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ABSTRACT

This paper presents a new method for lossy compression of temporal data of both naturally recorded and synthetically created
videos by Catmull-Rom spline and quadratic Bézier curve fitting. The proposed method approximates the luminance or color
variations in a sequence of frames by spline fitting in Euclidean space. Precise control of accuracy at pixel level is achieved by
a specified tolerance of error. A break and fit criterion is employed to minimize the number of curve segments required to fit the
data. Experimental results show that the described method yields very good results, both in terms of objective and subjective
quality measurement, i.e., bit-rate/PSNR and human visual acceptance, without causing any blocking artifacts.

Keywords: Video data, sequence of images, approximation, compression, fitting, Catmull-Rom spline, Bézier curve.

1 INTRODUCTION 2457

Digital video data consists of sequence of frames (im-24°f
ages). Each frame consists of rectangular 2-D array of,_ |
pixels. 3-DRGBor 1-Dluminancevalues in a sequence

of frames are associated with each pixeGBor lumi- 20b | ¥ VallV, iva

nancevalue(s) of a pixel can be considered as apointin |, » nn ,“ ny. :‘. [ ,~"\ Wt
Euclidean spacB® or R* respectively. Leta video con-  #\[r# 11t {1y U T A A
sists of a sequence offrames. Frame width and height . ; 3 "t § = ' ‘{“.i” [

areW andH respectively. Then for each spatial location ‘\: ' ) '

(Xi,Yj), 1<i<W, 1< j<H,we have temporal video 215

data innframes{p1, p2,..., pn}, i.€.,p; = (R}, Gj,Bj) o Re y
for RGBor p; =1; for luminancewhere 1< j <n. Fig- ~  ||.- - Blue '

ure 1 showsRGByvariation of a pixel in 80 frames of a 205 ] ‘ ‘ ‘ ‘ ‘ ‘ ‘
. . . . 10 20 30 40 50 60 70 80

video. Video data contains temporal and spatial corr

lation. In our proposed method focus is on tempor

compression of video data by approximating it using

quadratic Bézier curve and Catmull-Rom spline fitting]n
Splines and curves are widely used in computer-

qfigure 1: RGB temporal variation of a pixel in 80
rames of a video.

our method, we considered temporal variations of

aided design and computer graphics because of t r%l r?]regragjmmlingzt;a;ﬁzsa()f rF())Ii?rLsaig daitsvevic'lnﬁigtrnlee:;
simplicity of their construction, accuracy of evalu- P . PP :

. : . . number of control points (output data). An important
ation, and their capability to approximate comple . . " L

2 , . actor in spline approximation of data is finding least

shapes through curve fitting and interactive curve

; . number of control points. We achieved this goal b
design [BBB95]. Spline can compress the data b¥,electing optimal seF; of control points, 9 y

approximating large number of data points with far L . .

less number of control points. Control points can be Ap.proxmatlon "’.‘”d compression of data using para-

encoded by some appropriate encoding techniqug].etr'c curves particularly cubic splines are explored by

During the decoding process approximated data poin[%any aut'hors [LCTO7, UMQO’ |093.] etal. A method .
of dynamic mesh compression of animated sequences is

are generated by spline interpolation of control pomtsdescribed by [LVO7]. The approach used by [LVO7] is

p— ro Goral or fard cosies of Al i based on EdgeBreaker and Principal Component Anal-

ermission to make digital or hard copies of all or part of this,,_. . . .

work for personal or classroom use is granted without fee pro ided/SIS (PCA) and it exploits both spat|all a”fj temporal

that copies are not made or distributed for profit or commerciacoherence. [LCTO7] presented a medical image com-

a}dvantage and that c0p|es_bear this notice and the full citation G“tf?ression algorithm using cubic spline. Contour data

first page. To copy otherwise, or republish, to post on servers [or t . .

redistribute to lists, requires prior specific permission and/or a fee. COMpression method using Curvature Scale Space tech-
, nigue and Hermite curves is proposed by [UMO0O]. Pro-

Pﬁgflf‘éziﬂgs;zfgfggffy 4 - February 7, 2008 posed method of [I093] uses cubic Bézier curves and

Copyright UNION Agency — Science Press is suitable for compressed representation of outline of

WSCG2008 Full papers 1 ISBN 978-86943-15-2



22r 501
Catmull-Rom Spline P Pj+2 o Catmull-Rom Spline
O  Control Points g 45+ O  Control Points

201

401
18r
35-
161
301

14+ P
i 25
120 .
10+ 150
Py
8 o I I I I ) 10 L I I I I )
15 20 35 20 10 20 30 40 50 60 70

20 25
Figure 2: The jth Catmull-Rom spline segment.
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fonts. Our method uses quadratic Bézier curve and )
Catmull-Rom spline that are computationally more effi- s
cient than cubic splines. Cubic splines are more appro-
priate for image compression but less feasible for video
data compression. Non-spline based temporal correla-
tion reductions methods are based on motion estima-
tion via translating block matching algorithms (BMAs) o
[CP02, SD02, KIH81]. In a typical BMA, a frame is
divided into rectangular blocks of pixels. Then the cur-
rent (predicted) block is matched against blocks in the
previous frame, for a maximum motion displacemen
of w pixels. The best match on the basis ahaan ab-
solute error (MAE) criterion yields displacement rel-
ative to current block called motion vector. Predicted . i . .
frame is approximated by blocks in reference frame angRS segment is defined by fou_r cqntrol p0|nt§,h|.e.,
corresponding motion vectors [Gha03, Thy05, Sayos[.l-1 P+ Pi+1 andP; 2, as shown in Figure 2. Thg

In contrast to BMAs, we do not find matching pixel or egment of CRS interpolates between witldle con-

matching block. We adopts different approach of fittin rol points i.e., P andPj,1. Theend control points
i.e., approximating the change in color or luminanc €.,Pj_1andPj; are used to calculate the_ 'Fange_r;:cs of
values of each pixel in a sequence of frames, at the fixed and Pjt“' E(Z]l..lttatIOI”lS.fOI’ boundary conditions @
spatial location (without translation of block/pixel), by segment are written as:

80

10 o

f:igure 3: Multi-segment Catmull-Rom splines in 2-D
and 3-D space.

quadratic Bézier curve and Catmull-Rom spline fitting. 1
BMA works at block level and may cause blocking ar- PJ, = 2 (Pj+l - Pi—l) ) 1)
tifacts [WOZ01, IM0OO]. Due to pixel level fitting by : 1
proposed method, precise control of accuracy and im- 1 =5 (P+2—Py). )

munity from blocking artifacts is achieved. Due to large

size of video data it is also desirable that fitting process Forl joined segments, there arecdnditions for con-
is automated. In our proposed scheme, the user has jtiguity of functions and Rconditions for continuity of
to initialize a few parameters, then the rest of the stegdopes. Finally the equation of CRS f@f segment is
i.e., fitting, encoding/decoding are fully automated. ~ Written as follows:

2 CATMULL-ROM SPLINE AND 1

QUADRATIC BEZIER CURVE Qj(t) =5[(—t+2t* ~ )P
The following two subsections i.e., 2.1 and 2.2 describe + (3% — 5t + 2JP, 3)
the theory and mathematical models of Catmull-Rom +[3 + 42 +4]P 1

spline and quadratic Bézier curve, respectively.

2.1 Catmull-Rom Spllnes (CRS) wheret; is parameter of interpolation , €t < 1. In

Catmull-Rom spline (CRS) [CR74] is a piecewiS& order to generate points betweerP; andPj; inclu-
continuous curve with specified endpoint tangents. Aive, the parametdr is divided into(n— 1) intervals

+ (=7~ t?)Py2],
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40

between 0 and 1 inclusive, aij (t) is evaluated ah 30 4 C
values oft;. Since the CRS passes throughritaldle

control points thereforeQ; (0) = P; andQ; (1) = Pj11.
Figure 3 shows multi-segment Catmull-Rom splines.  ,

2.2 Quadratic Bézier Curve (QBC)

Quadratic Bézier curve (QBC) is2? continuous curve. 40 70

A QBC segment, is defined by three control points, i.e., % w0

Py, P1, andP,, as shown in Figure 4% andP; are called 00 2O

end control point¢ECF), while Py called amiddle con-  gig e 5: Multi-segment quadratic Bézier curves in 2-D
trol point (MCP). QBC passes through iend control ;.4 3.p space.

points while amiddle control pointis used to control

the shape of curve. To generate continuous quadratic ) _

Bézier curves that interpolatet 1 pointsk curve seg- " frames isO = {py, pz,...,pa}. As an input to al-

ments are used. Equation of a QBC segment can gorithm the user specifies two parameters: (fmper
written as follows: limit of error £'™, i.e., maximum allowed squared dis-

tance between original and fitted data, e5§™ = 100,
Q) = (1—ti)2Po+2ti (1—ti)P1+tizF‘z, (4) and (2)initial breakpoint intervald, i.e., color or lu-
minance value of pixel after eved" frames is taken
wheret; is a parameter of interpolation ,<0t; <1. In  as a breakpoint (control point), e.gi,= 12 sets the
order to generate points betweei, andP; inclusive, initial breakpoints asBP = {py, p13, P25, P37, - -, Pn}
the parametey is divided into(n— 1) intervals between (color or luminance value of pixel in last frame is
0 and linclusive, anQ(t) is evaluated at values ofi.  always taken as a breakpoint). The fitting process
Since the QBC passes through its first and last contralivides the data into segments based on breakpoints,
points, thereforeQ(0) = Py andQ(1) = P.. Figure 5 ie., S={S,S,...,S1}. A segment is a set of all
shows multi-segment quadratic Bézier curves. points (color or luminance values) between two con-

secutive breakpoints, e.@& = {p1, p2,..., P13}, S =
3 FITTING STRATEGY {P13, P14, ..., Pos}.
This section describes the strategy of fitting Catmull- In addition to control points of the current segment,
Rom spline and quadratic Bézier curve to video dataCatmull-Rom spline needs control points of previous
Fitting process is applied to temporal data of each spand next segments. Therefore we used breakpoints of
tial location individually. Number of spatial locations previous, current and next segments as control points of
areW x H, whereW andH are width and height of a a current Catmull-Rom spline segment and obtained the
frame respectively. Let color or luminance value of aapproximated data of current segment using Eqg. (3). An
spatial locationx,y), 1 <x<W, 1<y <H, at frame interesting question is how to obtain the breakpoints of
i is pi, where 0< p; <255 and 1< i < n. We have first and last segments because they do not have previ-
to approximate tha values of each spatial location by ous and next segments respectively. Unlike [KB84] tak-
guadratic Bézier curve and Catmull-Rom spline fittinging arbitrary breakpoints at both ends, we opted to take
Now we describe the fitting process of an arbitrary spaP;_1 = Pj, for the first segment arfg,» = Pj;1, for the
tial location (x;,yi). The temporal data ofx,yi) in last segment. This way we are able to get the control

a
S o
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points of all segments automatically. For a quadratic The above described fitting process is applied to
Bézier curve breakpoints of current segment are takeolor or luminance variations in temporal dimension of
asend control point§ECP), while middle control point each spatial location separately. It is obvious that each
(MCP)i.e.,Py is obtained by least square method. Leasspatial locations have different number of breakpoints
square method gives theestvalue of middle control (control points) selected from different frames, in other
point that minimizes the squared distance between th&ords rectangular shape of video frames is no longer
original and the fitted data. If there amedata points in intact.

a segment, an®; andQ(t;) are values of original and  Section 4 describes the proposed algorithm formally
approximated points respectively then we can write thfor a single spatial location. In order to have a better
least square equation as follows: comparative look of fitting process between Catmull-
Rom spline (CRS) and quadratic Bézier curve (QBC),
we marked steps in curly braces where CRS and QBC
differs in fitting. Figure 6 and Figure 7 show fitting of
luminance values of in 80 frames of a video by Catmull-
Rom spline and quadratic Bézier curve, respectively.

U= _Z[Oi —Q(t)*. (5)
Substituting the value d@(t;) from Eqg. (4) in Eqg. (5)
yields:

U—i[pi(1ti)2P0+2ti(1ti)P1+ti2P2]2_ 6) 4 ALGORITHM
i=

procedure Fitting algorithm for luminance variations
of single spatial location.

spatial location(x,y), 1 <x<W, 1<y <H.
Luminance of(x,y) in frame 1 tonis {p1, p2, ..., Pn}

To find value ofP; differentiating Eq. (6) partially with
respect td?, yields:

U

— =0 7
P % Require: :
. N Max. allowed squared distanée., E'™,
Solving Eq. (7) forPy gives: Breakpoints intervai.e., 8,
m My (1—t)2P) —t2 Points of original data© = { <oy Pnts
— p (1 t PO t P2 g p17 p2a 7pl’1
P =2 1[p ) ich (8) BreakpointsBP = {p1, P15, P1:25: -+ Pn}s

Y1 2i(1-t) N

Once all three control points are in hand then approx-
imated data of current Bézier segment is obtained usirgy

Getindices oBP: V ={1,1+ 9,1+ 29,...,n}=
{VlaVZa e 7VU};
Divide O into segment$={S,S,...,S-1},

Eg. (4). S={Pv:-- Pvis}

Same procedure is repeated for each segment Not required CRS
for both Catmull-Rom spline and quadratic Bézier,. Find MCP of each segment QBC
curve. This yieldsn values of approximated data, MCP — {PlSlMPlSE’.“,PlSJ—l} QBC
Q = {01,02,-.-,Gn}. Then we compute error of = & spline to each segment, ie., Find
fitting, i.e., squared distance of each point be- Q=1 } o
tween the original data and the approximatecé_ 42— |g-1’—qfq7-.\é.7qno<i<n
data, di2 = |pi - qi‘za 0 <i<n From the max- . glmax_IMa)l(CiZ dZ - 62) émax6 kth frame k €
imum d? we compute maximum squared distance,” "o 1R mn '
max — Max(d?,d3,...,d?). If maximum squared ]hfegmgxnt mt g
distance of anyjth segment is greater thafi™ then | W ';é _>§ °
this segment is splitted (replaced) with two new seg-’ Vpie‘f{vg}%‘ (K

ments,ji" and j¥", i.e., S= [{S}— {Sj}] U{Si,.Si, }-
A new breakpointbp,ew from original data is added
in the set of breakpoints where the error is max:_

10:  Split j'" segment intg!" and ji' segments
BP = {BP} U {bpnew}

s=[{S}—{Si}]U{SSs.}

imum, i.e., BP = {BP}U{bphew}. For example, .
if segmentS; splits at ps then a new breakpoint Bozriq&'ges_ CRS
bphew= P& is inserted between breakpoimsandp;z 13 pdate -

bpnew {MCP}U{plllPllz} QBC

(BP = pl,"fne\, P13, P25, P37;---, Pn o) @and two new 14 Using updatedP fit spline/curve to:

{ i—1,j1, j2, j+1segments CRS
segmentq p1, P2, ..., Ps} and{ps, p7,-.., P13} replace i1, j2 segments QBC
S. The fitting process is repeated with new set ofis; Find di2 of:

breakpoints until mean square error of each segment is { i—1,j1 j2, j+1segments CRS

equal to or less thag'™. j1, j2 segments QBC
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17: Find count of interpolating points (C) frod =
{V1,Vo,..., W}, u n:
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Figure 6: Catmull-Rom spline fitting to luminance val-
ues in 80 frames of a video, '™ =21, § = 79,
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Figure 7: Quadratic Bézier curve fitting to luminance
values in 80 frames of a video, &M =21, § = 79,
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5 EXPERIMENTS AND RESULTS

We have applied the proposed algorithm on variou®BC performs better, and bit-rate<3.5-bpp, again CRS
naturally recorded and synthetically created video sdakes leads over QBC.

quences. Output data is entropy encoded. The per-Figures 11, 12 and 13 show%Grames of CRS and
formance of proposed method is evaluated in terms @BC encoded videos f@alesmanForemanandDar-
bit-rate, measured in bits per pixel (bpp) and PSNRjus video sequences respectively. It can be seen from
measured in decibel (dB). Table 1 gives the details ahese figures that subjective performance heman vi-

WSCG2008 Full papers

80

selected input video sequences whose results are pre-
sented in this papelSalesmarand Foremanare natu-
rally recorded luminance videos at 8-bpp, wtilarius

is a synthetically created RGB video at 24-bpp. Ta-
ble 2 compares the performance of CRS and QBC with
Three Step Search method (TSS) [Ki8ll], a well
known and widely used block matching algorithm for
temporal compression of video data. For TSS every al-
ternative frame is predicted from previous frame (ref-
erence frame), macro block size isx&8, and range

of search window ist8 in both horizontal and verti-

cal directions. Reference frames are first differentially
then entropy coded along with motion-vectors (MVs).
Predicted frames are not coded because they are ap-
proximated from reference frames. The fitting methods
achieved better compression performance than TSS, be-
cause the fitting work of our algorithm is at pixel level
and they approximate the variations of luminance with
good level of accuracy. We did not compare the perfor-
mance for RGB video, because block matching algo-
rithm convert the RGB data t6G,C; data, and block
matching is performed for only luminance datéd),(
while chrominance dataC({C;) is sub-sampled (4:2:0),
and predicted chrominance frames are obtained from
MVs of luminance data. Therefore comparison of CRS
and QBC with TSS for RGB video is not appropriate.

Figures 8, 9 and 10 show R-D curves of CRS and
QBC for SalesmanForemanandDarius sequences re-
spectively. Note that these statistics are only for tem-
poral compression of video data; neither spatial com-
pression nor quantization is used. The statistics show
that the proposed method yields good objective per-
formance for naturally recorded videdSalesmarand
Foremar) and very good performance for synthetically
created video Qarius). For the Salesmarsequence,
around 35-dB PSNR is achieved at bit-raté®Bbpp
and 064-bpp by CRS and QBC respectively. For the
Foremansequence, around 35-dB PSNR is achieved at
bit-rate 198-bpp and 2.-bpp by CRS and QBC respec-
tively. Dariusis a color sequence and bit-rate of orig-
inal Darius sequence is 24-bpp. We achieved around
35-dB PSNR at bit-rate as low asibpp by both CRS
and QBC.

Now look at the comparative performance of CRS
and QBC. For theésalesmarsequences at low bit-rate
CRS performs better but at bit-rate>0.82-bpp QBC
leads CRS. For thBoremansequences CRS performs
better than QBC at all values of bit-rate. For tharius
sequence the curve is quite interesting, at bit-rate<1.6-
bpp CRS performs better, 1.6-bpp<bit-rate<3.5-bpp

ISBN 978-86943-15-2
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43¢
sual acceptancef CRS and QBC approximated video ||~ _. g*u“a";t';‘ifgjzif'g‘jwe .
frames is very good and no blocking artifacts are pro- s
duced. ar
401
6 DISCUSSION -
o 39
Split of a segment Lines 8 to 16 are important steps «
of our fitting algorithm. For the correct and efficient & %

implementation of our algorithm it is very important  s7}
to find which other segments are affected by splitting
of a segment. Let us assume that an arbitrary seg-

ment j splits into two segment$; and j,. For the 35¢
quadratic Bézier curve we have to recompuatildle 34 ‘ ‘ ‘ | ‘ ‘ ‘ ‘
control points approximating points and squared dis- ~ *  ** 2 2 8 ey 4 ®

tances ofj; and j> segments only. But for Catmull- gigyre 10: Rate-distortion curves of Catmull-Rom

Rom spline the situation is not so simple. For thregpjine & Quadratic Bézier curve, Darius sequence.
consecutive segmenis— 1, j and j + 1, the last three

control points of(j — 1)" segment i.e.Pj_1, P; and
P, are same to first three control point B segment
and first control point of j — 1)!" segment i.®,_2isnot

shared withj™" segment. Similarly the first three con-
trol points of (j +1)™" segment i.e.p, Piy1 andPj
are same to last three control pointsjBfsegment and
last control point of(j + 1) segment i.eP} ;3 is not

Video Name| Format | Number of | Bit-rate shared withji" segment. This means that a segment
Frames shares control points with its previous and next seg-
Salesman CIF 45 8-bpp ments. Consequently adding a new breakpoint (split-
(luminance) | 352x 288 ting) at j!" segment requires to recompute approximat-
Foreman SIF 44 8-bpp ing values and squared distances for two new segments,
(luminance) | 352x 288 i.e., j1 andj,, obtained from splitting oft" segment, in
Darius SIF 44 24-bpp addition to that approximating values and squared dis-
(RGB) 352x 288 tances of previous and next segmentg'Bfsegments,
i.e., (j— 1M and(j+1)" segments are also need to
Table 1: Details of input video sequences. be recomputed. Fortunately Catmull-Rom spline saves

Method Salesman Foreman some computation by not requiring least square solu-
Name | PSNR | Bit-rate | PSNR | Bit-rate tion as required by quadratic Bézier curve to find the
TSS 138132 17768 | 35875| 2.7509 value of itsmiddle control point Lines 3 and 13 of the
CRS | 38.244| 08574 | 35.589| 2.0687 fitting algorithm describe these recomputatio.n steps for
QBC | 38.291| 0.8578 | 35.812| 2.2516 guadratic Bézier curve and Catmull-Rom spline.

Rate Control Rate of the output data is controlled by
varying the value of'™. Increasing the value df'™

decreases the bit-rate. The default valué's¥ is 100.

Table 2: Performance comparison of TSS [KIHT81],
CRS and QBC.

WSCG2008 Full papers 6 ISBN 978-86943-15-2
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Figure 11: 30" frame of Salesman video sequence, Figure 12: 30" frame of Foreman video sequence,
E'M — 100 Top: CRS approximated frame, 38.68- &M =100 Top: CRS approximated frame, 37.591-dB,
dB, 0.92991-bpp. Bottom: QBC approximated frame, 2.401-bpp. Bottom: QBC approximated frame, 38.191-
39.968-dB, 1.0796-bpp. dB, 2.7374-bpp.

Output data encoding requirement For CRS we computation cost within acceptable limit for both QBC
need to encode (1) breakpoinBR) and (2) count of and CRS.
interpolating points@). For QBC, in addition to (1)  Computational cost:QBC is computationally more
and (2), we also need to encodeddle control points efficient than CRS, because, (1) QBC is a quadratic
(MCP). If video data is fitted usingnsegments then for function, while CRS is cubic a function. (2) Due to
CRS,m+ 1 values oBP andmvalues ofC are need to the least square fitting, QBC approximates longer seg-
be encoded. For QBC with equal number of segmentg)ents, which means it causes lesser splitting and needs
m+ 1 values oBP, m+ 1 values oMCP andmvalues lesser computation than CRS.
of C are need to be encoded. Apparently CRS has lessNaturally recorded vs synthetically created videos
output data to be encoded. But it also depends on howhe latter has less noise and more uniform distribution
much splitting of segments occurs. Usually splitting of luminance/color. Therefore, both CRS and QBC per-
a segment by CRS fitting is more often than splitting oform extremely well for synthetically created videos.
a segment by QBC fitting. Choosing between CRS and QBECRS and QBC
Reasons to choose quadratic Bézier curve anddehave quite similar, but if higher compression is de-
Catmull-Rom spline (1) Both QBC and CRS are sired then CRS is slightly better than QBC. If compu-
computationally efficient than other curves e.g., Nattational efficiency is of more importance then QBC is
ural cubic spline, B-spline, cubic Bézier curve etc. Inmore appropriate choice.
fact we also used Natural cubic spline and cubic Bézier Limitations: The performance of fitting process de-
curve and found them less feasible than QBC and CR§rades for spatial locations where changes in luminance
(2) Breaking of a segment into two segments keeps tha temporal dimension is very sharp. Because such spa-
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[BBBY5]

[CPO2]

[CR74]

[Ghao3]

[IMOO]

[1093]

[KB84]

[KIH *81]

Figure 13: 30" frame of Darius video sequence,
E'M — 100, Top: CRS approximated frame, 41.838-
dB, 4.4234-bpp. Bottom: QBC approximated frame,
42.272-dB, 4.9813-bpp.

[LCTO7]

tial locations cause lot of splitting of segments. Due tq vo7
non-rectangle shape of output data, combining spatial
compression with temporal compression needs special
care and shape-adaptive wavelet transform can be udéayos]

for spatial compression.
[SD02]

7 CONCLUSION

We presented a new method for compression of tem-
poral video data by Catmull-Rom spline and quadratic
Bézier curve fitting. Detail of fitting strategy and [Thy05]
pseudo code of the algorithm are presented. We tested
the proposed method using luminance and color (RGBYM00]
temporal data of naturally recorded and synthetically
created video sequences. Experimental results show
that the proposed method yields very good results both

in terms of objective and subjective quality measure-
ment parameters, i.e. bit-rate/PSNR dnonan visual [WOZ01]
acceptance without causing any blocking artifacts.

The method is suitable for compression of both natu-
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rally recorded and synthetically created videos such as
animations and cartoons.

8 FUTURE WORK

Compression of spatial video data by spline/curve fit-
ting is under investigation.
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