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ABSTRACT

This paper presents a multiple model real-time tracking technique based on the mean-shift algorithm. The proposed approach
incorporates spatial information from several connected regions into the histogram-based representation model of the target,
and enables multiple models to be used to represent the same object. The use of several regions to capture the color spatial
information into a singlecombinedmodel, allow us to increase the object tracking efficiency. We use a model selection function
that takes into account both the similarity of the model withthe information present in the image, and the target dynamics. In
the tracking experiments presented, our method successfully coped with lighting changes, occlusion, and clutter.

Keywords: Non-rigid object tracking, target representation and localization.

1 INTRODUCTION
Object tracking has been studied and applied to numer-
ous computer vision problems which include vehicle
tracking, surveillance, medical diagnosis, actor anima-
tion, tracking multiple people, and face detection and
animation. In this paper we are mainly interested in
people tracking although our approach is general. The
most recent survey of the state of the art on this topic
is given in [8].

The goal of a tracking process is to estimate the state
of the object in a timet, represented by a vectorXt ,
given the setZ of measurements taken from the se-
quence of images in timest−1,t−2, . . .

A straightforward way to derive a distribution model
p(Xt |Z), is by using histogram analysis [2, 6, 4]. To
do this, the current frame is searched for a region, a
fixed-shape variable-size window, whose content best
matches a reference color model. Comaniciu et al.
[4] proposed a tracking algorithm in which a reference
target model is represented by ah-bin histogram that
approximates the probability density function (pdf) in
the feature space. Maximization is then performed by
a mean-shift procedure. Collins [10] improves the al-
gorithm using two different kernels, one for scale and
another for motion, what allows more stable tracking
on targets with fast motion from or towards the cam-
era.
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When the target moves outdoors, noise, shadows
and lighting changes can appear which significantly
alter the color distributions in the image sequence. In
order to deal with these difficulties, Porikli&Tuzel[9]
introduce a mean-shift based model update technique
with an adaptive change detection method. We take a
different approximation, modelling all the appearance
information in terms of probability distributions. In
this case, a single pdf will be insufficient for modeling
and tracking the object reliably. We suggest the use
of a set of models which are switched according to a
probabilistic rule [7].

The other important point in the mean shift algo-
rithm is the use of the spatial information in the ap-
pearance model. The classic formulation [4] encodes
spatial information using radially symmetric kernels
and therefore it becomes easy for the tracker to get
confused with other objects having the same feature
distribution but different spatial configurations of fea-
tures. Several contributions have been done to over-
come this problem [1, 11]. In these cases the spatial in-
formation is encoded in complex statistical appearance
models (spatiograms) using the pixels of the tracking
region. In our case the focus is different, we use a more
complex tracking region defined as the union of sev-
eral connected regions, overlapping or not, each one
having an appearance model defined by its color his-
togram. This choice looks more suitable for the track-
ing objects defined by several regions of homogeneous
color.

The aim of this research is to develop a technique
for real-time object tracking under variable lighting
conditions in a cluttered scene. This paper proposes
a generalization of the classical mean-shift tracking
model to enable the handling of spatial restrictions, us-
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ing several histograms associated to different parts of
the tracking region, instead of using only one summa-
rizing all the color information.

The paper is organized as follows: Section 2 in-
troduces the combined model which is used to in-
corporate spatial information into the histogram-based
model; experimental results are shown in Section 3;
and Section 4 presents our conclusions.

2 PROPOSED METHOD

2.1 Tracking

The pdfs that characterize the target model and the tar-
get candidate are given byh-bin histograms, extracted
from ellipsoidal regions of the image.

target model: q̂ = {q̂u}u=1...h

h

∑
u=1

q̂u = 1

target candidate: p̂(y) = {p̂u(y)}u=1...h

h

∑
u=1

p̂u = 1

Wherey is the spatial location of the target candi-
date. A similarity functionρ̂(y) is defined, whose lo-
cal maxima in the image indicate the presence of ob-
jects having representations similar toq̂. The tracking
process is then defined as a search procedure for those
maxima. In order to avoid the computational cost as-
sociated with a gradient-based optimization, Comani-
ciu et al. regularize the similarity function by masking
the region of interest with an isotropic Epanechnikov
kernel in the spatial domain [3] and apply a mean-shift
technique. Previously, the region of interest which de-
fines the target is normalized to a unit circle, by inde-
pendently rescaling the horizontal and vertical dimen-
sions of the original ellipsoid.

The similarity function defines a distance between
the target model and the candidates. The distance be-
tween two discrete distributions is defined as:

d(y) =

√

1−ρ [p̂(y), q̂] (1)

where the similarity function will be denoted by:

ρ̂(y)≡ ρ [p̂(y), q̂] =

h

∑
u=1

√

p̂u(y)q̂u (2)

which is the sample estimate of the Bhattacharyya co-
efficient betweenp andq [5].

2.2 Adding Spatial Information

One of the main drawbacks presented by histogram-
based models is the absence of any spatial informa-
tion. However, it is sometimes interesting to be able
to include spatial restrictions in the object model. For
example, when attempting to track a person walking,

it is possible to identify two areas with typically differ-
ent histograms, corresponding to the target’s torso and
head, with a specific spatial relationship between both
of these. In this section, we extend the target model in
order to incorporate this kind of information.

Our combined modelQ is a set comprisingm re-
gions, overlapping or not, each of which is character-
ized by a distribution̂qi , together with the offset value
∆yi of each region with respect to the location where
the model is centered,y. The new target candidate
P(y) is given by an analogous expression:

Combined model: Q = {q̂i ,∆yi}i=1...m

Combined candidate:P(y) = {p̂i
(y + ∆yi

)}i=1...m
(3)

The Bhattacharyya coefficientcorresponding toQ
for a given locationy of the image is therefore given
by the following expression:

ρ [P(y),Q] =
1
m

m

∑
i=1

ρ [p̂(y + ∆yi
), q̂i

] (4)

The following algorithm is used to estimate, in the
new frame, the locationy1 of the maximum value of
the Bhattacharyya coefficient, starting from the loca-
tion y0 estimated for the previous frame:

Algorithm: Given the combined target modelQ,
comprised bym regions, and its locationy0 in the pre-
vious frame:

1. For eachi from 1 tom:

(a) Compute the weights{ω i
j} j=1...ni [4]:

ω i
j =

h

∑
u=1

√

q̂i
u

p̂i
u(y0 + ∆yi)

δ [β (xi
j)−u] (5)

(b) Obtainyi
1 from:

yi
1 =

∑ni
j=1 xi

jω i
jk
′
(xi

j)

∑ni
j=1 ω i

jk
′(xi

j)
(6)

2. The next location of the target is computed as

y1 = argminy∈{y1
1,...y

m
1 }
{ρ [P(y),Q]} (7)

3. If ||y1−y0||< ε, returny1 and stop.
Otherwise, sety0← y1 and go to Step 1.

Whereni is the number of pixels of thei–th region,
xi

j are the locations of their pixels, normalized to the
unit circle. β (x) represents the associated bin at the
pixel located onx, h is the histogram size, andδ is the
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Kronecker delta function.k(x) is the Epanechnikov
kernel function, andk′(x) represents its derivative.

Valuesq̂i
u and p̂i

u are defined by the expressions:

q̂i
u = Cq

ni

∑
j=1

k(xi
j)δ [β (xi

j)−u] (8)

p̂i
u(y) = Cp

ni

∑
j=1

k(xi
j −y)δ [β (xi

j)−u] (9)

whereCq andCp are normalization constants obtained
by imposing the conditions∑u q̂i

u = 1 and∑u p̂i
u = 1

for eachi.
When the number of regionsm = 1, our combined

model is reduced to the model proposed by Comaniciu
et al.

2.3 Scale Selection
Different approaches for dealing with scale changes
have been proposed. These techniques define a scale
factorσ , which allows to adjust the bandwidth of the
kernel profile, i.e. the size of the ellipsoid where the
target candidate histogram is computed.

The approach proposed in [4] works as follows:
Given the scaleσprev of the previous frame, we run
the target localization algorithm three times, withσi =

σprev+ i ·∆σ , for i ∈ {−1,0,1}. The new scaleσnew is
then computed as

σnew= γ ·σopt +(1− γ) ·σprev, (10)

whereσopt is the value ofσi which gives the best Bat-
tacharyya coefficient. In our experiments, we have
chosen the default values proposed in [4]γ = 0.1 and
∆σ = 0.1σprev.

In order to employ the scale selection technique pro-
posed in [10], some modifications to the tracking algo-
rithm are needed:

• The kernel function k(x) is replaced by a
Difference-of-Gaussian filterHx(x,s), wheres is a
scale parameter, as defined in [10].

• Expression (6) must be replaced by:

yi
1 =

∑sHs(s)∑ni
j=1 xi

jω i
jH
′
x(x

i
j ,s)

∑sHs(s)∑ni
j=1 |ω

i
jH
′
x(x

i
j ,s)|

(11)

where−n ≤ s≤ n defines a range of scalesσs,
where σs = σprev · bs, with n = 2, b = 1.1, and
Hs(s) = 1− (s/n)

2.

• A mean-shift step is applied to estimate scale for
every region, using the following equation:

s′i =
∑s∑ni

j=1Hx(xi
j ,s)ω i

j s

∑s∑ni
j=1Hx(xi

j ,s)ω i
j

(12)

Being s′ the scale values′i which gives the best
Bhattacharyya coefficient, the scale for the next
step is computed asσnew= σprev·bs′ .

2.4 Model Selection

In order to prevent loss of the target due to changes in
object orientation and lighting conditions, we will ex-
tend the approach proposed in [7] to deal with scale
changes. We defineM as a multiple model, com-
prising a set ofn combined models, corresponding to
several histograms extracted from images generated
by the object under different orientations and lighting
conditions:

M = {Q0,Q1, . . . ,Qn−1} (13)

We can thus run the target localization algorithm for
eachQi , proposed in Sections 2.2 and 2.3, and obtain
a setY of image locations and scales:

Y = {(y0,σ0),(y1,σ1), . . . ,(yn−1,σn−1)} (14)

and a setB of coefficients:

B = {b0,b1, . . . ,bn−1}, (15)

where each (yi, σi) represent the location and scale
where the modelQi maximizes the Bhattacharyya co-
efficient (4), and eachbi = ρ [P(yi),Qi ], computed at
scaleσi , represents the actual value of the coefficient
itself.

For each frame, we then need to select the combined
model inM which best fits the observed image. Se-
lecting theQi with the largest Bhattacharyya coeffi-
cient may increase the risk of distractions with image
regions having similar histograms to the ones present
in our model. In order to avoid this, we can weight the
estimated values, giving more importance to the ones
with the greatest coherence with the dynamics ob-
served for the target so far. With this goal in mind, we
will define a probability distribution based on the dis-
placement between locationyi and scaleσi estimated
by the tracker, and predicted locationȳ and scalēσ for
the target, given by some dynamic model for the ob-
ject to be tracked. In addition, we will consider that
each of the combined modelsQi ∈ M presents ana
priori probabilityp(Qi) of appearing in each image of
the sequence.

We will define the probability of eachQi , givenB,
as:

p(Qi/B) =
bi · p(Qi)

∑
j

(

b j · p(Q j)

) (16)

and the probability of eachQi , givenY, as:
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p(Qi/Y) =
p(ȳ−yi, σ̄ −σi) · p(Qi)

∑
j

(

p(ȳ−y j , σ̄ −σ j) · p(Q j)

) (17)

In our case, we suppose that the(ȳ−yi) and(σ̄−σi)

values follow a multivariate zero-mean Gaussian dis-
tribution, i.e.p(ȳ−yi, σ̄−σi)∼N(0;σx,σs). Accord-
ing to Bayes’ rule,

p(Y/Qi) =
p(Qi/Y) · p(Y)

p(Qi)
(18)

and

p(B/Qi) =
p(Qi/B) · p(B)

p(Qi)
(19)

and also

p(B,Y/Qi) =
p(Qi/B,Y) · p(B,Y)

p(Qi)
(20)

We assume thatB andY are statistically independent
givenQi , i.e.

p(B,Y/Qi) = p(B/Qi) · p(Y/Qi) (21)

Replacing expressions (18), (19) and (20) in (21), we
obtain the following equation:

p(Qi/B,Y) =
p(Qi/B) · p(Qi/Y)

p(Qi)
·C (22)

whereC =
p(B)·p(Y)

p(B,Y)
is a constant term.

Finally, substitutingp(Qi/B) and p(Qi/Y) for ex-
pressions (16) and (17) in Equation (22), and discard-
ing the constantC, we obtain the following expression
for S(i):









bi · p(ȳ−yi, σ̄ −σi) · p(Qi)

∑
j

(

b j · p(Q j)

)

·∑
k

(

p(ȳ−yk, σ̄ −σk) · p(Qk)

)









(23)
used to select the best modelQ∗ for each frame, which
is the modelQi with highestS(i) value.

In practice, the proposed framework consists of two
phases: first, themean shiftalgorithm is applied to
eachQi comprising the multiple model. Next, the spe-
cific model which best matches the observation is se-
lected.

In order to avoid processing all the models for each
frame, specially when their number is high, we can
represent the multiple model by means of a graph,
where each node corresponds with a simple modelQi .
Two nodes will be connected if they can appear in two
consecutive frames of a typical sequence. As we deal

Sequence Frames Resolution Ground truth
eps 208 320×240 Yes
paddle 501 320×240 Yes
player 142 352×288 No

Table 1: Sequences used in the experiments.

with video sequences, we can assume that the model
changes must be gradual, and so only those nodes
which are sufficiently similar in the graph will be con-
nected. Therefore, it will be only necessary to examine
(in each frame) the neighbors of the actual modelQ∗,
enabling us to restrain the computational requirements
of the technique.

3 EXPERIMENTAL RESULTS
In order to evaluate his performance, the method pro-
posed in this article has been applied to various se-
quences. In this section, some representative results
are presented on mpeg-compressed sequences (Table
1), for some of which we have ground truth data. The
RGB color space was taken as the feature space, quan-
tized into 8×8×8 bins. For scale selection, we have
employed the technique proposed in [4] (see Section
2.3) to all the sequences, except for thepaddlese-
quence, in which we have used the Collins approach
[10].

In the images showing the tracking results, small
squares are superimposed in the upper-left corner of
each frame indicating the active simple model in the
corresponding multiple model. All of these are shown
in white, except for the one corresponding to the model
chosen in each frame, which is displayed in gray.

3.1 Dynamical Model
In order to estimate the expected locationȳt+1 and
scaleσ̄ t+1 of the target in framet +1 needed to com-
putep(Qi/B,Y), we have defined a simple dynamical
model, that suffices to our purposes:

ȳt+1
= yt

+ dt

dt
= λ · (yt −yt−1

)+ (1−λ ) ·dt−1

σ̄ t+1
= σ t

(24)

whereyt , σ t represent the location and scale of the tar-
get estimated by the tracking algorithm at timet, and
d0=0. In our experiments, we have used a value forλ
of 0.5. In the case of a specially adapted tracker for
a certain object, the dynamical model can be replaced
by a more suitable one, or learnt from examples.

3.2 Performance Metrics
In order to evaluate our method we have employed
several localization metrics to the results obtained
from the sequences from which we have ground
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Figure 1:Epssequence: Frames 41, 81, 121 and 161.

OAR ADC BAP OTE
Non Combined 28.36 34.24 30.51 90.50
Combined 67.44 77.49 70.47 10.10

Table 2: Performance results obtained for theepsse-
quence using combined and non-combined models.

truth data. Beingg = (gx,gy) the real location of the
object,e = (ex,ey) the target location estimated by the
tracker,AC the area corresponding to the object, and
AT the area estimated by the tracker:

• Object Area Recall:OAR= 100·
|AT ∩AC|

|AT |

• Box Area Precision:BAP= 100·
|AT ∩AC|

|AC|

• Area Dice Coefficient:ADC= 100·
2∗ |AT ∩AC|

|AT |+ |AC|

• Object Tracking Error:OTE= ||e−g||

All of the mentioned metrics are averaged over the
whole sequence.

3.3 Experiments

The epssequence (Figure 1) was taken with a home
video camera, showing a person coming down some
stairs and walking along in poor lighting conditions. In
this example, the target goes behind a door at around
frame 80, and is occluded for several frames. As we
can see, the non combined model can’t overcome this
occlusion. Figure 4 shows the Bhattacharyya coef-
ficient between combined and non-combined models
and the target estimated location along the sequence.
When the target disappears, combined model coeffi-
cient decreases, while the non-combined one remains
stable. This suggests that the first one falls into a local
maximum.

As can be seen in Table 2, the best results are ob-
tained by the combined models. The other tracking re-
sult is significantly worse, because the target is missed.

Figure 2: Models used for theepssequence, with their
corresponding weighted histograms.

Figure 3: Results obtained with theepssequence, us-
ing non-combined models (left) and combined models
(right). In the upper-left corner, the active model is
shown in gray.
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Figure 4: Bhattacharyya coefficient between the com-
bined and non-combined models and the object’s esti-
mated location in theepssequence.

Figure 5:Paddlesequence: Frames 86, 171, 256 and
341.

OAR ADC BAP OTE
Non Combined 29.39 80.70 40.94 22.02
Combined 55.20 97.15 69.45 6.77

Table 3: Performance results obtained for thepaddle
sequence using combined and non-combined models.

The paddlesequence (Figure 5) lasts 20 seconds,
and shows a person playing paddle, moving, chang-
ing position and moving out of the shade. In this ex-
periment, we have employed the Collins approach (see
Section 2.3) to estimate target location and scale. As
we can see, almost all of the models track correctly
the target, with the multiple combined model behav-
ing best (even when the target is inclined).

The performance results for thepaddlesequence are
shown in Table 3. As we can see, the combined models
perform better than the non-combined ones.

The player sequence (Figure 8) represents several
soccer players. It was taken from a television news
broadcast and shows various players from the same
team, moving quickly and with sudden zoom and pan-
ning movements. In this case, three simple models
have been employed, three combined models, and the
associated multiple models. The results are shown

Figure 6: Models used for thepaddlesequence, with
their corresponding weighted histograms.

Figure 7: Results obtained with thepaddlesequence,
using non-combined models (left) and combined mod-
els (right). In the upper-left corner, the active model is
shown in gray.
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Figure 8:Playersequence: Frames 26, 51, 76 and 101.

Figure 9: Models used for theplayer sequence, with
their corresponding weighted histograms.

in Figure 10, and reveal once again how the com-
bined multiple model behaves best, enabling the target
to be tracked even when there are partial occlusions
or when similar objects appear on the scene. Figure
11 shows that, like in theepsexperiment, the Bhat-
tacharyya coefficient of the combined model is gen-
erally lower than the non-combined model one. This
suggests again that the combined model is less prone
to fall into local maxima.

The experiments shown in this paper run at over
20 frames/second (40 in some cases) on a Pentium
IV 3GHz desktop computer, except the ones that use
the Collins scale selection technique (see Section 2.3),
which run at 10 frames/second, due to the higher com-
putational requirements of that approach.

4 CONCLUSIONS

A combined tracking model has been presented, which
enables spatial information to be incorporated into the
histogram-based models, increasing the robustness of

Figure 10: Results obtained with theplayersequence,
using non-combined models (left) and combined mod-
els (right). In the upper-left corner, the active model is
shown in gray.
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Figure 11: Bhattacharyya coefficient between the
combined and non-combined models and the object’s
estimated location in theplayersequence.
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the tracking process. On this, a distance measure has
been defined which can be used in a minimization pro-
cess based on the mean-shift algorithm.

The proposed combined models provided better
results in our experiments than the classic approaches.
Although the proposed technique involve a higher
computational cost, this is low enough for them to be
used in real time.

Our tracking scheme can be extended in several
ways in order to be more flexible and applicable in real
world situations: extending the combined model to
deal with rotations and articulated motion, integrating
into the tracking scheme more information sources,
such as edges or optical flow.
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