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ABSTRACT 
One of the main challenges faced by object tracking and environment-modeling techniques is the frame-to-frame 
correspondence of the object of interest. False detections may lead to the tracking of wrong object thus 
misrepresenting information about the object location and its track. The tracking algorithm of the detected object 
should also be computationally inexpensive and suitable for real time applications. This paper discusses how 
GFV, a multidimensional entity encapsulating multiple feature parameters, can uniquely identify dominant 
features of an object, and increase the detection reliability due to its potential to function consistently in any kind 
of environment, uninfluenced by view point invariance or extrinsic factors, thus generating minimal false alarms. 
Further a method to determine the 3D position of the object is presented which works on uncalibrated camera 
images and can be successfully applied to online processes. Experimental analysis using a outdoor mobile robot 
have been carried out to establish the competence of the algorithm. A statistical approach to reject outlier data, if 
any, is applied while generating the trajectory of the mobile robot used for experiments 
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1. INTRODUCTION 
The implementation of vision based automated 
systems in various fields like security, surveillance, 
robot navigation, remote environment sensing and 
medical diagnosis is in the continuous evolvement of 
research in tandem with the field of object tracking 
and environment modeling. The task of tracking 
encapsulates within it primary operations like image 
segmentation, object detection and extraction, depth 
estimation and finally, object trajectory estimation. 
The main challenge faced by the detection techniques 
lies in the frame-to-frame correspondence of the 
regions of interest; which becomes difficult for non-
rigid objects exhibiting complex motion, or in frames 
where the object is occluded, or when the scene 
illumination is extremely influenced by 
environmental conditions. Mainly two approaches are 
taken in the vision based correspondence problem 
solving.  These are area based and feature based 
techniques. Detection of feature from exteroceptive 

sensors has remained an important area of research 
for several reasons. Firstly it provides the unique 
opportunity to abstract and encapsulate the dominant 
and distinguishable characteristics of the environment 
or scene from the sensory data. Secondly it is a 
process of reducing the resource requirement and the 
associated complexity of handling large data sets in 
real-time. Often features are defined as geometric 
primitives such as point, line, arc segments or some 
form of derived entities from the amplitude return 
history such as color and texture for example. In 
general, features segregate “objects of interest”  from 
the raw sensory data. Various algorithms have been 
proposed by different researchers for object detection 
and depth recovery.  
The progress of research in the field of feature 
detection using vision can be mainly categorized into 
four distinguishable classes. In the initial stage 
researchers mainly concentrated on detecting 
geometric features like edge and corners of the image 
to identify objects of interest. A large amount of 
work has been undergone in this area [1, 2]. The 
problems of most of these algorithms lie in the fact 
that they are not invariant to affine transformations 
and are also viewpoint dependent. The second class 
of algorithms uses primitive geometrical shapes as 
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features. General methods for shape recognition are 
moment based, structure based and Fourier descriptor 
based [3]. The next class of algorithms models the 
object as probabilistic distributions. These 
distributions represent features such as color [4], 
texture [5] etc. Another variation to color and texture 
detection of a region is background modeling which 
is beneficial in detecting only moving objects [6]. For 
the fourth class of algorithms, the object shape and 
appearance are generated simultaneously. These 
models also encode different views of an object, 
removing the shortcoming of viewpoint dependencies 
of the previous methods [7]. Inspite of many 
uniqueness and advantages, most of these methods 
require large computational power and hence 
unsuitable for real-time navigation and tracking 
application. Another limitation is that many of these 
methods have been developed for a specific sensor 
suite and well-structured indoor environment for 
specific applications and consider camera calibration 
as a prerequisite rendering them unsuitable for 
outdoor and unstructured environment where 
extrinsic parameters are dominant rather than 
intrinsic. Present work extracts features by detecting 
and representing them in a generalized feature vector 
(GFV), which can be used to uniquely identify each 
of the dominant objects in an image. Once features 
are detected using GFV, the next important task lies 
in estimating the depth measurement of the object of 
interest. In the past few years several techniques for 
depth recovery and construction of depth maps have 
been developed. This area is still an active research 
area and development in this field is in continuous 
progress. The issue has been investigated by different 
researchers from different viewpoints but can be 
categorized mainly into six main classes. The first 
class includes all methods, which are based on depth 
measurement from two cameras. Finding 
corresponding points between the two images 
precedes depth calculation while using stereo [8]. 
The second class comprises of methods that use 
simple geometry to recover depth information [9]. 
The next class of algorithms are those that derive 
depth information of the targets from the velocity 
estimation of the targets [10]. The fourth class of 
algorithms consider calculation of depth from optical 
blur, defocusing techniques [11] .The next class uses 
interpolation functions for depth estimation [12] .The 
last class comprises of those methods which use 
auxiliary devices such as laser range finders or 
ultrasonic sensors to measure depth.  
As a significant departure, the work reported here 
uses the image magnification to estimate the depth 
and thereby compute the trajectory. The main 
interesting issue of this algorithm is that it “does not 
require”  explicit camera calibration “ for depth 

recovery” . The paper is organized in the following 
manner. Section 1 provides basic background of the 
problem. This section also includes an outline of 
various significant work carried out for consistent 
feature detection and depth estimation. Section 2 
defines the GFV framework and its comparison with 
other conventional approaches briefly, whereas 
Section 3 includes the position determination of the 
detected object for trajectory development. Section 4 
deals with results and performance analysis of 
experimental findings. Finally, discussion and 
conclusion of this work is presented in Section 5. 

2. THE GFV FRAMEWORK 
The basic idea of using GFV as a scene descriptor 
stems out of the fact that point features often require 
a secondary level of corroboration such as color and 
texture to make it invariant. The generalized feature 
vector (GFV) is considered to be a multidimensional 
entity, which can include multiple parameters like 
color, shape, energy, entropy, size ratios and many 
more. Some of these parameters may be orthogonal 
to the other. In principle GFV can include as many 
parameters as desired. Another uniqueness of GFV is 
that it can also accommodate “ feature parameters 
obtained from other co-located sensors” . There is no 
limit on how many feature parameters can be 
included in GFV.   Although inclusion of multiple 
parameters can improve the detection reliability it 
however may increase the computation cost. 
Therefore for optimal performance not more than 
three parameters should be used. However the actual 
number of parameters will depend on the application 
requirements and available computational resources. 
Figures 1 & 2 shown in the appendix at the end of the 
paper, further demonstrates the algorithmic flow of 
the GFV briefly using a sample image. The method 
mainly consists of two steps: - During first step a 
reference model of GFV is created which is then 
applied to the actual data in the second step. The 
details of the algorithm and its establishment have 
been discussed in the reference [13] and are beyond 
the scope of this paper.  
The suitability of GFV lies in the fact that even when 
any information about the environment of the object 
to be detected or presence of other objects in its 
surrounding is not known, the method will provide 
reasonably accurate results instantly without false 
alarms. The user need not have to decide which 
features are to be matched or in which order they are 
to be matched in order to get the best matching. Thus 
GFV is self-deciding and can operate independently 
in any environment without any prior knowledge 
about it. Failures of many object detection 
algorithms, mainly due to view point invariance; 
occlusion and influence of other extrinsic factors can 
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be successfully resolved by the GFV. GFV also 
responds very well even in outdoor environment. 
Similar objects can be identified from a sequence of 
images taken at different time in different 
environmental conditions. Since GFV is essentially a 
multi parametric matching method, it is more robust 
compared to any other step-by-step matching 
algorithm. 

3. POSITION CALCULATION 
Any camera image is a 2D projection of the 3D world 
using perspective transformation. As a result, 
estimation or recovery of object distance from the 
camera requires elaborate mathematical procedure. 
Various depth detection algorithms using monocular 
camera and their relative merits have been already 
mentioned in section 1. In this section an alternative 
technique using the thin lens equation and the image 
magnification factor (shown in equation 1 below) is 
used to calculate the depth. This technique is suitable 
for online processes and doesn’ t require large 
computational overhead. For computing the object 
depth for every image frame, the magnification ratio 
is estimated for each image frame from its object and 
image dimension ratio. This method has only one 
limitation i.e. object shape; size and approximate 
dimensions should be predefined. The image 
dimensions like area, perimeter, shape and size ratios 
are already computed while detecting the object as 
seen in section 2. Any of the above mentioned 
dimensions may be used but the choice should be 
kept fixed for all the image frames. The depth 
estimation procedure is further illustrated below: 
The thin lens equation gives  

fvu

111 =+                                (1)         

where u is the image distance, v is the object distance 
required to be calculated and f is the focal length of 
the lens. The magnification ratio m, is given by 

O

I

v

u
m ==                                 (2)          

Here, I and O give the image size and object size 
respectively. Substituting u as mv in equation 1, v can 
be written as 

m

fm
v

)1( +=                               (3) 

While computing the depth d n for each of the camera 
frames n using equation 3, there are two factors that 
should be resolved. Firstly obtaining the image size 
for computing the magnification factor should not 
consider the total surface of the extracted image. The 
part of the image to be considered for a particular 
frame is variable and depends on the viewpoint of the 
camera for that image frame. This fact is further 

explained using figure 3 and 4   and subsequently 
elaborated in the discussion. Secondly, the depth 
dimension is obtained relative to the camera frame 
and need not be considered as the actual object 
distance relative to a fixed world coordinate system. 
Reason behind this approach is that the camera may 
be positioned and maneuvered using pan and tilt 
angle hence making the camera plane rotated with 
respect to the world frame. Further this depth cannot 
be associated with the depth dimensions of the other 
camera frames for trajectory identification as each 
frame may have a different orientation i.e. different 
pan and tilt angles of the camera and hence each of 
the depth dimensions refers relative distance 
measurement with respect to different camera planes. 
To obtain the actual depth in the world frame, the 
calculated depth in each frame needs to be 
transformed to the world coordinate system. In order 
to carry out this transformation, the knowledge of the 
extrinsic camera parameters is necessary for each 
image frame, which can be obtained through camera 
calibration. However, for real time applications the 
procedure becomes complex and time taking. The 
following paragraphs explain how the problems 
mentioned above are addressed. 
 Initially an example is used to illustrate how the 
appearance of an image of any particular object 
changes along with the viewpoint or rotation angles 
of the camera. This further helps to point out how the 
calculation for the image magnification depends on 
the viewpoint of the camera. Figure 3 below depicts a 
rectangular box viewed by the camera from three 
positions identified as 1, 2 and 3 respectively. 

Position 1 assumes the camera to be perfectly aligned 
with the world frame therefore no rotation is 
considered. Positions (2) and (3) denote the same 
camera position however the camera angles are 
different. Position 2 considers a pan angle whereas 
position 3 assumes the camera frame to be rotated by 
both pan and tilt angles. The resulting image 
appearance for each of the camera positions is 
depicted in figure 4. For calculating the 
magnification ratio for figure 4a, the total surface of 
the image is to be considered; however for the 

 
Fig 3: A rectangular object seen from 

three different camera positions 1, 2 and 
3 are shown in the figure above 
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remaining two images (4b and 4c) of the figure or for 
any similar case where more than one of the side 
faces are visible, such a step would provide wrong 
results. Thus for correct magnification determination 
the surfaces needs to be separately identified in order 
to select the desired one among them. The GFV 
method discussed previously can easily separate out 
the region of interest of the object as it can detect all 
the outer corners of the image from which the 
boundary edges can be calculated. The selection of 
the corners to calculate the edge, which will denote 
the image size, depends on the shape of the object 
and will vary accordingly. In this particular case for 
different camera positions two bottom edges (bottom 
edges are used here just as an example, top or side 
edges can be used as well) may be detected. For 
example if figure 4c is considered, the two bottom 
edges detected are E’A’  and A’B’ . As the object 
dimensions are known, one of the detected edges can 
now be selected depending on their length, i.e. if the 
matching is to be done with object side AB, then the 
longer among the two detected edges (considering 
side AB > side EA) will be chosen or vice versa. This 
part is conferred in details while discussing trajectory 
identification case studies later in the paper. 

The next task is to compute the camera rotation 
angles relative to the first frame so that the trajectory 
can be identified. Before getting into the details of 
the rotation angle computation process, Figure 5 
depicts the rotation of the camera plane with respect 
to the world frame for camera position 3 of figure 3. 
This figure is used to establish the impact of the 

camera rotations on its corresponding image frames. 
The relation between the rotation angles of the 
camera plane and its resultant image frame is 
discussed in subsequent paragraphs. 

In figure 5 the world frame is depicted by XYZ plane 
and UVW depicts the camera plane. The 
corresponding image frame for the camera 
orientation in figure 5 is depicted in Figure 6. 
(PQRS) 1 here depicts image frame 1 and (PQRS) n 
depicts the nth frame. The first image frame is 
considered as the reference; hence it is assumed that 
the camera plane of the first frame is aligned with the 
world frame and all the other camera plane rotations 
are with respect to this reference frame. The 
consecutive camera plane rotations of figure 5, by 
angles 

�
1 and 

�
2, effects the x-axis and y-axis of its 

image frame (nth frame) to make 
�

1 and 
�

2 angles 
with the x and y axis of the first image plane 
respectively as shown in figure 6.  

Once these rotation angles are computed, the 
transformation from the nth frame to the first frame 
can be undergone. As the camera is aligned with the 
world frame in the first image frame i.e. the pan and 
tilt angles of the camera is zero hence the actual 
depth can be obtained after this transformation. The 

 
Figure 4: The image of the rectangular object 

formed for the three camera viewpoints 
depicted in figure 3 is seen above 

 
Figure 6: Camera frames PQRS1 and PQRSn 

and their alignment is shown above in order 
to compute the rotation angles 

 
Figure 5: The camera plane orientation for the 

camera position 3. 
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trajectory can still be generated even if the first frame 
is not aligned with the world plane as the relative 
rotations of all the frames with respect to the first one 
is computed and the transformation is carried out 
accordingly. But for such cases the actual depth 
cannot be determined.  
From figure 6, using parallel line properties, it can be 
seen that angle between side A’B’  and the 
perpendicular from point B’on PnSn equals 

�
1 and the 

angle between side B’C’  and the perpendicular from 
point B’  on PnQn equals 

�
2.  If the coordinates of A’ , 

B’  and C’  are given by (xna, yna), (xnb, ynb) and (xnc, 
ync) respectively the angles can be calculated from 
the figure using the following relations. 

 
Thus the camera angles can be determined for every 
image plane from the above relations once the points 
an, bn and cn for every frame is determined. This 
concept is further used to identify the object 
trajectory.  Two different cases of trajectory 
identification are discussed: 

a) path generated by an object in a situation 
where the camera is fixed throughout, 

b) path generated by a moving camera while 
tracking a fixed object. 
A detailed discussion of the two cases is further 
presented below. 

(a) Camera stationary, object moving 
The following steps are executed while identifying 
the object trajectory: 
1. The object of interest is extracted using the GFV 
algorithm discussed in section 2. The object is 
denoted in the image plane by its centoid position IO 
in every frame n  

IO = (xn , yn)                               (6) 
2. Five image corners (xnlb, ynlb) , (xnrb, ynrb) , (xnrt, 
yn rt) , (xnbl,ynbl) , (xnbr,ynbr)  are determined. These 
points are the leftmost bottom, rightmost bottom, 
rightmost top, bottom leftmost and bottom rightmost 
pixels coordinates of the detected object and are used 
to determine image size. An algorithm below presents 
how corners can be selected for calculating image 
size of a three dimensional rectangular box when 
camera rotations are unknown. 

if (xbl > xlb) && (xbl < xrb) 
corners[ ] = { xlb, xbl, xrb}  

else if (xbr > xlb) && (xbr < xrb) 
corners[ ] = { xlb, xbr, xrb}  
else  corners[ ] = { xlb, xrb}  

end 
if size(corners) > 2 

if(length(corners[1],corners[2]))> (length(corners[2],corners[3])) 
corners[3 ] = [] 

else 
corners[1 ] = [] 

end 
end 

From the algorithm, two corners (xn1, yn1) and (xn2, 
yn2) are selected based on the fact that the larger edge 
is used to calculate the magnification. The reverse 
can also be done if desired. The length of the edge 
formed by these corners can be used as the image 
size ISZnx for determining the magnification ratio, 3D 
position of the object (discussed in step 4) and 
rotation angles of the camera. (Rotation angles will 
not be required for this case as the camera is fixed for 
all the frames). The equation 7 is used to calculate 
the image sizes ISZnx and ISZny in pixels along the x 
and y axes respectively. 

 
22

n
I

22
n

I

)()(ySZ

)21()21(xSZ

rbxrtxrbyrty

xxyy

nnnn

nnnn

−+−=

−+−=
    (7)     

Magnification ratio can be calculated using the metric 
coordinates of the image size and the corresponding 
object side dimension. 
3. Depth d n is computed using equation 3. 
4. The 3D coordinates of the image point IO are 
given by the following equation: 
[X(n) Y(n) Z(n)] = [xn.SZx/ ISZnx     yn.SZy/ ISZny   dn]  (8)  
 where SZx and SZy are the object sizes along the x 
and y dimension respectively. The 3D point 
calculated lies in the camera plane.  
5.For graphical representation, the X and Z 
coordinates are used to denote the horizontal 
displacement and depth of the object respectively, the 
vertical displacement of the object i.e. the Y 
coordinate is not taken into consideration at present. 
Its utility will be later understood while discussing 
case (b). As the camera is fixed for all the image 
frames, all the n points (X (n), Z (n)) lie on the same 
XZ plane and thus can be plotted to identify the 
trajectory generated by the object. 

(b) Camera moving, object stationary 
When a moving camera captures a video of a fixed 
object then the displacements (change in centroid 
position) of the object observed in the image frames 
is due to the movement of the camera from frame to 
frame. This camera movement is calculated from 
these centroid displacements for identifying the 
trajectory generated by the camera. Initially the 
object is detected and the image sizes, depth and 3D  
Coordinates are calculated using equations 7, 3 and 8 
respectively. The 3D points calculated for each frame 
lies on a different camera plane as the camera is in 
constant motion. The camera is considered to be 
positioned at the origin of a fixed reference frame for 

)5).....()(
)((tan 1

2 bycyabs
bxcxabs

nn
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the first image frame. The 3D coordinates of the first 
and nth frame can be related by rotation and 
translation matrices as shown in equation 10, where 
the rotation matrix denotes the camera rotation of the 
nth frame relative to the first frame and the 
translation matrix denotes the translation of the 
camera from the fixed origin.  The experimental 
results given later in this paper use a set-up where the 
camera is fixed on a tripod mounted on a trolley. 
Thus only pan angle change is considered in the 
calculations. Using the selected corners (xn1, yn1) and 
(xn2, yn2) calculated in Step 2, the pan angle � can be 
calculated using equation 9. 

)12(
)12((tan1

nn

nn
xxabs

yyabs
−

−= −θ �������
The affine transformation of the camera from the 
fixed frame to the nth frame is given by: 
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 If ynlb <  ynrb then 
�
 is positive else it is negative. It 

is clear from equation 10 above that (xn’ ,yn’ ,zn’ ) is the 
translated origin of the camera plane in the nth frame 
and hence the required camera displacement. 
Equation 10 can be written as 

xn’= X(1) cos � – Z(1) sin � – X(n)  ,   
  zn’= X(1) sin � + Z(1) cos � – X(n)         (11) 

Once (xn’ , zn’ ) is calculated using equation 11, 
plotting it for all the n image frames gives the 
calculated camera trajectory. 

4. RESULTS AND PERFORMANCE 
ANALYSIS 
The trajectory generation for moving objects or 
moving camera has been accomplished using the 
proposed method and some of the results are shown.  

(i) Experiment 1: 
Figure 7 represents a scene where the object is fixed 
and the camera is in motion. 

 The generated plot shown in figure 8 is a smoothed 
plot using the best polynomial fit. The best fits of the 

plot are estimated using the norm of residuals of the 
fits and are again crosschecked by determining the R- 
Square values for each fit. The observed values are 
shown in Tables 1 and 2 respectively. 

TABLE 1: Norm of Residuals. 

 It is seen that the norm of residuals converges after 
the eighth order fit.  Coefficient calculation with 95% 
confidence bound and normalization by a mean of 
5.833 and StD of 5.753 gives the corresponding R-
square values.     

TYPE ORDER SSE R-SQUARE 
Poly  2 1249.9 0.9921 
Poly  4 741.81 0.9953 
Poly 6 646.75 0.9959 
Poly 8 452.557 0.9972 
Poly 10 449.553 0.9972 

TABLE 2: R-Squares values 

Though the SSE values and the standard deviation 
decreases as the order of the fit increase, but the 
goodness of the fit (judged by the R-Square value) 
remains same after the 8th order fit. Hence for both 
the best-fit estimation techniques the eighth order fit 
is the optimal fit for the curve.  

(ii) Experiment 2: 
The next case shows generated object trajectories 
when the camera tracks a moving object from a fixed 
position. 

TYPE ORDER NORM StD 
Poly  2 35.3552 2.2405 
Poly  4 27.24 1.72 
Poly 6 25.43 1.61 
Poly 8 21.2 1.34 
Poly 10 21.2 1.34 

�

Figure 7: White mark in the center shows 
the path followed by the camera mounted on 
a trolley. The track line was created using a 
white marker while pushing the trolley at an 

approximate constant speed. 

 
Figure 8: The calculated trajectory of the path 
shown in figure 7 using the present approach 

 
Figure 9: White circular path depicts the 

path followed by the red object 
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 Similar to the previous case, a moving average filter 
is used to smooth the plot. It is seen that the three 
point averaging filter gives the best fit. The fact is 
further demonstrated in table 3 . 

TABLE 3: Best-Fit Estimation 

It is observed that the residuals diverge from 3-5 
point averaging.  

(iii) Experiment 3: 
The following experiment was carried out with the 
All Terrain Robot developed at CMERI Durgapur 
during its testing on the grounds of the institute. The 
figures depict the identified trajectory (depicted by 
the blue colored plot) of the path traversed by the 
ATR. 
 

 
Figure 11a: Trajectory identified after rejecting 
outlier data using averaging window of 4� gate     

  
Figure 11b: Trajectory identified after rejecting 

outlier data using 6� gate 

 
Figure 11c: Trajectory identified after rejecting 
outlier data using averaging window of 4� gate 

 
Figure 11d:  No outlier detected 

 
The statistical cut-off values were selected after 
estimating the rejection percentage for a gate of 3� , 

4� , 5�  and 6�  for figures 11a,b and c. Table 4 shows 
the rejection rates for the figures. A 7% rejection was 
considered to be the maximum allowable rejection 
rate and choice of the cut-off was made accordingly. 
 

Figures/Gates 3 �  4 �  5 �  6 �  
11a 8.25 6.5 6 5.5 
11b 84.14 59.14 7.85 2.1 
11c 23.625 1.125 1 1 

TABLE 4: Rejection rates for different statistical 
cut-off gates  

5. DISCUSSIONS AND CONCLUSION 
This paper presents an odometric navigation using 
uncalibrated camera images. The proposed 
methodology relies on a simple but elegant approach 
for consistent feature detection using GFV method. 
These features are then used for generation of visual 
odometry of any mobile robot. The indoor and 
outdoor field experiments show that this is a more 
resilient and computationally efficient approach 
which can be used to resolve navigation problems. 
Work is in progress for online implementation of this 
methodology for autonomous navigation of an 
unmanned aerial robot project currently pursued by 
CMERI. 
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Figure 1: Reference model creation 

Figure 2: Application of GFV to experimental dataset �
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