initial value problem. We study the same properties,
i.e. integral and sign preservation. We come to the conclusion that for this structure of variables
these problems are much more complicated. For example the sign preservation does not hold in
general in this case. Further, we focus on the periodicity again.

3.1 Problem

In this section we consider the following initial value problem

(3.1)

{
∆tu(x, t) + kux(x, t) = 0, x ∈ R, t ∈N∪ {0}, k ∈ R \ {0},
u(x, 0) = φ(x)

when φ ∈ C∞(R).

3.2 Relationship to Problem with Discrete Space and Continuous Time

Before we solve the problem presented above we motivate why we choose the right difference

(3.2) ∆tu(x, t) = u(x, t + 1)− u(x, t).

Let us consider the left difference

∇tu(x, t) = u(x, t)− u(x, t− 1)

and the boundary value problem

(3.3)


∇tu(x, t) + 1

k ux(x, t) = 0,

u(0, t) =

{
A, t = 0,
0, t 6= 0,

for x ∈ R, t ∈ Z. Then we substitute

k̃ =
1
k

, x̃ = t, t̃ = x

and the problem (3.3) has the following form
k̃∇x̃u(t̃, x̃) + ut̃(t̃, x̃) = 0,

u(0, x̃) =

{
A, x̃ = 0,
0, x̃ 6= 0,

that is the essential problem of Section 2. Therefore, let us study the problem (3.1) with the right
difference (3.2).
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3.3 Solution

This paragraph deals with the solution of (3.1) and its uniqueness.

THEOREM 3.1. The solution u(x, t) of (3.1) is given by

(3.4) u(x, t) =
t

∑
i=0

(−1)i
(

t
i

)
kiφ(i)(x).

Proof. We prove the statement by induction on t ∈N∪ {0}.

1. First, we place t = 0 to (3.4). We have

u(x, 0) = φ(x)

what is the initial condition.

2. Let us assume that (3.4) holds for all t < t, t ∈N. We know from (3.1) that there is

(3.5) u(x, t) = u(x, t− 1)− kux(x, t− 1).

From the induction hypothesis we get the relation

(3.6) u(x, t− 1) =
t−1

∑
i=0

(−1)i
(

t− 1
i

)
kiφ(i)(x).

Hence, (3.5) and (3.6) imply

u(x, t) =
t−1

∑
i=0

(−1)i
(

t− 1
i

)
kiφ(i)(x)− k

t−1

∑
i=0

(−1)i
(

t− 1
i

)
kiφ(i+1)(x)

=
t−1

∑
i=0

(−1)i
(

t− 1
i

)
kiφ(i)(x) +

t

∑
i=1

(−1)i
(

t− 1
i− 1

)
kiφ(i)(x)

= φ(x) +
t−1

∑
i=1

(−1)i
[(

t− 1
i

)
+

(
t− 1
i− 1

)]
︸ ︷︷ ︸

=(t
i)

kiφ(i)(x) + (−1)t
(

t
t

)
ktφ(t)(x)

=
t

∑
i=0

(−1)i
(

t
i

)
kiφ(i)(x).

2
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THEOREM 3.2. The initial value problem (3.1) possesses unique solution which is given by (3.4).

Proof. We prove the statement by contradiction. Let us consider that u(x, t) and v(x, t) are solu-
tions of (3.1) and u(x, t) 6= v(x, t). We define the function h(x, t) = u(x, t)− v(x, t). This function
is the solution of the problem

(3.7)

{
∆th(x, t) + khx(x, t) = 0,
h(x, 0) = 0

because

1.
∆th + khx = ∆t(u− v) + k(u− v)x = ∆tu− ∆tv + kux − kvx

= ∆tu + kux − (∆tv + kvx) = 0,

2.
h(x, 0) = u(x, 0)− v(x, 0) = φ(x)− φ(x) = 0.

We prove also by contradiction that the problem (3.7) is solved only by trivial solution.
Let h(x, t) 6= 0, i.e. there exist x0 ∈ R and t0 ∈ N ∪ {0} such that h(x0, t0) 6= 0. If there is

t0 = 0 then we have contradiction with the vanishing initial condition. Hence, we suppose that
t0 > 0. Directly from (3.1) we get

h(x0, t0 − 1) + khx(x0, t0 − 1) 6= 0.

Now we have two possibilities.

1. If there is h(x0, t0 − 1) = 0 then hx(x0, t0 − 1) 6= 0 holds. From continuity of h(x, t0 − 1) in
the variable x there exists a punctured neighbourhood Pδ(x0) with the radius δ > 0 such
that h(x, t0 − 1) 6= 0 for all x ∈ Pδ(x0). We choose arbitrary xP ∈ Pδ(x0) and define x1 and
t1 as follows

x1 := xP and t1 := t0 − 1.

2. On the other hand if h(x0, t0 − 1) 6= 0 we can define x1 and t1 directly,

x1 := x0 and t1 := t0 − 1.

Consequently, we have h(x1, t1) 6= 0 and then we can continue iteratively and we end after m = t0

steps with tm = 0 and we have either hx(xm, 0) 6= 0 or h(xm, 0) 6= 0. This is the contradiction with
h(x, 0) = 0 for all x ∈ R. Hence, the problem (3.7) has only trivial solution and therefore u = v
what is the final contradiction. 2

We assume in (3.1) that the initial condition is a C∞ function. We can ask what happens if φ /∈
C∞(R). The following observation is clear.
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OBSERVATION 3.3. 1. If φ /∈ C∞(R) then there does not exist a solution of (3.1) for all t ∈N∪{0}.

2. If the initial condition φ ∈ Cm(R), m ∈ N ∪ {0} , then there exists a solution of (3.1) only for
t ≤ m. The solution has the form (3.4).

Proof. Both statements are immediate consequences of Theorem 3.1 and Theorem 3.2. 2

3.4 Piecewise Smooth Initial Condition

In this section we are interested in solution of the problem (3.1) in the case that the initial condi-
tion is not a C∞ function but it is a continuous and piecewise C∞ function.

DEFINITION 3.4. If a solution u(x, t) of (3.1) exists for almost all x ∈ R and for all t ∈ N ∪ {0} we
call it the generalized solution.

PROPOSITION 3.5. Assume that φ ∈ C(R) and φ ∈ C∞(Mj), j ∈N, where Mj are open and disjoined
sets and

⋃
j∈N

Mj = R. Then there exists the generalized solution u(x, t) of (3.1). It is defined for all

x ∈ Mj and is given by

u(x, t) =
t

∑
i=0

(−1)i
(

t
i

)
kiφ(i)(x).

Proof. The assertion follows directly from the Proof of Theorem 3.1. 2

REMARK 3.6. If we suppose the problem from Proposition 3.5 then for some tL ∈ N the generalized
solution u(x, tL) can lose the "continuity" in the following sense

lim
x→x0+

u(x, tL) 6= lim
x→x0−

u(x, tL) for x0 /∈ Mj, j ∈N.

We can see this phenomenon in the following example.

EXAMPLE 3.7. We study the initial condition φ(x) which is piecewise linear,

φ(x) =


0 for x ≤ 0,
x for x ∈ (0, 1),
1 for x ≥ 1.

From Proposition 3.5 we have the generalized solution

(3.8) u(x, t) =


0 for x < 0, t ∈N,
x− kt for x ∈ (0, 1), t ∈N,
1 for x > 1, t ∈N.

The solution does not exist for x = 0 and for x = 1 and in these points we have

lim
x→0+

u(x, t) = −kt, lim
x→0−

u(x, t) = 0,

lim
x→1+

u(x, t) = 1, lim
x→1−

u(x, t) = 1− kt.
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The situation for k = 1 is shown on Figure 9 . �

Figure 9: The solution u(x, t) given by (3.8) from Example 3.7.

3.5 Periodicity of Solution

We prove in this section that if we have a periodic initial condition φ(x) then the solution of (3.1)
is also periodic in the space variable for all t ∈N with the same period.

THEOREM 3.8. Let u(x, t) be the solution of (3.1) when the initial condition φ(x) is periodic with the
period p > 0, i.e.

(3.9) φ(x) = φ(x + mp) for all x ∈ R and m ∈ Z

and p is the smallest one. Then u(x, t) is periodic in the space variable x for all t ∈ N with the period p,
i.e.

u(x, t) = u(x + mp, t) for all x ∈ R, t ∈N and m ∈ Z.

Proof. First, we show that if the function φ(x) is periodic with the period p > 0 and if the
derivative φ′(x) exists for all x ∈ R then the derivative is also periodic with the same period.

Therefore, let φ(x) be periodic with the period p and the derivative φ′(x) exists for all x ∈ R.
Thus, we know that (3.9) holds. Now we can find out the value of φ′(x + mp) when x ∈ R and
m ∈ Z are arbitrary

φ′(x + mp) = lim
h→0

φ((x + mp) + h)− φ(x + mp)
h

= lim
h→0

φ((x + h) + mp)− φ(x + mp)
h

(3.9)
= lim

h→0

φ(x + h)− φ(x)
h

= φ′(x).

We have even φ ∈ C∞(R). Thus, every derivative φ(i)(x), i ∈N, is periodic with the period p.
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The solution of (3.1) is given by (3.4) and for all t ∈ N it is the linear combination of deriva-
tives of φ(x).

We prove that the linear combination of periodic functions with the same period p is also pe-
riodic function with the period p. Let c1, c2, . . . , cn, n ∈ N, be real constants and f1(x), f2(x), . . . ,
fn(x) periodic functions with the same period p > 0. Then the function

h(x) = c1 f1(x) + c2 f2(x) + . . . + cn fn(x)

satisfies

h(x + mp) = c1 f1(x + mp) + c2 f2(x + mp) + . . . + cn fn(x + mp)

= c1 f1(x) + c2 f2(x) + . . . + cn fn(x) = h(x)

when m ∈ Z is arbitrary.
Consequently, our solution u(x, t) is periodic with the period p in the space variable x. 2

3.6 Integral Preservation

We can prove only the integral preservation in the continuous variable x in this case.

THEOREM 3.9. Let u(x, t) be the solution of (3.1) when the initial condition φ(x) satisfies

1. φ(x) ≥ 0 for all x ∈ R,

2. limits lim
x→−∞

φ(x) and lim
x→+∞

φ(x) exist,

3.
+∞∫
−∞

φ(x)dx = K for K ≥ 0.

Then

+∞∫
−∞

u(x, t)dx = K

holds for all t ∈N.

Proof. First, we prove by contradiction that

(3.10) lim
x→+∞

φ(x) = 0 and lim
x→−∞

φ(x) = 0

and also for all i ∈N

(3.11) lim
x→+∞

φ(i)(x) = 0 and lim
x→−∞

φ(i)(x) = 0.

Let us assume that it is not true. Thus, we assume for example

lim
x→+∞

φ(x) = L ∈ (0,+∞].
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Then there exist x0 ∈ R and c > 0 that for all x > x0 is

φ(x) ≥ c,

certainly. Now we get from the comparison

+∞∫
x0

φ(x)dx ≥
+∞∫
x0

c dx = +∞

a contradiction with the assumptions on φ(x). The case for x → −∞ is analogical.
Equalities (3.11) are the consequence of (3.10).
Now the solution u(x, t) is given by (3.4) and for all t ∈N we get

+∞∫
−∞

u(x, t)dx =

+∞∫
−∞

t

∑
i=0

(−k)i
(

t
i

)
φ(i)(x)dx =

t

∑
i=0

(−k)i
(

t
i

) +∞∫
−∞

φ(i)(x)dx

=

+∞∫
−∞

φ(x)dx +
t

∑
i=1

(−k)i
(

t
i

) +∞∫
−∞

φ(i)(x)dx

=

+∞∫
−∞

φ(x)dx

︸ ︷︷ ︸
=K

+
t

∑
i=1

(−k)i
(

t
i

)(
lim

x→+∞
φ(i−1)(x)− lim

x→−∞
φ(i−1)(x)

)
︸ ︷︷ ︸

=0

= K.

2

3.7 Solution Oscillations

In this paragraph we are concerned with the sign preservation. We do not present the final
result about preservation but we give two lemmas that deal with solution oscillations. These can
show that the sign preservation is more complicated than in the case of the discrete space and
continuous time.

LEMMA 3.10. Let u(x, t) be the solution of (3.1) in the fixed t ∈ N ∪ {0}. Let u(x, t) have the local
extremum in the variable x for x = x0. Then for u(x, t + 1) there is

u(x0, t + 1) = u(x0, t).

Proof. The function u(x, t) has the local extremum in the variable x for x = x0. The necessary
condition for the local extremum gives us

ux(x0, t) = 0.

We differentiate the relation

u(x, t + 1) = u(x, t)− kux(x, t)

from (3.1) with respect to the variable x and we get
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(3.12) ux(x, t + 1) = ux(x, t)− kuxx(x, t).

We can do this because u(x, t) is the solution (3.4) of the problem (3.1) with the initial condition
φ ∈ C∞(R). Hence, u(x, t) is the C∞(R) function in the variable x for all t ∈N.

Now we integrate both sides of (3.12) from x0 to x with respect to the first variable.

x∫
x0

us(s, t + 1)ds =

x∫
x0

[us(s, t)− kuss(s, t)]ds,

[u(s, t + 1)]xx0
= [u(s, t)− kus(s, t)]xx0

,

u(x, t + 1)− u(x0, t + 1) = u(x, t)− kux(x, t)− [u(x0, t)− kux(x0, t)] ,

u(x, t + 1)− u(x, t) + kux(x, t)︸ ︷︷ ︸
=0

+u(x0, t) = u(x0, t + 1) + k ux(x0, t)︸ ︷︷ ︸
=0

,

u(x0, t + 1) = u(x0, t).

2

Now we use stronger assumptions and get the result about oscillations mentioned on the begin-
ning of this subsection.

LEMMA 3.11. Let u(x, t) be the solution of (3.1) in the fixed t ∈ N ∪ {0}. Let u(x, t) have the strict
local extremum in the variable x for x = x0. Furthermore, assume that

(3.13) uxx(x0, t) 6= 0.

Then

u(x0, t + 1) = u(x0, t)

holds and the function u(x, t + 1) is strictly monotone in x = x0.

Proof. The first part is Lemma 3.10. Therefore, we concentrate on the monotonicity of u(x, t + 1)
in x = x0. We use the relation (3.12) again and for x = x0 we get

(3.14)

ux(x0, t + 1) = ux(x0, t)︸ ︷︷ ︸
=0

−kuxx(x0, t),

ux(x0, t + 1) = −kuxx(x0, t).

We go through the case k > 0 in details. The proof of situation for k < 0 is analogous. Hence,
let k > 0, we have two possibilities.
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1. If the function u(x, t) has the local maximum in x = x0 then from the assumption (3.13) we
get

(3.15) uxx(x0, t) < 0.

We apply (3.15) to (3.14) and get

ux(x0, t + 1) = −kuxx(x0, t) > 0.

Consequently, the function u(x, t + 1) is strictly increasing in x = x0.

2. On the other hand, if u(x, t) has the local minimum in x = x0 then we get

uxx(x0, t) > 0,

ux(x0, t + 1) = −kuxx(x0, t) < 0.

The function u(x, t + 1) is strictly decreasing in x = x0.

If the parameter satisfies k < 0 the proof has same structure. Only the cases when u(x, t + 1) is
increasing and decreasing in x = x0 interchange. 2

REMARK 3.12. We see that the function u(x, t+ 1) has higher values than u(x, t) has in local maximums
and lower values than u(x, t) has in local minimums. Therefore, the sign is not preserved in general. For
example, if we assume φ(x) = sin x + 1 which is nonnegative and its minimums are equal to zero then
the function u(x, 1) has already negative values.

We illustrate the behavior presented in Lemmas 3.10 and 3.11 in the following example.

EXAMPLE 3.13. We study the problem (3.1) when the initial condition is

φ(x) = cos x, φ ∈ C∞(R).

For i ∈N∪ {0} we get

φ(2i)(x) = (−1)i cos x,

φ(2i+1)(x) = (−1)i+1 sin x.

We apply Theorem 3.1 and the solution u(x, t) is
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u(x, t) =
t

∑
i=0

(−1)i
(

t
i

)
kiφ(i)(x)

=



t−1
2

∑
i=0

(−1)i
(

t
2i

)
k2i cos x +

t−1
2

∑
i=0

(−1)i
(

t
2i + 1

)
k2i+1 sin x, when t is odd,

t
2

∑
i=0

(−1)i
(

t
2i

)
k2i cos x +

t
2−1

∑
i=0

(−1)i
(

t
2i + 1

)
k2i+1 sin x, when t is even.

For k = −1 we can compute

u(x, 0) = cos x,
u(x, 1) = cos x + (− sin x) = cos x− sin x,
u(x, 2) = cos x + 2(− sin x) + (− cos x) = −2 sin x,
u(x, 3) = cos x + 3(− sin x) + 3(− cos x) + sin x = −2(cos x + sin x),
u(x, 4) = cos x + 4(− sin x) + 6(− cos x) + 4 sin x + cos x = −4 cos x.

...

The solution is shown on Figures 10, 11. �

Figure 10: The solution u(x, t) from Example 3.13.
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Figure 11: The solution u(x, t) from Example 3.13 in R3 space.
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4 Linear Transport Difference Equation

For the compact survey about linear transport equation with discrete variables we study the
transport difference equation in this section. We deal with the special initial value problem which
is analogous to problems from previous sections. For this special initial condition we study the
sum and sign preservation again. For this purely discrete case we get interesting consequences
to the probability distributions. We need some special techniques from the theory of difference
equations here (see e.g. Elaydi [7] or Kelley, Peterson [8]). In the end of this section we compare
results about linear transport equations on distinct domains.

Fundamentals about partial difference equations can be found e.g. in Cheng [2].

4.1 Auxiliary Assertions

Before we define the problem and before we solve it we have to expose some necessary results
from the theory of difference equations. We recommend Elaydi [7] and Kelley, Peterson [8] for
their further study.

LEMMA 4.1 ([7], (1.2.4), P. 3). The initial value problem{
y(n + 1) = a(n)y(n) + b(n), n ∈ Z, n ≥ n0 ≥ 0, n0 ∈ Z,
y(n0) = y0, y0 ∈ R,

has the solution

y(n) =

[
n−1

∏
i=n0

a(i)

]
y0 +

n−1

∑
r=n0

[
n−1

∏
i=r+1

a(i)

]
b(r).

DEFINITION 4.2. Assume n ∈ Z and r ∈N∪ {0}. The falling factorial nr is defined as follows

nr = n(n− 1) . . . (n− r + 1), r = 1, 2, 3, . . . ,
nr = 1, r = 0.

More detailed description of the falling factorial can be found in Kelley, Peterson [8].

LEMMA 4.3 ([8], THEOREM 2.5). Assume n ∈ Z and r ∈N∪ {0}. Then

(4.1) ∑n nr =
nr+1

r + 1
+ C

holds when the symbol ∑n y(n) denotes the indefinite sum (see Kelley, Peterson [8]) and C ∈ R.

THEOREM 4.4 ([8], THEOREM 2.7). If z(i) is the indefinite sum of the function y(i) then

(4.2)
n−1

∑
i=m

y(i) = [z(i)]nm = z(n)− z(m)

holds.
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4.2 Problem

We study the linear transport difference equation. We assume that both variables are discrete and
each variable has its own discretization. Let us set

x = mµx when m ∈ Z, µx ∈ R, µx > 0,

t = nµt when n ∈N∪ {0} , µt ∈ R, µt > 0.

Furthermore, we suppose the left relative difference in the space variable x, we denote it

∇(µx)
x u(x, t) =

u(x, t)− u(x− µx, t)
µx

and the right relative difference

∆(µt)
t u(x, t) =

u(x, t + µt)− u(x, t)
µt

in the time variable t.
Finally, we study the following initial value problem

(4.3)


∆(µt)

t u(x, t) + k∇(µx)
x u(x, t) = 0, k > 0,

u(x, 0) =

{
A > 0, x = 0,
0, x 6= 0.

4.3 Solution

Now we can start solving the problem (4.3). We modify the equation in (4.3) to the form

(4.4) u(x, t + µt) =

(
1− kµt

µx

)
u(x, t) +

kµt

µx
u(x− µx, t)

and we denote

(4.5) L =
kµt

µx
.

The relation (4.4) changes to

(4.6) u(x, t + µt) = (1− L)u(x, t) + Lu(x− µx, t).

The following theorem gives us the solution of (4.3).

THEOREM 4.5. The solution of (4.3) is given by

(4.7) u(mµx, nµt) = A
(

1− kµt

µx

)n−m ( kµt

µx

)m n−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1.
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Proof. We assume the right partial difference in x and hence, for all m < 0 we immediately get

(4.8) u(mµx, t) = 0

which satisfies (4.7). For m ≥ 0 we prove the statement by induction on m ∈N∪ {0}.

1. For m = 0 we put (4.8) to the equation (4.6)

u (0, (n + 1)µt) = (1− L)u(0, nµt).

Thanks to Lemma 4.1 applied on n ∈N∪ {0} we have

u(0, nµt) = (1− L)nu(0, 0) = A(1− L)n

that also satisfies (4.7).

2. We assume that (4.7) holds for m ∈N∪ {0}, i.e.

(4.9) u(mµx, nµt) = A(1− L)n−mLm
n−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1.

Now we prove that (4.7) holds for m + 1. We plug (4.9) into (4.6) and then we have

u ((m + 1)µx, (n + 1)µt)

= (1− L)u((m + 1)µx, nµt) + A(1− L)n−mLm+1
n−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1.

We use Lemma 4.1 again that gives us

u ((m + 1)µx, nµt)

= (1− L)n u((m + 1)µx, 0)︸ ︷︷ ︸
=0

+
n−1

∑
rm+1=0

(1− L)n−1−rm+1 A(1− L)rm+1−mLm+1
rm+1−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1

= A(1− L)n−(m+1)Lm+1
n−1

∑
rm+1=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1.

If we apply the definition (4.5) of L we get (4.7). 2

We use the auxiliary assertions from previous subsections to simplify the solution form in
Theorem 4.5.
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LEMMA 4.6. For m, n ∈N∪ {0} the following holds

n−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1 =
nm

m!
.

Proof. We prove the statement by induction on m ∈N∪ {0}.

1. For m = 0 we have

1 =
n0

0!
= 1.

2. We assume that

(4.10)
n−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1 =
nm

m!
.

Then we use Lemma 4.3 and Theorem 4.4 and we get

n−1

∑
rm+1=0

rm+1−1

∑
rm=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1
(4.10)
=

n−1

∑
rm+1=0

rm
m+1
m!

=
1

m!

n−1

∑
rm+1=0

rm
m+1

(4.1),(4.2)
=

1
m!

[
rm+1

m+1
m + 1

]n

0

=
nm+1

(m + 1)!
.

2

LEMMA 4.7. Consider n, m ∈N∪ {0} such that n ≥ m. Then

nm

m!
=

(
n
m

)
holds.

Proof. We use the Definition 4.2 of the falling factorial

nm

m!
=

n(n− 1) . . . (n−m + 1)
m!

=
n(n− 1) . . . (n−m + 1)(n−m)(n−m− 1) · . . . · 3 · 2 · 1

m!(n−m)(n−m− 1) · . . . · 3 · 2 · 1

=
n!

m!(n−m)!
=

(
n
m

)
.

2
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Now we present the final theorem that gives us the general form of the solution.

THEOREM 4.8. The solution of (4.3) is given by

(4.11) u(mµx, nµt) =


A
(

n
m

)(
1− kµt

µx

)n−m ( kµt

µx

)m
, n ≥ m,

0, n < m.

Proof. The statement is the direct consequence of Theorem 4.5 and Lemmas 4.6 and 4.7. 2

Some solution cuts are shown on Figures 12, 13.

Figure 12: The time cut u(x, 2) of the solution u(x, t) of the problem (4.3) for µx = 0.5, µt = 0.2, A = 1,
k = 1.

Figure 13: The space cut u(2.5, t) of the solution u(x, t) of the problem (4.3) for µx = 0.5, µt = 0.2,
A = 1, k = 1.
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THEOREM 4.9. The initial value problem (4.3) possesses unique solution which is given by (4.11).

Proof. We prove the statement by contradiction. Let us suppose two distinct solutions u(x, t)
and v(x, t) of (4.3). We define h(x, t) = u(x, t)− v(x, t). The function h(x, t) solves the problem
(4.3) with the initial condition

(4.12) u(x, 0) = 0 for all x = mµx.

But we prove also by contradiction that the problem (4.3) with the vanishing initial condition is
solved only by the trivial solution

h(x, t) = 0 for all x = mµx, t = nµt.

Let us consider that h(x, t) solves the problem (4.3) with (4.12) and there exist x0 = m0µx and
t0 = n0µt such that

h(x0, t0) 6= 0.

If there is t0 = 0 we have the contradiction with the vanishing initial condition. Thus, let t0 > 0.
The following relation holds from (4.6)

(4.13) h(x0, t0) = (1− L)h(x0, t0 − µt) + Lh(x0 − µx, t0 − µt) 6= 0.

At least one of terms in (4.13) has to be nonzero. Therefore, we define

x1 = x0 and t1 = t0 − µt

and then either

h(x1, t1) = h(x0, t0 − µt) 6= 0

or

h(x1 − µx, t1) = h(x0 − µx, t0 − µt) 6= 0.

We can continue iteratively and after n0 steps we get

h(xn0 , 0) 6= 0 or h(xn0 − µx, 0) 6= 0

that is the contradiction with the initial condition (4.12).
Therefore, h(x, t) = 0 and u(x, t) = v(x, t) that is the final contradiction. 2

REMARK 4.10. In the similar way as in the Proof of Theorem 4.5 we can solve the following more general
initial-boundary value problem

(4.14)


∆(µt)

t u(x, t) + k∇(µx)
x u(x, t) = 0, k > 0,

u(sµx, 0) = φs, φs ∈ R, s > m0, m0 ∈ Z,
u(m0µx, t) = 0 for all t = nµt.
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One can prove that (4.14) has the unique solution given by

u ((m0 + m)µx, nµt) =
m−1

∑
i=0

φm0+m−i

(
1− kµt

µx

)n−i ( kµt

µx

)i n−1

∑
ri=0

. . .
r3−1

∑
r2=0

r2−1

∑
r1=0

1.

4.4 Sign and Sum Preservation

Now we know the solution and we can study the main question of this section, the sign and sum
preservation.

PROPOSITION 4.11. Let u(x, t) be the solution of (4.3). Let

(4.15) 1− kµt

µx
≥ 0

hold. Then u(x, t) satisfies

u(x, t) ≥ 0 for all x = mµx, t = nµt.

Proof. The statement the direct consequence of Theorem 4.8 and assumptions A > 0, k > 0 and
(4.15).

2

Finally, there are two theorems about the preservation of sums.

THEOREM 4.12. Let u(x, t) be the solution of (4.3). Then

+∞

∑
m=0

u(mµx, nµt) = A

holds for all n ∈N∪ {0}.

Proof. First, we observe that for m > n is

u(mµx, nµt) = 0.

Then we have

+∞

∑
m=0

u(mµx, nµt) =
n

∑
m=0

u(mµx, nµt).

According to the binomial theorem we get

+∞

∑
m=0

u(mµx, nµt) = A
n

∑
m=0

(
n
m

)(
1− kµt

µx

)n−m ( kµt

µx

)m
= A

[(
1− kµt

µx

)
+

kµt

µx

]n
= A.

2
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THEOREM 4.13. Let u(x, t) be the solution of (4.3). If the inequality

(4.16)
∣∣∣∣1− kµt

µx

∣∣∣∣ < 1

holds then there is

(4.17)
+∞

∑
n=0

u(mµx, nµt) = A
µx

kµt

for all m ∈N∪ {0}.

Proof. We prove the statement by induction on m ∈N∪ {0}.

1. We check that the result is true for m = 0. For m = 0 we get from (4.11)

+∞

∑
n=0

u(0, nµt) =
+∞

∑
n=0

A
(

1− kµt

µx

)n
.

According to the assumption (4.16) it is the convergent geometric series and we get

+∞

∑
n=0

A
(

1− kµt

µx

)n
=

A

1−
(

1− kµt

µx

) = A
µx

kµt
.

2. Let us suppose that (4.17) holds for all m < m when m > 0. We use the equality

(4.18) u(x, t + µt) =

(
1− kµt

µx

)
u(x, t) +

kµt

µx
u(x− µx, t).

Because we know u(mµx, 0) = 0 for m > 0 from the initial condition we get

(4.19)
+∞

∑
n=0

u(mµx, (n + 1)µt) =
+∞

∑
n=0

u(mµx, nµt).

and

+∞

∑
n=0

u(mµx, nµt)
(4.19)
=

+∞

∑
n=0

u(mµx, (n + 1)µt)

(4.18)
=

(
1− kµt

µx

) +∞

∑
n=0

u (mµx, nµt) +
kµt

µx

+∞

∑
n=0

u ((m− 1)µx, nµt) .

Finally, we have
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kµt

µx

+∞

∑
n=0

u(mµx, nµt) =
kµt

µx

+∞

∑
n=0

u((m− 1)µx, nµt),

+∞

∑
n=0

u(mµx, nµt) =
+∞

∑
n=0

u((m− 1)µx, nµt)
ind. h.
= A

µx

kµt
.

2

These results also have consequences in the theory of probability distributions. Let us assume
that u(x, t) is the solution of (4.3). If we put A = k = µx = 1 and µt = p then we get

u(m, np) =
(

n
m

)
(1− p)n−m pm.

Proposition 4.11, Theorem 4.12 and Theorem 4.13 give us that u(m, np) forms the binomial
distribution in m for all fixed n ∈N∪{0} and the product pu(m, np) forms the negative binomial
distribution in n for all fixed m ∈ N ∪ {0}. Together it makes so called Bernoulli stochastic
process. We recommend Stehlík, Volek [20] again for the further study.

4.5 Comparison of Results about Linear Transport Equations

At the end of linear part we resume results about all cases of linear transport equations. We
denote these cases as follows,

(PDE) linear transport partial differential equation with constant coefficients,

(DS) linear transport equation with discrete space and continuous time,

(DT) linear transport equation with discrete time and continuous space,

(DE) linear transport difference equation.
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(PDE) (DS) (DT) (DE)

Explicit solution X(Th. 1.1) X† (Th. 2.1) X(Th. 3.1) X∗ (Th. 4.8)
Uniqueness X(Th. 1.3) ? X(Th. 3.2) X∗ (Th. 4.9)

Sign preservation X(Prop. 1.5) X† (Prop. 2.6) × (Ex. 3.13) X∗† (Prop. 4.11)
Integral preservation in x X(Th. 1.6) X∗† (Th. 2.7) X† (Th. 3.9) X∗ (Th. 4.12)
Integral preservation in t X† (Th. 1.7) X∗† (Th. 2.8) ? X∗† (Th. 4.13)

Stochastic process X∗ X∗† × X∗†

Periodicity in x X(Th. 1.1) ? X(Th. 3.8) ?

Table 1: Properties summary of linear transport equations.

X - the property holds,
× - the property does not hold in general,
? - we do not know if the property holds,
∗ - for special initial condition φ,
† - with additional assumptions.
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5 Nonlinear Transport Equation with Discrete Space and Con-
tinuous Time

After the survey of linear transport equations we present few results about the nonlinear case.
Our main focus is on maximum and minimum principles and their applications. Maximum prin-
ciples are strong tools in the theory of differential equations (see e.g. Protter, Weinberger [13] or
Pucci, Serrin [14]). They have many consequences, e.g. uniqueness of solutions, a priory bounds,
approximation and oscillation results. There also exists relevant literature about maximum prin-
ciples for difference equations. We mention Stehlík, Thompson [18], [19] that deal with maximum
principles for ordinary second order dynamic equations on time scales and their applications to
uniqueness, approximation and oscillation results. In partial difference equations we can see
Mawhin, Thompson, Tonkes [11] or Cheng [2] where we can find some maximum principles and
so called Wirtinger’s inequalities for partial difference equations and further, we can see Stehlík
[17] where maximum principles for second order dynamic operators of the elliptic type on time
scales are studied.

We study nonlinear semidiscrete equations with discrete space and continuous time. First, we
concentrate on the motivation for the study. Therefore, we derive the conservation law for this
structure of variables. Then we deal with initial-boundary value problems. We present existence
and uniqueness results and prove maximum and minimum principles and their applications,
e.g. the boundedness of solution, the approximation, uniqueness and uniform stability results.
Finally, we consider the initial value problem and prove the local existence and uniqueness of
bounded solution with the help of the contraction principle.

5.1 Semidiscrete Conservation Law

Many equations have the form of conservation laws in natural sciences. Conservation laws often
occur in physics, chemistry and technology. They reflect the balance of the quantity of some
magnitude during the process. We can mention the well-known energy conservation law or the
dynamic conservation law in physics.

We derive the semidiscrete conservation law for the discrete space variable. It leads to partial
semidiscrete equations that we want to study. It is the motivation why the research of these
problems is important and meaningful.

Continuous conservation laws are contained for example in Logan [10].

Hence, we consider the one dimensional discrete space. We simulate it by integers Z. Further,
we suppose the semidiscrete quantity u = u(x, t) which changes continuously in the time and
which is distributed in the discrete space. The magnitude u expresses the density or the concen-
tration of the mass or of the population, energy etc. We denote by ϕ = ϕ(x, t) the flux of u and
we define it as follows

ϕ(i, t), i ∈ Z, t ∈ [0,+∞) .

This quantifies the amount of u that overpasses between the positions x = i and x = i + 1 in the
time t. We assume that the positive direction is for increasing x.

Now we are prepared to derive the conservation law. We consider an arbitrary space segment
between x = i and x = j when i < j. The total amount of the quantity in this segment is
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j

∑
x=i

u(x, t).

We express the time change of the total amount in the section between x = i and x = j. The
change is influenced by the amount that flows into the segment and by the amount produced by
sources in this segment. The amount that flows into in the time t is equal to

(5.1) ϕ(i− 1, t)− ϕ(j, t).

The amount produced by sources distributed in the segment in the time t is

(5.2)
j

∑
x=i

f (x, t)

where f (x, t) denotes the source function that expresses amount produced by a source placed in
x in the time t. If we put (5.1) and (5.2) together we get the "sum" form of the conservation law

d
dt

j

∑
x=i

u(x, t) = ϕ(i− 1, t)− ϕ(j, t) +
j

∑
x=i

f (x, t).

Now we modify the "sum" form of the conservation law as follows

d
dt

j

∑
x=i

u(x, t) = − (ϕ(j, t)− ϕ(i− 1, t)) +
j

∑
x=i

f (x, t),

d
dt

j

∑
x=i

u(x, t) = −

ϕ(j, t)−ϕ(j− 1, t) + ϕ(j− 1, t)︸ ︷︷ ︸
=0

−ϕ(j− 2, t) + ϕ(j− 2, t)︸ ︷︷ ︸
=0

− . . .

−ϕ(i, t) + ϕ(i, t)︸ ︷︷ ︸
=0

−ϕ(i− 1, t)

+
j

∑
x=i

f (x, t),

d
dt

j

∑
x=i

u(x, t) = −

ϕ(j, t)− ϕ(j− 1, t)︸ ︷︷ ︸
=∇x ϕ(j,t)

+ ϕ(j− 1, t)− ϕ(j− 2, t)︸ ︷︷ ︸
=∇x ϕ(j−1,t)

+ϕ(j− 2, t)− . . .

+ ϕ(i, t)− ϕ(i− 1, t)︸ ︷︷ ︸
=∇x ϕ(i,t)

+
j

∑
x=i

f (x, t),

j

∑
x=i

∂u(x, t)
∂t

= −
j

∑
x=i
∇x ϕ(x, t) +

j

∑
x=i

f (x, t)

and finally we get
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(5.3)
j

∑
x=i

[
∂u(x, t)

∂t
+∇x ϕ(x, t)− f (x, t)

]
= 0.

Because (5.3) has to be satisfied for all space segments then

(5.4)
∂u(x, t)

∂t
+∇x ϕ(x, t) = f (x, t)

holds. This is the conservation law in the local form.
The equality (5.4) is essentially the partial semidiscrete equation with two unknown functions

u(x, t) and ϕ(x, t). We have to add the relation between these functions. Then we get different
types of first-order semidiscrete equations.

We study the case of

ϕ(x, t) = F(x, t, u(x, t)) when F : R3 → R

that leads to the nonlinear semidiscrete transport equation

(5.5)
∂u(x, t)

∂t
+∇xF (x, t, u(x, t)) = f (x, t).

REMARK 5.1. Let us notice that the orientation of the space difference depends only on the definition of
the flux ϕ. If we define ϕ(i, t) as the flux between positions x = i− 1 and x = i we get the equation

∂u(x, t)
∂t

+ ∆xF (x, t, u(x, t)) = f (x, t).

REMARK 5.2. If the function F(x, t, u(x, t)) is given by

F(x, t, u(x, t)) = ku(x, t), k > 0,

then we get the linear equation which we study in Section 2.

5.2 Existence and Uniqueness for Initial-Boundary Value Problem

In this paragraph we search for some conditions that guarantee the existence or existence and
uniqueness of solution for nonlinear initial-boundary value problems. First, we need some aux-
iliary claims from the theory of ordinary differential equations. We refer to Kelley, Peterson [9]
for their further study.

Primarily we investigate the following ordinary initial value problem

(5.6)

{
u′(t) = g(t, u(t)), g : I ×Rn → Rn,
u(t0) = u0, u0 ∈ Rn,

when I ⊂ R is an interval. We state three theorems about the existence and uniqueness of solu-
tion of (5.6).

45



THEOREM 5.3 ([9], THEOREM 8.27). Assume t0 ∈ R, u0 ∈ Rn and let the function g(τ, ω) be con-
tinuous on the rectangle

(5.7) Q = {(τ, ω) ∈ R×Rn : |τ − t0| ≤ a, ‖ ω− u0 ‖≤ b} .

Then the initial value problem (5.6) possesses a solution u(x, t) on [t0 − α, t0 + α] where

(5.8) α = min
{

a,
b
M

}
and M = max

(τ,ω)∈Q
‖ g(τ, ω) ‖ .

REMARK 5.4. Theorem 5.3 is often called Cauchy–Peano theorem about local existence.

THEOREM 5.5 ([9], THEOREM 8.13). Let the function g(τ, ω) be continuous on the rectangle Q given
by (5.7) and let g(τ, ω) satisfy a uniform Lipschitz condition with respect to ω on Q, i.e. there exists some
constant L > 0 such that

‖ g(τ, ω1)− g(τ, ω2) ‖≤ L ‖ ω1 −ω2 ‖

holds for all (τ, ω1) ∈ Q, (τ, ω2) ∈ Q. Then the initial value problem (5.6) possesses a unique solution
u(x, t) on [t0 − α, t0 + α] where α is given by (5.8).

REMARK 5.6. Theorem 5.5 is often called Picard-Lindelöf theorem about local existence and uniqueness.

THEOREM 5.7 ([9], COROLLARY 8.64). Assume that h : [0,+∞) → (0,+∞) is continuous and
there is a v0 ∈ [0,+∞) such that

+∞∫
v0

ds
h(s)

= +∞.

Let the function g : [t0,+∞)×Rn → Rn be continuous and let

‖ g(τ, ω) ‖≤ h (‖ ω ‖)

hold for all (τ, ω) ∈ [t0,+∞)×Rn. Then for all u0 ∈ Rn with ‖ u0 ‖≤ v0 all solutions of (5.6) exist on
[t0,+∞).

Now we get back to semidiscrete equations. We study the global existence of the following
initial-boundary value problem

(5.9)


ut(x, t) +∇xF(x, t, u(x, t)) = f (x, t), x ∈ Z, x > xb, t ∈ (0,+∞) ,

u(x, 0) = φ(x), x ∈ Z, x > xb,
u(xb, t) = ξ(t), t ∈ [0,+∞) ,

for given functions F : R3 → R, f : R2 → R, φ : Z → R and ξ : [0,+∞) → R with ξ ∈
C ([0,+∞)) ∩ C1(0,+∞).
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REMARK 5.8. In the following text we always assume that ξ ∈ C ([0,+∞)) ∩ C1(0,+∞).

THEOREM 5.9. Let F(χ, τ, ω) be continuous for all χ ∈ Z, χ ≥ xb, on [0,+∞)×R and let f (χ, τ)

be continuous for all χ ∈ Z, χ ≥ xb, on [0,+∞). Assume that for all χ ∈ Z, χ ≥ xb, there exist
K = K(χ) > 0 and L = L(χ) > 0 such that for all τ ∈ [0,+∞) and ω ∈ R there is

|F(χ, τ, ω)| ≤ K(χ),

| f (χ, τ)| ≤ L(χ).

Then the initial-boundary value problem (5.9) possesses a solution u(x, t) for all x ∈ Z, x ≥ xb, and
t ∈ [0,+∞).

Proof. We prove the statement by induction on x ∈ Z, x ≥ xb.

1. For x = xb we put u(xb, t) = ξ(t).

2. Let us have a solution u(x, t) for all x ∈ Z, xb ≤ x < x, on [0,+∞). Then from (5.9) we get
for fixed x the following ordinary initial value problem

(5.10)

{
ut(x, t) = f (x, t) + F(x− 1, t, u(x− 1, t))− F(x, t, u(x, t)),
u(x, 0) = φ(x), φ(x) ∈ R,

where F(x − 1, t, u(x − 1, t)) is a given function of t from the induction hypothesis. From
continuity assumptions on F and f and from the fact that the composition of continuous
functions is also continuous we get that the right-hand side of differential equation in (5.10)
is continuous in t on [0,+∞).

• Theorem 5.3 gives us the existence of local solution u(x, t) on some small interval [0, δ],
δ > 0.

• Next, we can make the following estimate

| f (x, t) + F(x− 1, t, u(x− 1, t))− F(x, t, u(x, t))|

≤ | f (x, t)|+ |F(x− 1, t, u(x− 1, t))|+ |F(x, t, u(x, t))|

≤ L(x) + K(x− 1) + K(x) = H > 0.

Consequently, if we define h(s) = H and v0 = |φ(x)| then the assumptions of Theorem
5.7 are satisfied.

Finally, the local solution u(x, t) can be extended on the interval [0,+∞). 2

Theorem 5.9 guarantees only the existence of a global solution. If we want even uniqueness of
this solution we can use Theorem 5.5 from which the following assertion follows.
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THEOREM 5.10. Assume that the assumptions of Theorem 5.9 are satisfied. Moreover, let F(χ, τ, ω)

satisfy the uniform Lipschitz condition with respect to ω on [0,+∞) × R. Then the initial-boundary
value problem (5.9) possesses a unique solution u(x, t) for all x ∈ Z, x ≥ xb, and t ∈ [0,+∞).

Proof. The existence of a solution u(x, t) for all x ∈ Z, x ≥ xb, and t ∈ [0,+∞) is the direct
consequence of Theorem 5.9. Therefore, it remains to prove that u(x, t) is unique.

Suppose by contradiction that there is a t0 ∈ [0,+∞) such that there exist two distinct solu-
tions u1(x, t) and u2(x, t) for t ∈ [t0, t0 + ε], ε > 0, and u1(x, t) = u2(x, t) on [0, t0]. Let x ∈ Z,
x > xb, be the smallest one for which u1(x, t) and u2(x, t) are distinct. Denote ut0 = u1(x, t0).

For this x we have the following ordinary initial value problem

(5.11)

{
ut(x, t) = f (x, t) + F(x− 1, t, u(x− 1, t))− F(x, t, u(x, t)),
u(x, t0) = ut0 .

The right-hand side of equation in (5.11) is unique because F(x − 1, t, u(x − 1, t)) is unique by
definition of x. Further, the right-hand side satisfies the uniform Lipschitz condition with respect
to u and therefore, the assumptions of Theorem 5.5 are satisfied on [t0,+∞). From Theorem
5.5 we get that there exists unique solution u(x, t) on [t0, t0 + δ], δ > 0, but we assume there
are two distinct solutions u1(x, t) and u2(x, t) on [t0, t0 + ε]. Hence, we get a contradiction on
[t0, t0 + min{δ, ε}]. 2

We can study another type of semidiscrete equations. The following theorem gives us the
existence of solution for the problem

(5.12)


ut(x, t) + F(x, t,∇xu(x, t)) = f (x, t), x ∈ Z, x > xb, t ∈ (0,+∞) ,

u(x, 0) = φ(x), φ : Z→ R, x ∈ Z, x > xb,
u(xb, t) = ξ(t), ξ : [0,+∞)→ R.

when F : R3 → R and f : R2 → R.

THEOREM 5.11. Let F(χ, τ, ω) be continuous for all χ ∈ Z, χ ≥ xb, on [0,+∞)×R and let f (χ, τ)

be continuous for all χ ∈ Z, χ ≥ xb, on [0,+∞). Assume that for all χ ∈ Z, χ ≥ xb, there exist
K = K(χ) > 0 and L = L(χ) > 0 such that for all τ ∈ [0,+∞) and ω ∈ R there is

|F(χ, τ, ω)| ≤ K(χ),

| f (χ, τ)| ≤ L(χ).

Then the initial-boundary value problem (5.12) possesses a solution u(x, t) for all x ∈ Z, x ≥ xb, and
t ∈ [0,+∞).

Proof. The statement can be proved analogously as Theorem 5.9 with the help of Theorems 5.3
and 5.7. 2

We prove the uniqueness of solution for (5.12) from the maximum and minimum principles in
Subsection 5.4.4.
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5.3 Maximum and Minimum Principles

In this subsection we consider the initial-boundary value problem (5.9). We derive maximum
and minimum principles that are strong tools for differential and difference equations. We show
that on several applications. We prove these principles for upper and lower solutions.

DEFINITION 5.12. A classical solution of the following initial-boundary value problem with inequalities
vt(x, t) +∇xF(x, t, v(x, t)) ≤ f (x, t),

v(x, 0) ≤ φ(x),
v(xb, t) ≤ ξ(t)

is called the lower solution of (5.9). A classical solution of
wt(x, t) +∇xF(x, t, w(x, t)) ≥ f (x, t),

w(x, 0) ≥ φ(x),
w(xb, t) ≥ ξ(t)

is called the upper solution of (5.9).

We state an auxiliary lemma that helps us later to prove the maximum principle.

LEMMA 5.13. Let F : R3 → R satisfy

(F1) F(χ, τ, ω) is increasing in χ, i.e.

(5.13) for all χ1 < χ2 there is F(χ1, τ, ω) ≤ F(χ2, τ, ω),

(F2) F(χ, τ, ω) is strictly increasing in ω, i.e.

(5.14) for all ω1 < ω2 there is F(χ, τ, ω1) < F(χ, τ, ω2).

Then the following hold,

if F(χ1, τ, ω1) ≤ F(χ2, τ, ω2) then χ1 ≤ χ2 or ω1 ≤ ω2,(5.15)

if F(χ1, τ, ω1) < F(χ2, τ, ω2) then χ1 < χ2 or ω1 < ω2.(5.16)

Proof. We prove only (5.15). The proof of (5.16) is analogous. Let us suppose by contradiction
that

χ1 > χ2 and ω1 > ω2.

Then we have

F(χ2, τ, ω2)
(5.13)
≤ F(χ1, τ, ω2)

(5.14)
< F(χ1, τ, ω1),

a contradiction with the assumption of F(χ1, τ, ω1) ≤ F(χ2, τ, ω2). 2
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Now we prove fundamental assertions of this section, the maximum and minimum principles.

THEOREM 5.14. Let u(x, t) be a lower solution of (5.9) where F(χ, τ, ω) satisfies assumptions (F1) and
(F2) and f (χ, τ) = 0 identically. Then

u(x, t) ≤ sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)} .

holds for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞).

Proof. First, we denote

(5.17) M = sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)}

for the sake of brevity. We prove the theorem by contradiction. Let us assume that there exist
x0 ∈ Z, x0 ≥ xb and t0 ∈ [0,+∞) such that

(5.18) u(x0, t0) > M.

If x0 = xb or t0 = 0 then we have the contradiction with the definition (5.17) of M. Therefore,
we suppose that x0 > xb and t0 > 0.

Now we use the definition of lower solution and assumptions (5.18) and the fact that F(χ, τ, ω)

is strictly increasing in ω

(5.19)

ut(x0, t0) +∇xF(x0, t0, u(x0, t0)) ≤ 0,

ut(x0, t0) + F(x0, t0, u(x0, t0))︸ ︷︷ ︸
>F(x0,t0,M)

≤ F(x0 − 1, t0, u(x0 − 1, t0))

and thus,

(5.20) ut(x0, t0) < F(x0 − 1, t0, u(x0 − 1, t0))− F(x0, t0, M).

Now there are two possibilities.

1. If there is

F(x0 − 1, t0, u(x0 − 1, t0)) > F(x0, t0, M)

then from (5.16) in Lemma 5.13 and from the assumptions (F1) and (F2) we get

x0 − 1 > x0 or u(x0 − 1, t0) > M.

The first case does not occur. Then the second one,
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u(x0 − 1, t0) > M,

holds and we define

x1 = x0 − 1 and t1 = t0.

2. The second possibility is the case of

F(x0 − 1, t0, u(x0 − 1, t0)) ≤ F(x0, t0, M).

From (5.20) there is

ut(x0, t0) < 0.

Therefore, the function u(x0, t) is strictly decreasing in t = t0 and we can define

t0 = inf {τ = [0, t0] : u(x0, t) is strictly decreasing on the interval (τ, t0)} .

We know that

(5.21) u(x0, t0) > u(x0, t0) > M.

We have two possibilities again. If t0 = 0 then (5.21) leads to the contradiction with the
definition (5.17) of M via the initial condition φ(x). If t0 > 0 then there is necessarily

(5.22) ut(x0, t0) = 0

and from (5.19) we get

F(x0, t0, u(x0, t0)) ≤ F(x0 − 1, t0, u(x0 − 1, t0)).

Then the assertion (5.15) of Lemma 5.13 implies

x0 ≤ x0 − 1 or u(x0, t0) ≤ u(x0 − 1, t0).

The first inequality does not occur again and hence, we have

(5.23) u(x0, t0) ≤ u(x0 − 1, t0).

Inequalities (5.21) and (5.23) give us

M < u(x0, t0) < u(x0, t0) ≤ u(x0 − 1, t0).
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Consequently, in this case we define

x1 = x0 − 1 and t1 = t0.

We have u(x1, t1) > M. We continue iteratively in the same way. We observe that after at most
x0 − xb steps we get the contradiction with the definition (5.17) of M. 2

REMARK 5.15. The maximum principle holds even for a more general problem
ut(x, t) +∇xF(x, t, u(x, t)) + G(x, t, u(x, t)) ≤ f (x, t),

u(x, 0) ≤ φ(x),
u(xb, t) ≤ ξ(t)

when we consider the same assumptions as in Theorem 5.14 and moreover, G : R3 → R and f : R2 → R

satisfy

G(χ, τ, ω) ≥ 0,

f (χ, τ) ≤ 0

for all χ ∈ Z, χ ≥ xb, τ ∈ [0,+∞), ω ∈ R. This can be proved by a simple application of Theorem 5.14.

The minimum principle follows. We can prove it in the same way as the maximum principle
in Theorem 5.14.

THEOREM 5.16. Let u(x, t) be an upper solution of (5.9) where F(χ, τ, ω) satisfies

(F3) F(χ, τ, ω) is decreasing in χ,

(F4) F(χ, τ, ω) is strictly increasing in ω,

and f (χ, τ) = 0 identically. Then

inf
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)} ≤ u(x, t)

holds for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞).

Proof. The statement can be proved analogously as Theorem 5.14. 2

REMARK 5.17. Also the minimum principle holds even for a more general problem
ut(x, t) +∇xF(x, t, u(x, t)) + G(x, t, u(x, t)) ≥ f (x, t),

u(x, 0) ≥ φ(x),
u(xb, t) ≥ ξ(t)

when we consider the same assumptions as in Theorem 5.16 and moreover, G : R3 → R and f : R2 → R

satisfy
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G(χ, τ, ω) ≤ 0,

f (χ, τ) ≥ 0

for all χ ∈ Z, χ ≥ xb, τ ∈ [0,+∞), ω ∈ R. We can prove it by a simple application of Theorem 5.16.

Assumptions on G(χ, τ, ω) and f (χ, τ) from Remark 5.15 and Remark 5.17 can be satisfied to-
gether, i.e. maximum and minimum principles can hold together, only if G(χ, τ, ω) = 0 and
f (χ, τ) = 0 identically.

5.4 Applications of Maximum and Minimum Principles

In next paragraphs we study basic applications of maximum and minimum principles presented
in Theorems 5.14 and 5.16.

5.4.1 Sign Preservation

PROPOSITION 5.18. Let u(x, t) be an upper solution of (5.9) where F(χ, τ, ω) satisfies assumptions
(F3) and (F4), f (χ, τ) = 0 identically and

φ(x) ≥ 0,

ξ(t) ≥ 0.

Then there is

u(x, t) ≥ 0

for all x > xb, x ∈ Z, and for all t ∈ [0,+∞).

Proof. The statement is the direct consequence of Theorem 5.16. 2

5.4.2 Boundedness of Solution

We want to use the maximum and minimum principles together. Hence, we have to satisfy the
assumptions of Theorem 5.14 and Theorem 5.16. The difference between these assumptions is in
the monotonicity of the function F(χ, τ, ω) in the variable χ and in inequalities in the definition
of lower and upper solution. Therefore, we consider the following problem

(5.24)


ut(x, t) +∇xF(t, u(x, t)) = 0, x ∈ Z, x > xb, t ∈ (0,+∞) ,

u(x, 0) = φ(x), φ : Z→ R, x ∈ Z, x > xb,
u(xb, t) = ξ(t), ξ : [0,+∞)→ R,

for F : R2 → R.
Now we can state the result about the boundedness of solution of (5.24).
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THEOREM 5.19. Let u(x, t) be a solution of (5.24) when the function F(τ, ω) is strictly increasing in the
second variable and initial-boundary conditions φ(x) and ξ(t) are bounded. Then u(x, t) is also bounded
and for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞) there is

inf
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)} ≤ u(x, t) ≤ sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)} .

Proof. The statement is the direct consequence of Theorem 5.14 and Theorem 5.16. 2

EXAMPLE 5.20. Let us consider the function

F(χ, τ, ω) = arctan ω

and let

φ(x) ≥ 0 be bounded,

ξ(t) ≥ 0 be bounded.

Hence, F(χ, τ, ω) is continuous, bounded, strictly increasing in ω and satisfies the uniform Lips-
chitz condition with respect to ω.

Then the assumptions of Theorem 5.10, Proposition 5.18 and Theorem 5.19 are satisfied. Thus,
there exists a unique global solution u(x, t) of (5.9). Furthermore, u(x, t) is nonnegative and
bounded. �

EXAMPLE 5.21. Consider the function

F(χ, τ, ω) = F(ω) =


−1, ω < −1,
− 3
√
−ω, −1 ≤ ω < 0,

3
√

ω, 0 ≤ ω < 1,
1, 1 < ω,

and let

φ(x) ≥ 0 be bounded,

ξ(t) ≥ 0 be bounded.

In this case F(χ, τ, ω) is continuous, bounded, strictly increasing in ω but it does not satisfy the
Lipschitz condition. Thus, from Theorem 5.9 there exists a global solution u(x, t) of (5.9) which
is nonnegative and bounded but we lose the guarantee of uniqueness. �

5.4.3 Approximation of Solution

In this paragraph we consider the initial-boundary value problem (5.12). We investigate the
possibility of approximation of solution. For this case we have to derive special maximum and
minimum principles. Let us suppose the following nonlinear initial-boundary value problem
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(5.25)


ut(x, t) + k(x, t)∇xF(u(x, t)) = f (x, t), x ∈ Z, x > xb, t ∈ (0,+∞) ,

u(x, 0) = φ(x), φ : Z→ R, x ∈ Z, x > xb,
u(xb, t) = ξ(t), ξ : [0,+∞)→ R,

when k, f : R2 → R and F : R → R. Primarily we state the maximum and minimum principles
for (5.25) analogously as above.

THEOREM 5.22. Consider the problem (5.25) where F(ω) is increasing on R, f (χ, τ) = 0 identically
and

k(χ, τ) ≥ 0.

1. If u(x, t) is a lower solution then

u(x, t) ≤ sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)} .

for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞).

2. If u(x, t) is an upper solution then

inf
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ(x), ξ(t)} ≤ u(x, t)

for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞).

REMARK 5.23. The lower and upper solutions are defined analogously as in Definition 5.12.

Proof. The statement can be proved analogously as Theorems 5.14 and 5.16. 2

And now the approximation theorem follows.

THEOREM 5.24. Let u(x, t) be a classical solution of (5.12) where the partial derivative Fω(χ, τ, ω) is
continuous and

Fω(χ, τ, ω) ≥ 0.

Let v(x, t) be a lower solution and w(x, t) be an upper solution. Then

v(x, t) ≤ u(x, t) ≤ w(x, t)

is satisfied for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞).
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Proof. We prove the statement with help of the minimum principle from Theorem 5.22. We
define two auxiliary functions

v(x, t) = u(x, t)− v(x, t) and w(x, t) = w(x, t)− u(x, t)

and we investigate their sign.

1. First, we study the function v(x, t). Because v(x, t) is the lower solution we get for all x ∈ Z,
x ≥ xb and for all t ∈ [0,+∞)

0 ≤ ut(x, t) + F(x, t,∇xu(x, t))− vt(x, t)− F(x, t,∇xv(x, t)).

Thanks to the assumptions on F we can use the mean value theorem and we can continue
with our estimate,

0 ≤ ut(x, t) + F(x, t,∇xu(x, t))− vt(x, t)− F(x, t,∇xv(x, t))

= (u(x, t)− v(x, t))t + Fω(x, t, θ) [∇xu(x, t)−∇xv(x, t)]

= vt(x, t) + Fω(x, t, θ)∇xv(x, t).

For initial and boundary conditions we have

v(x, 0) = u(x, 0)︸ ︷︷ ︸
=φ(x)

− v(x, 0)︸ ︷︷ ︸
≤φ(x)

≥ 0,

v(xb, t) = u(xb, t)︸ ︷︷ ︸
=ξ(t)

− v(xb, t)︸ ︷︷ ︸
≤ξ(t)

≥ 0.

Thus, v(x, t) satisfies assumptions of Theorem 5.22 which implies

v(x, t) ≥ 0, i.e. v(x, t) ≤ u(x, t).

2. For the function w(x, t) it is similar. The function w(x, t) is the upper solution and therefore,
for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞) we have

0 ≤ wt(x, t) + F(x, t,∇xw(x, t))− ut(x, t)− F(x, t,∇xu(x, t))

= (w(x, t)− u(x, t))t + Fω(x, t, θ) [∇xw(x, t)−∇xu(x, t)]

= wt(x, t) + Fω(x, t, θ)∇xw(x, t).

Initial and boundary conditions are
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w(x, 0) = w(x, 0)︸ ︷︷ ︸
≥φ(x)

− u(x, 0)︸ ︷︷ ︸
=φ(x)

≥ 0,

w(xb, t) = w(xb, t)︸ ︷︷ ︸
≥ξ(t)

− u(xb, t)︸ ︷︷ ︸
=ξ(t)

≥ 0.

Theorem 5.22 gives

w(x, t) ≥ 0, i.e. u(x, t) ≤ w(x, t).

Hence, we get

v(x, t) ≤ u(x, t) ≤ w(x, t)

for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞). 2

REMARK 5.25. If we assume that for all χ ∈ Z, χ ≥ xb, and for all τ ∈ [0,+∞) there exits L =

L(χ, τ) > 0 such that for all ω1, ω2 ∈ R there is

F(χ, τ, ω1)− F(χ, τ, ω2) ≤ L(ω1 −ω2)

instead of assumptions on F in Theorem 5.24 then the statement also holds.

5.4.4 Uniqueness of Solution

THEOREM 5.26. Consider the problem (5.12) where F(χ, τ, ω) is continuous, Fω(χ, τ, ω) is continuous
and

Fω(χ, τ, ω) ≥ 0.

Assume that for all χ ∈ Z, χ ≥ xb, there exist K = K(χ) > 0 and L = L(χ) > 0 such that for all
τ ∈ [0,+∞) and ω ∈ R there is

|F(χ, τ, ω)| ≤ K(χ),

| f (χ, τ)| ≤ L(χ).

Then (5.12) possesses a unique classical solution.

Proof. The existence of a solution is the direct consequence of Theorem 5.11. It remains to prove
the uniqueness.

Let us assume there exist two distinct solutions u1(x, t) and u2(x, t). Then u1(x, t) and u2(x, t)
are both also lower and upper solutions. Then from Theorem 5.24 we get

u1(x, t) ≤ u2(x, t) and u2(x, t) ≤ u1(x, t)

and consequently, there is u1(x, t) = u2(x, t) which is the contradiction. 2
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We illustrate Theorems 5.24 and 5.26 with a simple example.

EXAMPLE 5.27. Let us consider the continuous function

F(χ, τ, ω) = arctan ω.

again. Then there is

Fω(χ, τ, ω) =
1

1 + ω2 ≥ 0

and continuous. Therefore, F(χ, τ, ω) satisfies assumptions of Theorems 5.24 and 5.26 and then
there exists a unique solution of (5.12). �

5.4.5 Approximation and Uniqueness of Solution for Linear Equation

If we use the maximum principle from Theorem 5.14 we can also prove approximation and
uniqueness results for the following linear initial-boundary value problem

(5.26)
ut(x, t) +∇x [k(x, t)u(x, t)] = f (x, t), x ∈ Z, x > xb, t ∈ (0,+∞) , k, f : R2 → R,

u(x, 0) = φ(x), φ : Z→ R, x ∈ Z, x > xb,
u(xb, t) = ξ(t), ξ : [0,+∞)→ R.

THEOREM 5.28. Let k(χ, τ) be monotone in the variable χ. Let u(x, t) be a classical solution of (5.26)
and let v(x, t) be a lower solution and w(x, t) an upper solution. Then

v(x, t) ≤ u(x, t) ≤ w(x, t)

holds for all x ∈ Z, x ≥ xb and for all t ∈ [0,+∞).

Proof. We can prove the statement analogously as Theorem 5.24. 2

THEOREM 5.29. Let k(χ, τ) be monotone in χ. Then the problem (5.26) possesses at most one classical
solution.

Proof. We need to prove only the uniqueness. We can prove it analogously as Theorem 5.26. 2

5.4.6 Uniform Stability for Linear Equation

We suppose in this paragraph the following linear initial-boundary value problem

(5.27)


ut(x, t) +∇x [c(t)u(x, t)] = 0, x ∈ Z, x > xb, t ∈ (0,+∞) , c : R→ R,

u(x, 0) = φ(x), φ : Z→ R, x ∈ Z, x > xb,
u(xb, t) = ξ(t), ξ : [0,+∞)→ R.

We ask what happens with the solution u(x, t) if we change the initial-boundary conditions φ(x)
and ξ(t).
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THEOREM 5.30. Let u1(x, t) be a classical solution of (5.27) with the initial condition φ1(x) and with
the boundary condition ξ1(t). Let u2(x, t) be a classical solution of (5.27) with the initial condition φ2(x)
and with the boundary condition ξ2(t). Then

(5.28) sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

|u1(x, t)− u2(x, t)| ≤ sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{|φ1(x)− φ2(x)| , |ξ1(t)− ξ2(t)|}

holds.

Proof. Let us suppose the function v(x, t) defined by

v(x, t) = u1(x, t)− u2(x, t).

Then v(x, t) solves the problem (5.27) with the initial condition φ1(x)−φ2(x) and with the bound-
ary condition ξ1(t)− ξ2(t).

Assumptions of the maximum principle in Theorem 5.14 are satisfied and hence, we get

(5.29)

u1(x, t)− u2(x, t) = v(x, t) ≤ sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ1(x)− φ2(x), ξ1(t)− ξ2(t)}

≤ sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|} .

Similarly, assumptions of the minimum principle in Theorem 5.16 are satisfied. Therefore,
there is

(5.30)

u1(x, t)− u2(x, t) = v(x, t) ≥ inf
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{φ1(x)− φ2(x), ξ1(t)− ξ2(t)}

≥ − sup
x ∈ Z, x ≥ xb

t ∈ [0,+∞)

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|} .

Inequalities in (5.29) and (5.30) give us (5.28). 2

COROLLARY 5.31. Let {un(x, t)}+∞
n=1 be a sequence of solutions un(x, t) of (5.27) with the initial con-

dition φn(x) and with the boundary condition ξn(t). Assume that

φn(x)→ φ(x) for x ∈ Z, x ≥ xb and ξn(t)⇒ ξ(t) for t ∈ [0,+∞)

and assume that u(x, t) is a solution of (5.27) with the initial condition φ(x) and with the boundary
condition ξ(t). Then

un(x, t)⇒ u(x, t) for x ∈ Z, x ≥ xb and t ∈ [0,+∞) .

Proof. The statement follows directly from Theorem 5.30. 2
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5.5 Existence and Uniqueness for Initial Value Problem

In previous subsections we solved initial-boundary value problems with the left-boundary con-
dition. In this paragraph we deal with the initial value problem

(5.31)

{
ut(x, t) +∇xF(t, u(x, t)) = 0, x ∈ Z, t ∈ (0,+∞) ,
u(x, 0) = φ(x), x ∈ Z,

when F : R2 → R and φ : Z→ R.
We solve the existence and uniqueness of the classical solution of (5.31). We use the contrac-

tion principle to prove it.

THEOREM 5.32 ([4], VĚTA 3.1). LetM be a complete metric space with a metric d and T :M→M
be an operator. If T is a contraction, i.e. there exists α ∈ (0, 1) such that for all v, w ∈ M

d(T(v), T(w)) ≤ αd(v, w)

then there exists exactly one v0 ∈ M such that

v0 = T(v0).

REMARK 5.33. Moreover, one can show that

v0 = lim
n→+∞

vn

when the sequence {vn}+∞
n=1 is given recursively

vn+1 = T(vn),

v1 ∈ M is arbitrary. The point v0 ∈ M is called fixed point of T.

First, we have to define our operator for the application of the contraction principle. Hence, let
us consider the equation in (5.31)

ut(x, t) +∇xF(t, u(x, t)) = 0.

We integrate this equation with respect to the second variable

u(x, t)− u(x, 0)︸ ︷︷ ︸
=φ(x)

+

t∫
0

∇xF(τ, u(x, τ))dτ = 0.

After the application of the initial condition we have the following fixed point problem

u(x, t) = φ(x)−
t∫

0

∇xF(τ, u(x, τ))dτ.

It motivates us to define our operator T as follows
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(5.32) T(u)(x, t) = φ(x)−
t∫

0

∇xF(τ, u(x, τ))dτ.

Second, we have to specify our complete metric spaceM. Let us denote D = Z× [0, δ] for
some δ > 0 and defineM as

(5.33)
M = {v, v : D → R, vt(x, t) is continuous in t ∈ [0, δ] for all x ∈ Z,

v(x, t) is bounded on D,
vt(x, t) is bounded on D} .

Now, we have to check thatM is the complete metric space.

REMARK 5.34. We prove even more. We prove thatM is Banach space, i.e. normed linear space which
is complete with respect to its norm ‖ · ‖M.

LEMMA 5.35. Define for all v ∈ M

(5.34) ‖ v ‖M= sup
(x,t)∈D

|v(x, t)|+ sup
(x,t)∈D

|vt(x, t)|.

Then (M, ‖ · ‖M) is a normed linear space.

REMARK 5.36. For the sake of brevity we denote ‖ · ‖M only by ‖ · ‖.

Proof. The linearity is clear becauseM is the set of functions. It remains to prove that ‖ · ‖ is the
norm. From (5.34) and from the boundedness of v(x, t) and vt(x, t) on D we directly get that for
all v ∈ M there is ‖ v ‖∈ [0,+∞). Now we verify properties of norm.

1. If we assume ‖ v ‖= 0, i.e.

sup
(x,t)∈D

|v(x, t)|+ sup
(x,t)∈D

|vt(x, t)| = 0,

then there is necessarily

sup
(x,t)∈D

|v(x, t)| = 0 and sup
(x,t)∈D

|vt(x, t)| = 0

which implies v(x, t) = 0 identically. On the other hand, if we assume v(x, t) = 0 identically
then from (5.34) there is ‖ v ‖= 0.

2. Let λ ∈ R and v ∈ M be arbitrary. Then we get

‖ λv ‖ = sup
(x,t)∈D

|λv(x, t)|+ sup
(x,t)∈D

|λvt(x, t)|

= |λ| sup
(x,t)∈D

|v(x, t)|+ |λ| sup
(x,t)∈D

|vt(x, t)| = |λ| ‖ v ‖ .
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3. Let v, w ∈ M be arbitrary. Then with the help of triangle inequality for | · | and properties
of the supremum there is

‖ v + w ‖ = sup
(x,t)∈D

|v(x, t) + w(x, t)|+ sup
(x,t)∈D

|vt(x, t) + wt(x, t)|

≤ sup
(x,t)∈D

(|v(x, t)|+ |w(x, t)|) + sup
(x,t)∈D

(|vt(x, t)|+ |wt(x, t)|)

≤ sup
(x,t)∈D

|v(x, t)|+ sup
(x,t)∈D

|w(x, t)|+ sup
(x,t)∈D

|vt(x, t)|+ sup
(x,t)∈D

|wt(x, t)|

= ‖ v ‖ + ‖ w ‖ .

Therefore, ‖ · ‖ is a norm and (M, ‖ · ‖) is a normed linear space. 2

Now we deal with the completeness ofM. For this study we need some auxiliary assertions.

PROPOSITION 5.37 ([12], VĚTA 1.4). The function sequence { fn(t)}+∞
n=1 converges uniformly on M

to the limit function f (t) if and only if for all ε > 0 there exits n0 ∈ N such that for all m, n > n0 and
for all t ∈ M there is

| fm(t)− fn(t)| < ε.

REMARK 5.38. Proposition 5.37 is often called Bolzano–Cauchy criterion of the uniform convergence.

PROPOSITION 5.39 ([6], VĚTA 17.1). Let { fn(t)}+∞
n=1 be a sequence of continuous functions on arbi-

trary interval I ⊆ R that converges uniformly on I to the limit function f (t). Then f (t) is continuous on
I.

PROPOSITION 5.40 ([6], VĚTA 17.1). Let { fn(t)}+∞
n=1 be a sequence of differentiable functions on an

arbitrary closed interval I = [a, b] ⊆ R that converges on I to the limit function f (t). If the func-
tion sequence { f ′n(t)}

+∞
n=1 converges uniformly on I then the limit function f (t) is differentiable and the

following holds

f ′(t) =
[

lim
n→+∞

fn(t)
]′

= lim
n→+∞

f ′n(t).

Now we are prepared to prove the completeness ofM.

LEMMA 5.41. The normed linear space (M, ‖ · ‖) is complete with respect to its norm.

Proof. We have to prove that every Cauchy sequence {vn}+∞
n=1 (we denote it only by {vn} in the

following text) in (M, ‖ · ‖) is convergent in (M, ‖ · ‖).
Let {vn} ⊆ M be a Cauchy sequence. Then for all ε > 0 there exits n0 ∈ N such that for all

m, n > n0 there is
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‖ vm − vn ‖< ε,

i.e.

(5.35) sup
(x,t)∈D

|vm(x, t)− vn(x, t)|+ sup
(x,t)∈D

|(vm)t(x, t)− (vn)t(x, t)| < ε.

The relation (5.35) implies that for all ε > 0 there exits n0 ∈ N such that for all m, n > n0 the
following holds

sup
(x,t)∈D

|vm(x, t)− vn(x, t)| < ε,(5.36)

sup
(x,t)∈D

|(vm)t(x, t)− (vn)t(x, t)| < ε.(5.37)

Finally, supremums in (5.36) and (5.37) give us that for all ε > 0 there exits n0 ∈ N such that for
all m, n > n0 and for all (x, t) ∈ D there is

|vm(x, t)− vn(x, t)| < ε,(5.38)

|(vm)t(x, t)− (vn)t(x, t)| < ε.(5.39)

Now from Bolzano–Cauchy criterion of the uniform convergence (Proposition 5.37) we get that
for all fixed x ∈ Z both function sequences {vn(x, t)} and {(vn)t(x, t)} converge uniformly to
their limit functions, t ∈ [0, δ], i.e.

vn(x, t)⇒ v(x, t), v(x, t) = lim
n→+∞

vn(x, t),

(vn)t(x, t)⇒ w(x, t), w(x, t) = lim
n→+∞

(vn)t(x, t).

From Proposition 5.40 we directly get that there is w(x, t) = vt(x, t), i.e.

(5.40) (vn)t(x, t)⇒ vt(x, t), t ∈ [0, δ].

Now we make the limit transition for m → +∞ in relations (5.38) and (5.39) and then for all
ε > 0 there exits n0 ∈N such that for all n > n0 and for all (x, t) ∈ D there is

|vn(x, t)− v(x, t)| ≤ ε,(5.41)

|(vn)t(x, t)− vt(x, t)| ≤ ε.(5.42)

At this moment it suffices to verify that v : D → R satisfies v ∈ M and that {vn} ⊆ M
converges to v in the norm ‖ · ‖.
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1. Functions (vn)t are continuous in the variable t on [0, δ] because vn ∈ M. From (5.40) and
from Proposition 5.39 we immediately have that the limit function vt is also continuous on
[0, δ].

Let ε > 0 be arbitrary and fixed. Then there exists n0 ∈ N such that for all n > n0 and for
all (x, t) ∈ D there is

|v(x, t)| = |v(x, t)− vn0+1(x, t) + vn0+1(x, t)|

≤ |v(x, t)− vn0+1(x, t)|︸ ︷︷ ︸
(5.41)
≤ε

+ |vn0+1(x, t)|︸ ︷︷ ︸
≤Kn0+1

≤ ε + Kn0+1

because vn0+1 ∈ M, i.e. vn0+1(x, t) is bounded on D. Therefore, v(x, t) is also bounded on
D.

Analogously we get

|vt(x, t)| = |vt(x, t)− (vn0+1)t(x, t) + (vn0+1)t(x, t)|

≤ |vt(x, t)− (vn0+1)t(x, t)|︸ ︷︷ ︸
(5.42)
≤ε

+ |(vn0+1)t(x, t)|︸ ︷︷ ︸
≤K̃n0+1

≤ ε + K̃n0+1.

Thus, vt(x, t) is also bounded on D and hence, v ∈ M.

2. It remains to prove that {vn} converges to v ∈ M in the norm ‖ · ‖. But it follows directly
from (5.41) and (5.42) that for all ε > 0 there exist n0 ∈N such that for all n > n0 there is

‖ vn − v ‖ = sup
(x,t)∈D

|vn(x, t)− v(x, t)|︸ ︷︷ ︸
(5.41)
≤ε

+ sup
(x,t)∈D

|(vn)t(x, t)− vt(x, t)|︸ ︷︷ ︸
(5.42)
≤ε

≤ 2ε

which implies that {vn} converges to v ∈ M in the space (M, ‖ · ‖).

We have shown that every Cauchy sequence in (M, ‖ · ‖) is convergent in (M, ‖ · ‖) and
consequently, the space (M, ‖ · ‖) is complete. 2

THEOREM 5.42. Space (M, ‖ · ‖) is a Banach space.

Proof. The statement is the direct consequence of Lemma 5.35 and Lemma 5.41. 2

Now we have our complete space and we can go back to our operator T defined by (5.32). We
have to prove that T maps intoM and that T is the contraction. We have to place some additional
assumptions on functions φ and F from (5.31).
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LEMMA 5.43. Assume that

(A1) the function φ : Z → R is bounded, i.e. there exits K1 ≥ 0 such that for all x ∈ Z there is
|φ(x)| ≤ K1,

(A2) the function F : R2 → R is continuous on [0, δ]×R,

(A3) the function F : R2 → R satisfies the Lipschitz condition in the second variable, i.e. there exists
L > 0 such that for all τ ∈ [0, δ] and for all ω1, ω2 ∈ R there is |F(τ, ω1)− F(τ, ω2)| ≤ L|ω1 −
ω2|.

Then for all v ∈ M there is T(v) ∈ M.

Proof. Let v ∈ M be arbitrary. First, we observe that v(x, t) is bounded on D, i.e. there exists
K2 ≥ 0 such that for all (x, t) ∈ D there is

(5.43) |v(x, t)| ≤ K2.

Now we check that T(v) ∈ M holds.

1. Let us suppose the partial derivative in t of the function T(v)(x, t). Then we have

(5.44)
T(v)t(x, t) =

∂

∂t

φ(x)−
t∫

0

∇xF(τ, v(x, τ))dτ


= −F(t, v(x, t)) + F(t, v(x− 1, t))

for all x ∈ Z. The assumption (A2) implies that T(v)t(x, ·) is continuous on [0, δ] because it
is composition of continuous functions v and F (see e.g. Drábek, Míka [5]).

2. For all (x, t) ∈ D the following holds
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|T(v)(x, t)| =

∣∣∣∣∣∣φ(x)−
t∫

0

∇xF(τ, v(x, τ))dτ

∣∣∣∣∣∣
≤ |φ(x)|+

∣∣∣∣∣∣
t∫

0

∇xF(τ, v(x, τ))dτ

∣∣∣∣∣∣
≤ |φ(x)|+

t∫
0

|F(τ, v(x, τ))− F(τ, v(x− 1, τ))|dτ

(A3)
≤ |φ(x)|+

t∫
0

L |v(x, τ)− v(x− 1, τ)|dτ

≤ |φ(x)|+ L
t∫

0

|v(x, τ)|dτ + L
t∫

0

|v(x− 1, τ)|dτ

(A1),(5.43)
≤ K1 + 2LK2

t∫
0

dτ = K1 + 2tLK2 ≤ K1 + 2δLK2.

Therefore, the function T(v)(x, t) is bounded on D.

3. For all (x, t) ∈ D the following holds

|T(v)t(x, t)| (5.44)
= |F(t, v(x− 1, t))− F(t, v(x, t))|

(A3)
≤ L |v(x− 1, t)− v(x, t)|

≤ L |v(x− 1, t)|+ L |v(x, t)|

(5.43)
≤ 2LK2,

i.e. the function T(v)t(x, t) is also bounded on D.

Consequently, for all v ∈ M there is T(v) ∈ M. 2

THEOREM 5.44. Let the assumptions (A1), (A2), (A3) be satisfied. Then for all v, w ∈ M the following
holds

‖ T(v)− T(w) ‖≤ 2L(1 + δ) ‖ v− w ‖ .

REMARK 5.45. The statement implies when we can choose δ > 0 so small that the constant 2L(1+ δ) <

1, i.e. 0 < δ < 1
2L − 1, that T is the contraction. It is easy to see that we can put 0 < δ < 1

2L − 1 only if
L < 1

2 .
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Proof. Let v, w ∈ M be arbitrary. Then the following estimate holds

‖ T(v)− T(w) ‖ = sup
(x,t)∈D

|T(v)(x, t)− T(w)(x, t)|+ sup
(x,t)∈D

|T(v)t(x, t)− T(w)t(x, t)|

(5.32),(5.44)
= sup

(x,t)∈D

∣∣∣∣∣∣φ(x)−
t∫

0

∇xF(τ, v(x, τ))dτ − φ(x) +
t∫

0

∇xF(τ, w(x, τ))dτ

∣∣∣∣∣∣
+ sup

(x,t)∈D
|−∇xF(t, v(x, t)) +∇xF(t, w(x, t))|

≤ sup
(x,t)∈D

t∫
0

|F(τ, v(x, τ))− F(τ, w(x, τ))|dτ

+ sup
(x,t)∈D

t∫
0

|F(τ, v(x− 1, τ))− F(τ, w(x− 1, τ))|dτ

+ sup
(x,t)∈D

|F(t, v(x, t))− F(t, w(x, t)|

+ sup
(x,t)∈D

|F(t, v(x− 1, t))− F(t, w(x− 1, t)|

(A3)
≤ δL sup

(x,t)∈D
|v(x, t)− w(x, t)|+ δL sup

(x,t)∈D
|v(x− 1, t)− w(x− 1, t)|

+L sup
(x,t)∈D

|v(x, t)− w(x, t)|+ L sup
(x,t)∈D

|v(x− 1, t)− w(x− 1, t)|

≤ 2(1 + δ)L sup
(x,t)∈D

|v(x, t)− w(x, t)| ≤ 2(1 + δ)L ‖ v− w ‖ .

2

THEOREM 5.46. Let the assumptions (A1), (A2), (A3) be satisfied with L < 1
2 and let 0 < δ < 1

2L − 1.
Then in the space (M, ‖ · ‖) there exists exactly one classical solution of the initial value problem (5.31)
on D.

REMARK 5.47. Theorem 5.46 gives us exactly one bounded classical solution of (5.31) with bounded
partial derivative in t on D.

Proof. From Theorem 5.42 we know that (M, ‖ · ‖) is a Banach space. From Theorem 5.44 we
know that the operator T : M → M is the contraction. Then by the contraction principle in
Theorem 5.32 there exists exactly one fixed point of T inM that is the classical solution of (5.31).

2
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EXAMPLE 5.48. Let the function F : R→ R be given by

F(ω) =
1

2 + θ
arctan ω

for arbitrarily small θ > 0. Then F is continuous on R and for the derivative of F

F′(ω) =
1

(2 + θ)(1 + ω2)
≤ 1

2 + θ
= L <

1
2

holds. From the mean value theorem we get that for all ω1, ω2 ∈ R there exists ξ, ξ̃ ∈ R such that

F(ω1)− F(ω2) = F′(ξ)(ω1 −ω2) ≤ L(ω1 −ω2) ≤ L|ω1 −ω2|,

F(ω2)− F(ω1) = F′(ξ̃)(ω2 −ω1) ≤ L(ω2 −ω1) ≤ L|ω1 −ω2|

and consequently, there is

|F(ω1)− F(ω2)| ≤ L|ω1 −ω2|

for all ω1, ω2 ∈ R. Therefore, if we put δ < θ
2 and φ : Z → R bounded then we satisfy all

assuptions (A1), (A2), (A3) and T is the contraction. Then, from Theorem 5.46 the initial value
problem {

ut(x, t) + 1
2+θ∇x arctan (u(x, t)) = 0,

u(x, 0) = φ(x)

has exactly one bounded classical solution with bounded partial derivative in t on [0, δ]×R. �

EXAMPLE 5.49. If we assume the function F : R→ R given by

F(ω) =
1

2 + θ
sin ω

for arbitrarily small θ > 0 then we can use the same procedure as in Example 5.48. We get that
for δ < θ

2 and φ : Z→ R bounded the initial value problem{
ut(x, t) + 1

2+θ∇x sin (u(x, t)) = 0,
u(x, 0) = φ(x)

has exactly one bounded classical solution with bounded partial derivative in t on [0, δ]×R. �
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Conclusion

We have answered several questions from the theory of semidiscrete equations. The summary
of results from Chapters 2-4 about linear equations (solution, uniqueness, preservation laws,
periodicity) has been presented in Subsection 4.5. We repeat the summary for the review.

(PDE) (DS) (DT) (DE)

Explicit solution X(Th. 1.1) X† (Th. 2.1) X(Th. 3.1) X∗ (Th. 4.5)
Uniqueness X(Th. 1.3) ? X(Th. 3.2) X∗ (Th. 4.9)

Sign preservation X(Th. 1.1) X† (Prop. 2.6) × (Ex. 3.13) X∗† (Prop. 4.11)
Integral preservation in x X(Th. 1.6) X∗† (Th. 2.7) X† (Th. 3.9) X∗ (Th. 4.12)
Integral preservation in t X† (Th. 1.7) X∗† (Th. 2.8) ? X∗† (Th. 4.13)

Stochastic process X∗ X∗† × X∗†

Periodicity in x X(Th. 1.1) ? X(Th. 3.8) ?

Table 2: Properties summary of linear transport equations.

For nonlinear equations with discrete space and continuous time we have proved the exis-
tence or existence and uniqueness of solution of initial-boundary value problem and we have
shown some maximum and minimum principles with their applications. Finally, we have stud-
ied the existence of solution for initial value problem.

But there are still many open questions. Let us mention some of them.

1. linear semidiscrete transport equations with nonconstant coefficients,

2. transport equations on general domains with time scale structure (see e.g. Bohner, Peterson
[1]),

3. open questions for linear transport equation with discrete time and continuous space:

• For this structure we do not have the sign preservation in general. Is there some initial
condition for which the sign is preserved?

• Can we solve this problem with weaker assumptions on the initial condition φ? We
have needed φ ∈ C∞(R).

4. open questions for nonlinear transport equation with discrete space and continuous time:

• Can we generalize applications of maximum and minimum principle (approximation,
uniqueness, uniform stability) to nonlinear problems?

• Is there another maximum principle with distinct or weaker assumptions?

• Can we prove the uniqueness of solution for initial-boundary value problem (5.9) from
the maximum principle, i.e. without fulfillment of Lipschitz condition?

• We can try to find better estimates in the proof of existence and uniqueness result for
the nonlinear initial value problem.

5. nonlinear semidiscrete transport equations with discrete time and continuous space.
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