
Adaptive Streaming and Rendering of Large Terrains:
A Generic Solution

Raphaël Lerbour
THOMSON R&D France

raphael.lerbour@thomson.net

Jean-Eudes Marvie
THOMSON R&D France

jean-eudes.marvie@thomson.net

Pascal Gautron
THOMSON R&D France

pascal.gautron@thomson.net

ABSTRACT
We describe a generic solution for remote adaptive streaming and rendering of large terrains. The challenge is to
ensure a fast rendering and a rapidly improving quality with any user interaction, network capacity and rendering
system performance. We adapt to these constraints so loading and rendering speeds do not depend on the size of
the database. We can thus use any database with any client device. Our solution relies on a generic data structure to
adaptively handle data from the server hard disk to the client rendering system. The same methods apply whatever
is done with these data: only the data themselves and the rendering system vary. We base our data structure
on existing solutions with good properties and add new methods to handle it more efficiently. In particular we
avoid loading irrelevant or redundant data and we request the most important data first. We also avoid costly data
structure operations as much as possible, in favor of “in-place” data updates and selection using sample masks.

Keywords
Planetary terrain, adaptive rendering, adaptive streaming, generic data structure, level of detail.

1 INTRODUCTION
Remote adaptive streaming and rendering of large ter-
rains can be used, for instance, to visualize the Earth in
3D with great detail while loading required data over
the Internet. The challenge is to ensure a fast rendering
with a rapidly improving quality on any client device
when a user moves freely over the terrain. Figure 1
presents the result with two example databases.
The terrain surface is uniformly discretized into 2D
maps of digital samples. They are usually elevation
maps used to reconstruct the relief in 3D along with
color maps like photographs. Those maps are huge: a
map of the Earth with a precision of 500 meters be-
tween samples is over 10 gigabytes. In most cases, such
a large amount of data can neither entirely be loaded in
memory nor interactively rendered. We thus need to use
specifically designed data structures and algorithms.
We propose a solution that relies on a generic data struc-
ture to adaptively handle data from a server hard disk
to a client rendering system as Figure 2 shows. We
base this structure on well tried principles and improve
its efficiency with new properties and techniques. Our
method can be split into two parts:
First, we adaptively stream the data from the server
to the client (“progressive loading” step in Figure 2).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

(a) Earth (b) Puget Sound

Figure 1: 3D renderings at 60 frames per second.
Top: after streaming data for 40 seconds at 1Mbps.

Bottom: after moving towards terrain features:
a) The Alps, b) Mount Rainier.

The main challenge is to continuously update a partial
database within the client. Our technique avoids load-
ing irrelevant or redundant data and adapts to the net-
work speed. The only task of the server is to read re-
quested data from a specifically designed file and trans-
mit them to the client (“requests management” step).
Second, we adaptively select the data to render in the
partial database of the client and the missing data to re-
quest from the server (“adaptive selection” step). A user
can move the viewpoint unpredictably and any render-
ing system may be used. In all cases, our method adapts
to the rendering speed using a measure of importance.

WSCG 2009 Full papers proceedings 25 ISBN 978-80-86943-93-0



Requests
management

Complete
database

Rendering
system

Server Client

Progressive
loading

Network
Adaptive
selection

Partial
database

request

reply (data)

importance

new data

Figure 2: Architecture for adaptive streaming and
rendering of terrain data. The user guides rendering on
the client. Selected available data are rendered while

missing data are requested from the server. The server
transmits these data from its database to the client.

2 RELATED WORK
The first solutions for adaptive terrain rendering
[LKR+96, DWS+97, RHSS98] minimize the number
of geometric primitives to render an elevation map
at each frame while ensuring that quality fits very
strict criteria. These methods need to store the entire
database in memory and require complex computations
at runtime. Furthermore, as modern graphics hardware
offer high rendering speed it became a better choice to
compute geometry faster and use batched primitives.
The method proposed by Hoppe [Hop98] paves the ter-
rain with blocks of polygons inside which data are or-
dered. These data are progressively added or removed
in this order to get the desired quality. Unfortunately,
this solution was not generalized to support progressive
transmission and does not scale to very large terrains.
Similarly, de Boer [dB00] uses a discrete set of uniform
resolution levels of detail in fixed-size blocks.
Lindstrom and Pascucci [LP01] perform data fetching
and rendering asynchronously, allowing for a smoother
rendering. Smart data organization in a file ensures fast
access to different levels of detail. However, no solu-
tion is proposed to handle distant loading and the data
selection for rendering is complex.
Levenberg [Lev02] organizes the data in a hierarchical
tree of blocks: it is possible to split a block in two if
a better quality is desired. This solution, like [dB00],
directly deals with blocks instead of samples, consider-
ably reducing the number of objects to handle.
Cignoni et al. [CGG+03] use a similar solution and
add support for progressive loading. Blocks are loaded
one by one, progressively descending the tree. This al-
lows using arbitrarily large terrains: a basic representa-
tion of the terrain is first rendered using the first level
of the tree and only desired areas are refined. How-
ever, blocks representing the same terrain area at dif-
ferent tree levels contain and need loading redundant
data. Also, the fixed-contents blocks they use require
changing tree level whenever different quality is de-
sired: costly database updates are frequent.
The clipmap [LH04] is based on the mipmap solution
for texture maps. It is extended with progressive load-

ing to support very large maps. However, the clipmap
inherits mipmap drawbacks. Levels of detail are neces-
sarily centered around the viewpoint so we cannot se-
lect the rendering quality for any terrain area based on
any set of criteria. In addition, rendering a level of de-
tail requires loading its data all around the viewpoint,
although those behind the viewpoint are not rendered.
The solution proposed by Schneider and Westermann
[SW06] divides blocks into several levels of detail, each
of which using the previous one’s data and adding its
own with an “in-place” update in the graphics hardware
memory. Switching between levels is done directly
with masks defining which samples are used [PM05].
However, no solution is brought concerning remote
loading and very large terrains are not supported.
A complete solution for terrain streaming and render-
ing is proposed by Gobbetti et al. [GMC+06] based on
[CGG+03]. It adds wavelet data compression to man-
age the progressive data update. However, database up-
dates are still frequent and even more costly because of
compression, thus harming rendering adaptivity espe-
cially on slow client devices.
Livny et al. [LKES07] propose combining the tree of
blocks structure with the idea of using multiple levels
of detail per block. However, the tree structure is im-
plicit and is used only to select data for rendering: no
progressive loading solution is proposed.
Commercial applications for terrain streaming and
rendering like the successful Google Earth and NASA
World Wind have existed for a few years. They rely
mostly on their user interface features and the great de-
tail of their databases. In contrast, their terrain-related
technologies do not bring significant improvements.
We note that most adaptive rendering solutions are not
useable in a remote database context, and solutions that
address progressive loading do it at the cost of render-
ing adaptivity. In this paper, we propose a generic adap-
tive data structure and the techniques to handle it effi-
ciently at every step of data loading and selection.

3 OVERVIEW
Adaptively streaming and rendering huge terrain maps
require using specifically adapted data structures and
algorithms. After taking note of previous solutions (see
Section 2), we choose to base our structure on certain
existing points. We subdivide the sample map into a
complete and uniform tree of blocks, then organize the
samples of these blocks in a succession of levels of de-
tail (LODs) of increasing resolution (see Section 4). We
first add new properties then use new techniques to han-
dle this structure faster and more adaptively.
Our first contribution concerning the data structure is
the non-redundancy of data: successive blocks and
LODs share their data instead of replacing them. In
fact, the new samples of a LOD are spatially interleaved
between the previous ones and we implicitly use all of

WSCG 2009 Full papers proceedings 26 ISBN 978-80-86943-93-0



them. This minimizes the amount of data to store and
load, and keeps a better coherency of data among the
entire tree. The other contribution is that a block may
be rendered when not all of its LODs are available. This
offers the possibility to progressively load the LODs of
a block. These new points are described in Section 4.2.
Once we have defined our data structure, we can use it
in the different steps presented in Figure 2:
We first store the complete tree of blocks in a single file
on the server’s hard disk as described in Section 5. Our
file organization guarantees that the data for any client
request are contiguous and that we can directly obtain
the position of this data chunk.
In a second step, we progressively load data to the
client as explained in Section 6. A measure of impor-
tance guides the order in which data loading requests
are transmitted to the server. We optimize the relevance
of loaded data and prevent overloading the network by
continuously updating the queue of pending requests
and by transmitting only a few requests at a time.
On the client side, we explicitly store an incomplete tree
of blocks in memory as Section 7 describes. When a
block is created, we allocate a single 2D array of sam-
ples in memory and initialize it with partial data from its
parent. We then progressively load new LODs and copy
their samples “in-place” in previously unused array po-
sitions. These methods, enabled by the non-redundancy
of data, reduce the number of data copies in memory.
The last step is the selection of data to render on the
client, described in Section 8. We first cull invisible
blocks, then choose a LOD for each visible block using
a measure of importance. This measure, presented in
Section 9, depends on the rendering performance and
on interactive user requirements so it can adapt to the
application. If a desired LOD is unavailable, we re-
quest it from the progressive loading step and we use
one with lower quality instead. Once a LOD is selected
for rendering, we extract the data to render using a mask
that references its samples in the array of the block.
Section 10 introduces results on two example applica-
tions: 3D rendering of planetary and non-planetary ter-
rains. Note that only the rendering system differs: no
specific methods are used in the main solution.

4 GENERIC DATA STRUCTURE
We base our solution on a generic data structure that
combines two commonly used methods: the terrain
map is subdivided into a complete and uniform tree of
blocks [Lev02], and each of these blocks has a set of
levels of detail with increasing resolution [dB00].
Blocks are uniform 2D arrays of samples with a con-
stant resolution. Each one represents a specific square
area of the terrain and can be rendered on its own.
The tree is a multi-resolution hierarchical structuring of
the terrain map. Each level of the tree covers the entire
terrain, with increasing resolution and quality as one

gets lower in the tree. Starting with a single root node,
the nodes of the tree are blocks with a constant number
of children – the minimum is four and corresponds to
a quad-tree. The children’s covered terrain areas uni-
formly subdivide the parent’s one as shown in Figure 3.
The tree can have any depth, as long as one can subdi-
vide the terrain map with enough blocks.

(a)

(b)

2
3

2

3

1

1

Figure 3: Construction of a three-level quad-tree of
blocks. a) Successive uniform subdivisions of the

terrain map. Red frames cover the same terrain area.
Block 1 is the root and covers the entire terrain.
b) Corresponding tree with the same numbers.

Levels of detail (LODs) are successive subsets of the
sample array of a block as shown in Figure 4. Each
LOD contains the previous one and adds new samples;
the last LOD uses the full sample array of the block.
Array subsets of the LODs are uniform over the blocks
to allow using generic methods for storage, update and
selection. In our application, each LOD doubles the
resolution of the array subset in both dimensions com-
pared to the previous one – minus one row and one col-
umn when using odd-resolution blocks: see Section 8.2.
The number of children per block is thus defined by the
number of LODs: for instance when using three LODs,
the last one has sixteen times more samples than the
first, hence the block has sixteen children.

1 2 3
Figure 4: Successive LODs of a block (example of a

9×9 sample array with three LODs). Full black
samples are used, unfilled ones are not.

4.1 Advantages
The data structure was chosen for its properties in adap-
tive streaming and rendering, described hereafter.
The tree structure allows us to use only a few blocks
in the upper tree levels to render terrain areas with
low quality requirements, and inversely. This technique
minimizes the total amount of rendered data and better

WSCG 2009 Full papers proceedings 27 ISBN 978-80-86943-93-0



distributes these data over the terrain. Similarly, with
the LOD structuring of blocks, we can choose a LOD to
render for each block based on the desired quality. This
makes the data selection adaptive not only in the tree of
blocks but also within these blocks, thus lowering the
number of costly data structure update operations.
Another property is that the terrain can always be en-
tirely rendered at a minimum quality even if not all the
tree levels are loaded. We may thus progressively load
the tree, starting with the root block then descending
where needed. When a block is loading, we continue
rendering the terrain area using upper tree levels. In ad-
dition, the tree structure simplifies the culling of invisi-
ble blocks using a classical depth-first walk-through.

4.2 New Properties
To better adapt the structure to our needs and improve
its general efficiency, we add two new properties:
First, a block and its children share samples because
they cover the same terrain area: this avoids loading
redundant data. When a block in the partial client tree
splits, it gives the samples of its last LOD to its children,
creating their first LODs. Reciprocally, it gets these
samples back from the children when they are merged.
Split and merge operations are described in Section 7.1.
Second, we allow rendering a block even if its sample
array is not fully loaded: only the samples of the se-
lected LOD need to be available. Consequently, we can
progressively load the LODs of a block into a common
sample array (with the refine operation: see Section 7.2)
while using this array to render previous LODs.
Using these properties, we can get one level down in the
tree with no need to load all the data of the new blocks.
They get their first LOD from the parent and only those
who need more quality start loading their next LODs.

5 SERVER DATABASE
The first place where the data are located is a pre-
computed file on the server’s hard disk. Many clients
can connect to the server at the same time and request
data corresponding to any terrain area: hard disk ac-
cesses are random and very frequent. In order to mini-
mize disk activity, we optimize the organization of the
data in the file when constructing it.
The file first contains a header with characteristics of
the database like the resolution of the blocks and their
number of LODs. Then, the contents of the tree are
“flattened” as shown in Figure 5, LOD by LOD. Load-
ings are done one LOD at a time, hence ensuring that all
the data for a single request are contiguous in the file.
The size of each file element is known in advance: all
blocks and LODs have uniform resolutions and samples
are stored on a constant number of bytes. Furthermore,
the tree is uniform and complete and the blocks of each
level are stored in order. Consequently, we can get the
file position for any request in constant time.

header 1 2

1

2

(a)

(b)

(d)

(c)
Not stored:

comes from parent
(block 1)

Figure 5: File organization (example of a two-levels
tree with three-LODs blocks). a) Original tree
structure. b) Block structuring with LODs (see

Figure 4). c) Redundancy-free LOD storage. d) Final
data order in the file with the same numbers as in (a).

Non-redundancy of data is clearly visible in Figure 5.
First, we do not store the first LOD of any block be-
cause it comes from its parent. The root block does
not have a parent, we thus store its first LOD in the file
header. Second, a LOD implicitly reuses the previous
ones so we store only the new samples.

6 PROGRESSIVE LOADING
In our solution, the server only reads and transmits data
“as is” to clients on demand. We manage progressive
data loading on the client side as Figure 2 shows. At
any given time, our method streams the most important
data: it implicitly adapts to the network speed and the
rendering quality constantly improves.
When the adaptive selection step (presented in Sec-
tion 8) needs a new LOD for a block, it sends a loading
request to the progressive loading step while rendering
continues in parallel with the available data.
The server usually may not respond quickly to all re-
quests because the network can have any speed and la-
tency and there may be other clients asking for data.
Unfortunately, the longer a request is pending the more
it is probable that this request is no longer relevant
at data reception, for instance if the user viewpoint
has moved. To avoid overloading the network and the
server with irrelevant loadings, we restrict the number
of pending server requests using a fixed-size queue on
the client. When the client receives data from the server,
we update the partial database with a refine operation
and we remove the request from the queue.
To choose the requests to queue, the adaptive selec-
tion step gives an importance value along with each
request (see Section 9) and continuously updates this

WSCG 2009 Full papers proceedings 28 ISBN 978-80-86943-93-0



value. When room is available in the queue, the pro-
gressive loading step selects the request with the high-
est importance, adds it into the queue, and transmits it to
the server. The adaptive selection step then sends again
requests that were not selected if they are still relevant.

7 CLIENT DATABASE
The client database is an incomplete and unbalanced
tree of blocks. The very first data loading contains
the first LOD of the root block: we can immediately
start rendering the terrain with the lowest quality. The
adaptive selection step then triggers specific database
update operations as explained in Section 8.1, progres-
sively expanding the tree as Figure 6 shows. All data
copies are performed in parallel with selection and ren-
dering so they do not harm rendering smoothness, espe-
cially on multi-core architectures. Only the tree struc-
ture changes and data deletion are protected.

(b)(a)

Figure 6: Progressive loading of a quad-tree. a)
Successive subdivisions of the terrain map (red, green,

then blue). b) The corresponding incomplete tree.

We store the samples of a block in a single array with
the resolution of its last LOD. This array is present in
memory only for the leaves of the tree in order to reduce
memory consumption on the client. Reciprocally, all
leaves of the tree have a sample array: we thus ensure
that any terrain area has a representation on the client.

7.1 Split and Merge Operations
When a fully loaded block needs to be rendered with
higher quality than it can offer, we use its children in-
stead. If the block is a leaf, we have to load the children
in memory with the split operation. The sample array of
the parent is uniformly subdivided into square subsets
corresponding to its children as Figure 7 shows. Sam-
ples of each subset are copied into the child’s previously
empty sample array to build its first LOD. The parent fi-
nally deletes its own sample array. Once the split oper-
ation is done, each child can progressively load its own
LODs and eventually split itself independently from the
others: that is how the tree gets unbalanced, and thus
how we get local adaptivity.
When a previously split block needs to be rendered with
lower quality than its children can offer, it gets back
its data from these children with the merge operation.
As Figure 7 shows, we recreate the block’s sample ar-
ray and get all of its samples from the first LOD of its
children. The children are merged recursively when

Figure 7: Block split and merge in a quad-tree.
Split — Left: Parent block with the array subsets of its

four children. Right: Children blocks with their first
LOD. Unfilled samples are not loaded yet. Merge —
Right: The four blocks to merge. Left: Parent block
fully reconstructed from the children’s first LODs.

needed. Once the merge operation is done, we delete
the children blocks because they are no longer used
for rendering. One can note that we could cache those
blocks in case they are needed again some time later,
as long as enough memory is available. We plan to im-
plement this in the future, although our solution already
offers some caching by using multiple LODs per block.

7.2 Refine Operation
When a partially loaded block needs to be rendered with
higher quality than its maximum available LOD can of-
fer, we load the next LOD with the refine operation.
Refining first requires loading data from the server: see
Section 6. At data reception, we add the new samples of
the LOD in the corresponding unused positions of the
sample array of the block as Figure 8 shows.

(a) (b)

Figure 8: Block refinements (same example as
Figure 4). a) Red samples (second LOD) are

interleaved between black ones (first LOD). b) Green
samples (third LOD) are added, the array is now full.

For rendering speed reasons, it is possible that samples
received from the server need transforming their for-
mat or mode of representation once for all before being
stored in the sample array. For instance, in the case of
3D rendering of planetary data, quantified elevation val-
ues relative to a reference ellipsoid may be translated
into 3D floating-point coordinates in a global coordi-
nate system. As for other data update operations, this
is done in parallel with rendering. Note that only the
samples in the client database change: two clients us-
ing two different rendering systems can use the same
methods and data, connecting to the same server.

WSCG 2009 Full papers proceedings 29 ISBN 978-80-86943-93-0



8 ADAPTIVE RENDERING
We can render the partial database of the client at any
moment. According to a measure of importance, we
first trigger database updates and select a LOD to render
for each visible block. We then send the samples of
those LODs to the rendering system with a set of masks.

8.1 Data Selection
To select data to render in the partial database of the
client, we first compute an importance value for all
blocks as explained in Section 9. Second, we select
the blocks to render. Only leaves of the tree can be ren-
dered because they have sample arrays. However, the
view frustum usually does not include the entire terrain
and some blocks are thus invisible: we cull them using
a classical depth-first tree walk-through. Finally, for
each block we choose the LOD to render. Each LOD
has an associated importance value: when this thresh-
old is reached, the LOD is selected if available.
When a required LOD is not available, we trigger the
corresponding database update operation. First, this
LOD may be of higher resolution than the maximum
available one. In that case, we send a request the pro-
gressive loading step. Second, the block may have been
split before because more quality was once required,
but now one LOD of this block is enough to render the
same terrain area. In that case we trigger a merge op-
eration, except when the desired LOD is the last one:
the first LODs of the block’s children contain the same
samples and we prefer to avoid data structure operations
when possible. Merge operations are triggered the same
way for invisible blocks in order to save memory.
Unlike the other operations, we trigger the split of a
fully loaded block when one of its children needs to
load its second LOD. Children are not in the tree yet,
so we guess their importance based on the parent’s one.
We use this guard because splitting blocks as soon as
they are fully loaded could lead to tree structure insta-
bilities when the importance of a block varies slightly,
uselessly harming the overall performance.

8.2 Masks for Level of Detail Rendering
Once we selected an available LOD to render for each
visible block, we send the corresponding samples to the
rendering system. We do this by applying a mask on the
sample array of the block; it defines the subset used by
the LOD. There is one mask per LOD computed only
once, common for all the blocks because the sample
array subsets are uniform. We thus do not have to store
or compute many masks for different blocks.
When using 3D graphics hardware to render elevation
data, masks can be implemented using triangle strips
[PM05]. This standard structure defines a set of con-
tiguous polygons to render with a succession of indices
pointing on an array of 3D vertices. In our case, each
triangle strip mask points on vertices computed from
the samples of the desired LOD as Figure 9 shows. This

way, the sample mask is applied directly in the graphics
hardware with no additional data copy.

Figure 9: Triangle strips for 3D rendering of a block
with elevation samples (same example as Figure 4).

For each LOD, the corresponding samples in the array
are linked to create triangles. Elevation values can be

used to compute 3D vertices coordinates.

Note that we use odd-resolution blocks with common
boundary samples so that adjacent triangles in neighbor
blocks stitch together. However, discontinuities appear
when those blocks are not rendered at the same LOD.
This paper does not present the details of this method,
but we can avoid such gaps using additional triangle
strip masks on block boundaries [LKES07].

9 MEASURE OF IMPORTANCE
We use a measure of importance to select the LOD to
render for visible blocks, to trigger updates of the par-
tial database, and to define the order in which we trans-
mit requests to the server. It ensures good adaptivity for
both loading and rendering. We can get an importance
value for any block at any time; it represents the quality
desired for the terrain area that this block covers.
Any measure of importance can be used, based on the
rendering system and the application. However, it al-
ways depends on a generic quality factor ensuring that
the solution adapts to the rendering speed. In practice,
the user selects the number of frames per second he or
she wants for rendering. Whenever the rendering speed
gets over or under this value – given or taken a variation
tolerance threshold to minimize instability –, the quality
factor respectively increases or decreases in proportion
until the target frame rate is obtained.
We know that the quality increases as one descends the
tree, so we give lower importance to blocks with a small
radius. In most cases we also want to give higher im-
portance to blocks close to the viewpoint. Other infor-
mation can be used to get a more specific measure of
importance, like the viewpoint’s incident angle and the
block’s geometry roughness. Equation 1 is an example
measure of importance, and Figure 10 shows its impact
on our 3D rendering application.

importance = log2

(
qualityFactor× radius

viewpointDistance

)
(1)

We select LODs using their numbers as importance
thresholds: the log2 function reflects that a LOD has
twice the samples of the previous one in both dimen-
sions. In addition, to get the importance of a loading

WSCG 2009 Full papers proceedings 30 ISBN 978-80-86943-93-0



Figure 10: Impact of the measure of importance on
3D rendering. Importance values define the colors: red
is more important than green and the brighter, the more
important. Using two LODs per block, we can select

them as in the picture: green for the first LOD and red
for the second. Color layers around the viewpoint

correspond to the levels of the tree: blocks split as they
get close, the terrain areas covered by their children are

smaller so they have lower importance.

request, we also want to take into account that a lower
LOD of the block is already available. We thus subtract
the number of this LOD from the computed importance.

10 APPLICATIONS AND RESULTS
The structure and methods presented in this paper are
generic: we deal with maps of samples, but those may
be rendered in multiple ways. We have implemented
two 3D rendering applications: one handles bounded
terrains with elevation relative to a plane; the other han-
dles planets mapped onto a cube with elevation relative
to a reference ellipsoid.
We tested both applications using real-world databases
and user interactions. The planetary terrain is the Earth
(Figures 1a, 11a) and the local terrain is the Puget
Sound (Figures 1b, 11b). Samples are made of 2 bytes
for elevation and 3 bytes for RGB color. The client runs
on a computer with a 2.4GHz Core 2 Duo CPU, 2GB
of RAM and a GeForce 8800 GTS graphics card. Data
are streamed uncompressed over a 1Mbps ADSL con-
nection and rendered on a window of 1600× 900 pix-
els. The target rendering speed is 60 frames per second
(FPS) and corresponds to around one million polygons
per frame with our rendering system and hardware.

10.1 Earth
The Earth database is a 13GB file built from the NASA
BMNG [SVS+05], a set of color and elevation maps
with 500m precision at the equator. We use six ten-level
quad-trees of 43×43 sample blocks with two LODs.
Figure 12 presents runtime results with an example tra-
jectory. We can see that loading stops as soon as the
frame rate gets below the given threshold: the quality
factor adapts so the importance of the blocks decreases.
No new request is added in the fixed-size queue and,
because data were loaded in importance order, no more
loading is needed to better distribute samples over the
terrain surface. In standard conditions starting at sec-
ond 180, the network is not fast enough to provide max-

(a) Earth (b) Puget Sound

Figure 11: 3D renderings after streaming data for 2
seconds (top) and 10s (bottom) at 1Mbps. See

Figure 1 for desired 60 FPS renderings after 40s.

imum quality at a stable 60 FPS, but 99.5% of received
data are immediately relevant for rendering. View-
frustum culling and importance computation take less
than 5% of the time for each frame.
We also ran the same test with the client located on
the same computer as the server. In these conditions,
the initial loading until achieving the target frame rate
takes less than five seconds. The rendering speed then
stays stable at 60 FPS for the remaining of the test. This
configuration can be used, for instance, to compute and
broadcast in real-time a terrain walk-through video.

10.2 Puget Sound
The Puget Sound database is a 16385×16385 samples
map with 10m precision and false color, for a total of
1.27GB. We use a nine-level quad-tree of 65×65 sam-
ple blocks with two LODs.
Results of the test are shown in Figure 12. When
quickly moving forward, most of the available data are
no longer rendered because they get behind the view-
point. The network delay prevents us from immediately
replacing them with higher quality data for visible ar-
eas: this explains the large frame rate increase. How-
ever in standard conditions starting at second 155, this
does not apply and the frame rate is stable while loading
because less data are required at once. When moving
backwards, the adaptive quality factor compensates for
the network delay: we continue to render areas getting
farther in high quality until the frame rate gets too low.

11 CONCLUSION
We proposed a generic solution for remote adaptive
streaming and rendering of large terrains. Our meth-
ods apply whatever is done with the data: only the data
themselves, the rendering system and the measure of
importance vary. We can, for instance, stream an aerial

WSCG 2009 Full papers proceedings 31 ISBN 978-80-86943-93-0



0

30

60

90

120

150

0 60 120 180 240

Frame rate (FPS)

Loaded data
(1:100 KB)

Earth

Waiting
(Figure 12a)

Zooming

Jumping to
other side

then waiting
Looking around

and walking Waiting
0

30

60

90

120

150

0 60 120 180 240

Puget Sound

Waiting
(Figure 12b)

Moving fast
forward

Looking around
and walkingWaiting

Moving
backwards

Figure 12: Statistics for interactive 3D rendering of the Earth and Puget Sound databases, streaming data over a
1Mbps connection. The horizontal axis is the time in seconds. The gray line is the target frame rate of 60FPS.

photography for 2D rendering with zoom or render the
Earth in 3D for a geo-positioning application. We adapt
to the loading and rendering speeds so they do not de-
pend on the size of the database. We can thus use
a single database on a single server with any kind of
client, like a smartphone with 3G connection or a desk-
top computer with 3D graphics hardware and broad-
band connection: only the rendering quality varies.
We based our data structure on existing solutions with
good properties and added new methods to handle it
more efficiently. We use this structure to manage the
data from the server hard disk to the client rendering
system trying to be as fast as possible. In particular
we avoid loading irrelevant data, for instance by en-
suring that data are not redundant between successive
loadings and by always sending the most important data
requests. We also avoid costly data structure operations
as much as possible, in favor of “in-place” data updates
and selection using sample masks.
In the future, we plan to produce results with low per-
formance devices and present specific features based on
the generic solution, like our method to render planetary
terrains. In addition, we are working to handle texture
and elevation maps concurrently, fix geometry gaps and
avoid down-sampling artifacts.

REFERENCES
[CGG+03] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,

F. Ponchio, and R. Scopigno. BDAM – batched
dynamic adaptive meshes for high performance
terrain visualization. Computer Graphics Fo-
rum, 22(3):505–514, 2003.

[dB00] W. H. de Boer. Fast terrain rendering using ge-
ometrical mipmapping. Unpublished, available
at: http://www.flipcode.com/articles/

article_geomipmaps.pdf , 2000.

[DWS+97] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein.
ROAMing terrain: real-time optimally adapting
meshes. In VIS ’97: Proceedings of the confer-
ence on Visualization ’97, pages 81–88, 1997.

[GMC+06] E. Gobbetti, F. Marton, P. Cignoni, M. Di
Benedetto, and F. Ganovelli. C-BDAM – com-

pressed batched dynamic adaptive meshes for
terrain rendering. Computer Graphics Forum,
25(3), 2006.

[Hop98] Hugues Hoppe. Smooth view-dependent level-
of-detail control and its application to terrain
rendering. In VIS ’98: Proceedings of the con-
ference on Visualization ’98, pages 35–42, 1998.

[Lev02] Joshua Levenberg. Fast view-dependent level-
of-detail rendering using cached geometry. In
VIS ’02: Proceedings of the conference on Visu-
alization ’02, pages 259–266, 2002.

[LH04] F. Losasso and H. Hoppe. Geometry clipmaps:
terrain rendering using nested regular grids.
ACM Transactions on Graphics, 23(3):769–776,
2004.

[LKES07] Y. Livny, Z. Kogan, and J. El-Sana. Seamless
patches for GPU-based terrain rendering. In Pro-
ceedings of WSCG ’07, pages 201–208, 2007.

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L. F.
Hodges, N. Faust, and G. A. Turner. Real-time,
continuous level of detail rendering of height
fields. In Proceedings of ACM SIGGRAPH 96,
pages 109–118, 1996.

[LP01] P. Lindstrom and V. Pascucci. Visualization of
large terrains made easy. In VIS ’01: Pro-
ceedings of the conference on Visualization ’01,
pages 363–371, 2001.

[PM05] J. Pouderoux and J.-E. Marvie. Adaptive stream-
ing and rendering of large terrains using strip
masks. In Proceedings of GRAPHITE 05, pages
299–306, 2005.

[RHSS98] S. Roettger, W. Heidrich, P. Slusallek, and
H. Seidel. Real-time generation of continuous
levels of detail for height fields. In Proceedings
of WSCG ’98, pages 315–322, 1998.

[SVS+05] R. Stockli, E. Vermote, N. Saleous, R. Simmon,
and D. Herring. The Blue Marble Next Gener-
ation - a true color earth dataset including sea-
sonal dynamics from MODIS. NASA Earth Ob-
servatory, 2005.

[SW06] J. Schneider and R. Westermann. GPU-friendly
high-quality terrain rendering. Journal of
WSCG, 14(1-3):49–56, 2006.

WSCG 2009 Full papers proceedings 32 ISBN 978-80-86943-93-0


	!_WSCG2009_FULL_final_NUMBERED.pdf
	A19-full


