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ABSTRACT

This paper presents a new method for lossy compression of temporal data of both naturally recorded and synthetically created
videos by Catmull-Rom spline and quadratic Bézier curve fitting. The proposed method approximates the luminance or color
variations in a sequence of frames by spline fitting in Euclidean space. Precise control of accuracy at pixel level is achieved by
a specified tolerance of error. A break and fit criterion is employed to minimize the number of curve segments required to fit the
data. Experimental results show that the described method yields very good results, both in terms of objective and subjective
quality measurement, i.e., bit-rate/PSNR and human visual acceptance, without causing any blocking artifacts.

Keywords: Video data, sequence of images, approximation, compression, fitting, Catmull-Rom spline, Bézier curve.

1 INTRODUCTION

Digital video data consists of sequence of frames (im-
ages). Each frame consists of rectangular 2-D array of
pixels. 3-DRGBor 1-D luminancevalues in a sequence
of frames are associated with each pixel.RGBor lumi-
nancevalue(s) of a pixel can be considered as a point in
Euclidean spaceR3 or R1 respectively. Let a video con-
sists of a sequence ofn frames. Frame width and height
areW andH respectively. Then for each spatial location
(xi ,y j), 1≤ i ≤W, 1≤ j ≤ H, we have temporal video
data inn frames,{p1, p2, . . . , pn}, i.e.,p j = (Rj ,G j ,B j)
for RGBor p j = I j for luminance, where 1≤ j ≤ n. Fig-
ure 1 showsRGBvariation of a pixel in 80 frames of a
video. Video data contains temporal and spatial corre-
lation. In our proposed method focus is on temporal
compression of video data by approximating it using
quadratic Bézier curve and Catmull-Rom spline fitting.

Splines and curves are widely used in computer-
aided design and computer graphics because of the
simplicity of their construction, accuracy of evalu-
ation, and their capability to approximate complex
shapes through curve fitting and interactive curve
design [BBB95]. Spline can compress the data by
approximating large number of data points with far
less number of control points. Control points can be
encoded by some appropriate encoding technique.
During the decoding process approximated data points
are generated by spline interpolation of control points.
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Figure 1: RGB temporal variation of a pixel in 80
frames of a video.

In our method, we considered temporal variations of
color or luminance values of pixels in a sequence of
frames as input data and approximated it with far less
number of control points (output data). An important
factor in spline approximation of data is finding least
number of control points. We achieved this goal by
selecting optimal set of control points.

Approximation and compression of data using para-
metric curves particularly cubic splines are explored by
many authors [LCT07, UM00, IO93] et al. A method
of dynamic mesh compression of animated sequences is
described by [LV07]. The approach used by [LV07] is
based on EdgeBreaker and Principal Component Anal-
ysis (PCA) and it exploits both spatial and temporal
coherence. [LCT07] presented a medical image com-
pression algorithm using cubic spline. Contour data
compression method using Curvature Scale Space tech-
nique and Hermite curves is proposed by [UM00]. Pro-
posed method of [IO93] uses cubic Bézier curves and
is suitable for compressed representation of outline of
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Figure 2: The j th Catmull-Rom spline segment.

fonts. Our method uses quadratic Bézier curve and
Catmull-Rom spline that are computationally more effi-
cient than cubic splines. Cubic splines are more appro-
priate for image compression but less feasible for video
data compression. Non-spline based temporal correla-
tion reductions methods are based on motion estima-
tion via translating block matching algorithms (BMAs)
[CP02, SD02, KIH+81]. In a typical BMA, a frame is
divided into rectangular blocks of pixels. Then the cur-
rent (predicted) block is matched against blocks in the
previous frame, for a maximum motion displacement
of w pixels. The best match on the basis of amean ab-
solute error (MAE) criterion yields displacement rel-
ative to current block called motion vector. Predicted
frame is approximated by blocks in reference frame and
corresponding motion vectors [Gha03, Thy05, Say05].
In contrast to BMAs, we do not find matching pixel or
matching block. We adopts different approach of fitting
i.e., approximating the change in color or luminance
values of each pixel in a sequence of frames, at the fixed
spatial location (without translation of block/pixel), by
quadratic Bézier curve and Catmull-Rom spline fitting.
BMA works at block level and may cause blocking ar-
tifacts [WOZ01, IM00]. Due to pixel level fitting by
proposed method, precise control of accuracy and im-
munity from blocking artifacts is achieved. Due to large
size of video data it is also desirable that fitting process
is automated. In our proposed scheme, the user has just
to initialize a few parameters, then the rest of the steps
i.e., fitting, encoding/decoding are fully automated.

2 CATMULL-ROM SPLINE AND
QUADRATIC BÉZIER CURVE

The following two subsections i.e., 2.1 and 2.2 describe
the theory and mathematical models of Catmull-Rom
spline and quadratic Bézier curve, respectively.

2.1 Catmull-Rom Splines (CRS)

Catmull-Rom spline (CRS) [CR74] is a piecewiseC1

continuous curve with specified endpoint tangents. A
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Figure 3: Multi-segment Catmull-Rom splines in 2-D
and 3-D space.

CRS segment is defined by four control points, i.e.,
Pj−1, Pj , Pj+1 andPj+2, as shown in Figure 2. Thej th

segment of CRS interpolates between twomiddle con-
trol points, i.e., Pj andPj+1. The end control points,
i.e.,Pj−1 andPj+2 are used to calculate the tangents of
Pj andPj+1. Equations for boundary conditions ofj th

segment are written as:

P′j =
1
2

(
Pj+1−Pj−1

)
, (1)

P′j+1 =
1
2

(
Pj+2−Pj

)
. (2)

For l joined segments, there are 2l conditions for con-
tinuity of functions and 2l conditions for continuity of
slopes. Finally the equation of CRS forj th segment is
written as follows:

Q j(ti) =
1
2
[(−t3

i +2t2
i − ti)Pj−1

+[3t3
i −5t2

i +2]Pj

+[−3t3
i +4t2

i + ti ]Pj+1

+(−t3
i − t2

i )Pj+2],

(3)

whereti is parameter of interpolation , 0≤ ti ≤ 1. In
order to generaten points betweenPj andPj+1 inclu-
sive, the parameterti is divided into(n− 1) intervals
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Figure 4: A quadratic Bézier curve segment.

between 0 and 1 inclusive, andQ j(ti) is evaluated atn
values ofti . Since the CRS passes through itsmiddle
control points, thereforeQ j(0) = Pj andQ j(1) = Pj+1.
Figure 3 shows multi-segment Catmull-Rom splines.

2.2 Quadratic Bézier Curve (QBC)
Quadratic Bézier curve (QBC) is aC0 continuous curve.
A QBC segment, is defined by three control points, i.e.,
P0, P1, andP2, as shown in Figure 4.P0 andP2 are called
end control points(ECP), whileP1 called amiddle con-
trol point (MCP). QBC passes through itsend control
points, while amiddle control pointis used to control
the shape of curve. To generate continuous quadratic
Bézier curves that interpolatek+1 pointsk curve seg-
ments are used. Equation of a QBC segment can be
written as follows:

Q(ti) = (1− ti)
2P0 +2ti (1− ti)P1 + t2

i P2, (4)

whereti is a parameter of interpolation , 0≤ ti ≤ 1. In
order to generaten points betweenP0 andP2 inclusive,
the parameterti is divided into(n−1) intervals between
0 and 1 inclusive, andQ(ti) is evaluated atn values ofti .
Since the QBC passes through its first and last control
points, thereforeQ(0) = P0 andQ(1) = P2. Figure 5
shows multi-segment quadratic Bézier curves.

3 FITTING STRATEGY
This section describes the strategy of fitting Catmull-
Rom spline and quadratic Bézier curve to video data.
Fitting process is applied to temporal data of each spa-
tial location individually. Number of spatial locations
areW×H, whereW andH are width and height of a
frame respectively. Let color or luminance value of a
spatial location(x,y), 1≤ x≤W, 1≤ y≤ H, at frame
i is pi , where 0≤ pi ≤ 255 and 1≤ i ≤ n. We have
to approximate then values of each spatial location by
quadratic Bézier curve and Catmull-Rom spline fitting.
Now we describe the fitting process of an arbitrary spa-
tial location (xi ,yi). The temporal data of(xi ,yi) in
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Figure 5: Multi-segment quadratic Bézier curves in 2-D
and 3-D space.

n frames isO = {p1, p2, . . . , pn}. As an input to al-
gorithm the user specifies two parameters: (1)upper
limit of error ξ lmt, i.e., maximum allowed squared dis-
tance between original and fitted data, e.g.,ξ lmt = 100,
and (2) initial breakpoint intervalδ , i.e., color or lu-
minance value of pixel after everyδ th frames is taken
as a breakpoint (control point), e.g.,δ = 12 sets the
initial breakpoints asBP = {p1, p13, p25, p37, . . . , pn}
(color or luminance value of pixel in last frame is
always taken as a breakpoint). The fitting process
divides the data into segments based on breakpoints,
i.e., S= {S1,S2, . . . ,Su−1}. A segment is a set of all
points (color or luminance values) between two con-
secutive breakpoints, e.g.,S1 = {p1, p2, . . . , p13}, S2 =
{p13, p14, . . . , p25}.

In addition to control points of the current segment,
Catmull-Rom spline needs control points of previous
and next segments. Therefore we used breakpoints of
previous, current and next segments as control points of
a current Catmull-Rom spline segment and obtained the
approximated data of current segment using Eq. (3). An
interesting question is how to obtain the breakpoints of
first and last segments because they do not have previ-
ous and next segments respectively. Unlike [KB84] tak-
ing arbitrary breakpoints at both ends, we opted to take
Pj−1 = Pj , for the first segment andPj+2 = Pj+1, for the
last segment. This way we are able to get the control
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points of all segments automatically. For a quadratic
Bézier curve breakpoints of current segment are taken
asend control points(ECP), whilemiddle control point
(MCP) i.e.,P1 is obtained by least square method. Least
square method gives thebestvalue of middle control
point that minimizes the squared distance between the
original and the fitted data. If there aremdata points in
a segment, andOi andQ(ti) are values of original and
approximated points respectively then we can write the
least square equation as follows:

U =
m

∑
i=1

[Oi −Q(ti)]2. (5)

Substituting the value ofQ(ti) from Eq. (4) in Eq. (5)
yields:

U =
m

∑
i=1

[pi − (1− ti)2P0 +2ti(1− ti)P1 + t2
i P2]2. (6)

To find value ofP1 differentiating Eq. (6) partially with
respect toP1 yields:

∂U
∂P1

= 0. (7)

Solving Eq. (7) forP1 gives:

P1 =
∑m

i=1

[
pi − (1− ti)2P0− t2

i P2
]

∑n
i=12ti(1− ti)

. (8)

Once all three control points are in hand then approx-
imated data of current Bézier segment is obtained using
Eq. (4).

Same procedure is repeated for each segment
for both Catmull-Rom spline and quadratic Bézier
curve. This yieldsn values of approximated data,
Q = {q1,q2, . . . ,qn}. Then we compute error of
fitting, i.e., squared distance of each point be-
tween the original data and the approximated
data, d2

i = |pi − qi |2, 0 ≤ i ≤ n. From the max-
imum d2

i we compute maximum squared distance,
ξ max = Max

(
d2

1,d2
2, . . . ,d2

n

)
. If maximum squared

distance of anyj th segment is greater thanξ lmt then
this segment is splitted (replaced) with two new seg-
ments, j th1 and j th2 , i.e., S=

[
{S}−

{
Sj

}]⋃{
Sj1,Sj2

}
.

A new breakpointbpnew from original data is added
in the set of breakpoints where the error is max-
imum, i.e., BP = {BP}

⋃
{bpnew}. For example,

if segment S1 splits at p6 then a new breakpoint
bpnew= p6 is inserted between breakpointsp1 andp13

(BP =

p1,

bpnew︷︸︸︷
p6 , p13, p25, p37, . . . , pn

) and two new

segments{p1, p2, . . . , p6} and{p6, p7, . . . , p13} replace
S1. The fitting process is repeated with new set of
breakpoints until mean square error of each segment is
equal to or less thanξ lmt.

The above described fitting process is applied to
color or luminance variations in temporal dimension of
each spatial location separately. It is obvious that each
spatial locations have different number of breakpoints
(control points) selected from different frames, in other
words rectangular shape of video frames is no longer
intact.

Section 4 describes the proposed algorithm formally
for a single spatial location. In order to have a better
comparative look of fitting process between Catmull-
Rom spline (CRS) and quadratic Bézier curve (QBC),
we marked steps in curly braces where CRS and QBC
differs in fitting. Figure 6 and Figure 7 show fitting of
luminance values of in 80 frames of a video by Catmull-
Rom spline and quadratic Bézier curve, respectively.

4 ALGORITHM

procedure Fitting algorithm for luminance variations
of single spatial location.
spatial location(x,y), 1≤ x≤W, 1≤ y≤ H.
Luminance of(x,y) in frame 1 ton is {p1, p2, . . . , pn}

Require: :
Max. allowed squared distancei.e.,ξ lmt,
Breakpoints intervali.e.,δ ,
Points of original data:O = {p1, p2, . . . , pn},
Breakpoints:BP= {p1, p1+δ , , p1+2δ , . . . , pn},

1: Get indices ofBP: V = {1,1+δ ,1+2δ , . . . ,n}=
{v1,v2, . . . ,vu},

2: Divide O into segmentsS= {S1,S2, . . . ,Su−1},
Si =

{
pvi , . . . , pvi+1

}
.

3:


Not required CRS
FindMCPof each segment QBC

MCP=
{

PS1
1 , ,PS2

1 , . . . ,PSu−1
1

}
QBC

4: Fit a spline to each segment, i.e., Find
Q = {q1,q2, . . . ,qn}

5: d2
i = |pi −qi |2, 0≤ i ≤ n

6: ξ max= Max
(
d2

1,d2
2, . . . ,d2

n

)
, ξ max∈ kth frame,k∈

j th segment
7: while ξ max > ξ lmt do
8: bpnew= pk

9: V = {V}
⋃
{k}

10: Split j th segment intoj th1 and j th2 segments
11: BP= {BP}

⋃
{bpnew}

12: S=
[
{S}−

{
Sj

}]⋃{
Sj1,Sj2

}
13:


Not required CRS
UpdateMCP=
{MCP}

⋃{
P j1

1 ,P j2
1

}
QBC

14: Using updatedBPfit spline/curve to:{
j −1, j1, j2, j +1 segments CRS
j1, j2 segments QBC

15: Findd2
i of:{

j −1, j1, j2, j +1 segments CRS
j1, j2 segments QBC
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16: Updateξ max= Max
(

ξ max,d2
j−1,d

2
j1
,d2

j2
,d2

j+1

)
CRS

Max
(

ξ max,d2
j1
,d2

j2

)
QBC

ξ max∈ kth frame,k∈ j th segment
17: Find count of interpolating points (C) fromV =

{v1,v2, . . . ,vu}, u ≪ n:
C = {c1,c2, . . . ,cu−1}, ci = v(i+1)−vi +1

18:

{
EncodeBPandC CRS
EncodeBP, MCPandC QBC
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Figure 6: Catmull-Rom spline fitting to luminance val-

ues in 80 frames of a video, ξ lmt = 21, δ = 79,
PSNR=43.845-dB.

1 10 20 30 40 50 60 70 80
220

222

224

226

228

230

232

234

236

Original Data
Fitted Data
Breakpoints

Figure 7: Quadratic Bézier curve fitting to luminance

values in 80 frames of a video, ξ lmt = 21, δ = 79,
PSNR=45.115-dB.

5 EXPERIMENTS AND RESULTS

We have applied the proposed algorithm on various
naturally recorded and synthetically created video se-
quences. Output data is entropy encoded. The per-
formance of proposed method is evaluated in terms of
bit-rate, measured in bits per pixel (bpp) and PSNR,
measured in decibel (dB). Table 1 gives the details of

selected input video sequences whose results are pre-
sented in this paper.SalesmanandForemanare natu-
rally recorded luminance videos at 8-bpp, whileDarius
is a synthetically created RGB video at 24-bpp. Ta-
ble 2 compares the performance of CRS and QBC with
Three Step Search method (TSS) [KIH+81], a well
known and widely used block matching algorithm for
temporal compression of video data. For TSS every al-
ternative frame is predicted from previous frame (ref-
erence frame), macro block size is 8× 8, and range
of search window is±8 in both horizontal and verti-
cal directions. Reference frames are first differentially
then entropy coded along with motion-vectors (MVs).
Predicted frames are not coded because they are ap-
proximated from reference frames. The fitting methods
achieved better compression performance than TSS, be-
cause the fitting work of our algorithm is at pixel level
and they approximate the variations of luminance with
good level of accuracy. We did not compare the perfor-
mance for RGB video, because block matching algo-
rithm convert the RGB data toYCbCr data, and block
matching is performed for only luminance data (Y),
while chrominance data (CbCr ) is sub-sampled (4:2:0),
and predicted chrominance frames are obtained from
MVs of luminance data. Therefore comparison of CRS
and QBC with TSS for RGB video is not appropriate.

Figures 8, 9 and 10 show R-D curves of CRS and
QBC for Salesman, ForemanandDarius sequences re-
spectively. Note that these statistics are only for tem-
poral compression of video data; neither spatial com-
pression nor quantization is used. The statistics show
that the proposed method yields good objective per-
formance for naturally recorded videos (Salesmanand
Foreman) and very good performance for synthetically
created video (Darius). For theSalesmansequence,
around 35-dB PSNR is achieved at bit-rate 0.59-bpp
and 0.64-bpp by CRS and QBC respectively. For the
Foremansequence, around 35-dB PSNR is achieved at
bit-rate 1.98-bpp and 2.1-bpp by CRS and QBC respec-
tively. Darius is a color sequence and bit-rate of orig-
inal Darius sequence is 24-bpp. We achieved around
35-dB PSNR at bit-rate as low as 1.5-bpp by both CRS
and QBC.

Now look at the comparative performance of CRS
and QBC. For theSalesmansequences at low bit-rate
CRS performs better but at bit-rate>0.82-bpp QBC
leads CRS. For theForemansequences CRS performs
better than QBC at all values of bit-rate. For theDarius
sequence the curve is quite interesting, at bit-rate<1.6-
bpp CRS performs better, 1.6-bpp<bit-rate<3.5-bpp
QBC performs better, and bit-rate<3.5-bpp, again CRS
takes leads over QBC.

Figures 11, 12 and 13 show 30th frames of CRS and
QBC encoded videos forSalesman, ForemanandDar-
ius video sequences respectively. It can be seen from
these figures that subjective performance i.e.,human vi-
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Figure 8: Rate-distortion curves of Catmull-Rom spline
& Quadratic Bézier curve, Salesman sequence.

sual acceptanceof CRS and QBC approximated video
frames is very good and no blocking artifacts are pro-
duced.

6 DISCUSSION
Split of a segment: Lines 8 to 16 are important steps
of our fitting algorithm. For the correct and efficient
implementation of our algorithm it is very important
to find which other segments are affected by splitting
of a segment. Let us assume that an arbitrary seg-
ment j splits into two segmentsj1 and j2. For the
quadratic Bézier curve we have to recomputemiddle
control points, approximating points and squared dis-
tances of j1 and j2 segments only. But for Catmull-
Rom spline the situation is not so simple. For three
consecutive segmentsj −1, j and j + 1, the last three
control points of( j − 1)th segment i.e.,Pj−1, Pj and
Pj+1 are same to first three control point ofj th segment
and first control point of( j−1)th segment i.ePj−2 is not

Video Name Format Number of Bit-rate
Frames

Salesman CIF 45 8-bpp
(luminance) 352×288

Foreman SIF 44 8-bpp
(luminance) 352×288

Darius SIF 44 24-bpp
(RGB) 352×288

Table 1: Details of input video sequences.

Method Salesman Foreman
Name PSNR Bit-rate PSNR Bit-rate
TSS 38.132 1.7768 35.875 2.7509
CRS 38.244 0.8574 35.589 2.0687
QBC 38.291 0.8578 35.812 2.2516

Table 2: Performance comparison of TSS [KIH+81],
CRS and QBC.
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Figure 9: Rate-distortion curves of Catmull-Rom spline
& Quadratic Bézier curve, Foreman sequence.
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Figure 10: Rate-distortion curves of Catmull-Rom
spline & Quadratic Bézier curve, Darius sequence.

shared withj th segment. Similarly the first three con-
trol points of( j + 1)th segment i.e.,Pj , Pj+1 andPj+2

are same to last three control points ofj th segment and
last control point of( j + 1)th segment i.ePj+3 is not
shared with j th segment. This means that a segment
shares control points with its previous and next seg-
ments. Consequently adding a new breakpoint (split-
ting) at j th segment requires to recompute approximat-
ing values and squared distances for two new segments,
i.e., j1 and j2, obtained from splitting ofj th segment, in
addition to that approximating values and squared dis-
tances of previous and next segments ofj th segments,
i.e., ( j − 1)th and ( j + 1)th segments are also need to
be recomputed. Fortunately Catmull-Rom spline saves
some computation by not requiring least square solu-
tion as required by quadratic Bézier curve to find the
value of itsmiddle control point. Lines 3 and 13 of the
fitting algorithm describe these recomputation steps for
quadratic Bézier curve and Catmull-Rom spline.

Rate Control: Rate of the output data is controlled by
varying the value ofξ lmt. Increasing the value ofξ lmt

decreases the bit-rate. The default value ofξ lmt is 100.
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Figure 11: 30th frame of Salesman video sequence,

ξ lmt = 100. Top: CRS approximated frame, 38.68-
dB, 0.92991-bpp. Bottom: QBC approximated frame,
39.968-dB, 1.0796-bpp.

Output data encoding requirement: For CRS we
need to encode (1) breakpoints (BP) and (2) count of
interpolating points (C). For QBC, in addition to (1)
and (2), we also need to encodemiddle control points
(MCP). If video data is fitted usingmsegments then for
CRS,m+1 values ofBPandmvalues ofC are need to
be encoded. For QBC with equal number of segments,
m+1 values ofBP, m+1 values ofMCPandmvalues
of C are need to be encoded. Apparently CRS has less
output data to be encoded. But it also depends on how
much splitting of segments occurs. Usually splitting of
a segment by CRS fitting is more often than splitting of
a segment by QBC fitting.

Reasons to choose quadratic Bézier curve and
Catmull-Rom spline: (1) Both QBC and CRS are
computationally efficient than other curves e.g., Nat-
ural cubic spline, B-spline, cubic Bézier curve etc. In
fact we also used Natural cubic spline and cubic Bézier
curve and found them less feasible than QBC and CRS.
(2) Breaking of a segment into two segments keeps the

Figure 12: 30th frame of Foreman video sequence,

ξ lmt = 100. Top: CRS approximated frame, 37.591-dB,
2.401-bpp. Bottom: QBC approximated frame, 38.191-
dB, 2.7374-bpp.

computation cost within acceptable limit for both QBC
and CRS.

Computational cost:QBC is computationally more
efficient than CRS, because, (1) QBC is a quadratic
function, while CRS is cubic a function. (2) Due to
the least square fitting, QBC approximates longer seg-
ments, which means it causes lesser splitting and needs
lesser computation than CRS.

Naturally recorded vs synthetically created videos:
The latter has less noise and more uniform distribution
of luminance/color. Therefore, both CRS and QBC per-
form extremely well for synthetically created videos.

Choosing between CRS and QBC: CRS and QBC
behave quite similar, but if higher compression is de-
sired then CRS is slightly better than QBC. If compu-
tational efficiency is of more importance then QBC is
more appropriate choice.

Limitations: The performance of fitting process de-
grades for spatial locations where changes in luminance
in temporal dimension is very sharp. Because such spa-
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Figure 13: 30th frame of Darius video sequence,

ξ lmt = 100. Top: CRS approximated frame, 41.838-
dB, 4.4234-bpp. Bottom: QBC approximated frame,
42.272-dB, 4.9813-bpp.

tial locations cause lot of splitting of segments. Due to
non-rectangle shape of output data, combining spatial
compression with temporal compression needs special
care and shape-adaptive wavelet transform can be used
for spatial compression.

7 CONCLUSION

We presented a new method for compression of tem-
poral video data by Catmull-Rom spline and quadratic
Bézier curve fitting. Detail of fitting strategy and
pseudo code of the algorithm are presented. We tested
the proposed method using luminance and color (RGB)
temporal data of naturally recorded and synthetically
created video sequences. Experimental results show
that the proposed method yields very good results both
in terms of objective and subjective quality measure-
ment parameters, i.e. bit-rate/PSNR andhuman visual
acceptance, without causing any blocking artifacts.
The method is suitable for compression of both natu-

rally recorded and synthetically created videos such as
animations and cartoons.

8 FUTURE WORK
Compression of spatial video data by spline/curve fit-
ting is under investigation.
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