
Ray Tracing on a GPU with CUDA –
Comparative Study of Three Algorithms

Martin Zlatuška
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

zlatum1{@}fel.cvut.cz

Vlastimil Havran
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

havran{@}fel.cvut.cz

ABSTRACT

We present a comparative study of ray tracing algorithms implemented on a GPU for three published papers using different
spatial data structures evaluated for performance on nine static scenes in walk-through animation. We compare the performance
for uniform grids, bounding volume hierarchies (BVHs), and kd-trees evaluated on a GPU for ray casting and Whitted-style ray
tracing. We show that performance of ray tracing with BVHs exceeds the performance of ray tracing with kd-trees for coherent
rays. Contrary, the ray tracing with kd-trees is faster than that with BVHs for incoherent rays. The performance of ray tracing
with uniform grids is slower than both ray tracing with BVHs and kd-trees except for uniformly populated scenes. We show
that the performance is highly sensitive to details of implementation on kd-trees.

Keywords: GPU programming, CUDA, performance study, ray tracing, uniform grids, kd-trees, bounding volume hierarchies.

1 INTRODUCTION

While modern graphics cards (GPUs) allow for gen-
eral computation in a parallel manner, one of the most
prominent applications for a GPU is image synthesis.
This is thanks to the inherent parallel nature of ray trac-
ing and other global illumination algorithms – the de-
composition of images into pixels provides a natural
way of creating individual tasks for many parallel pro-
cessors. Unlike the GPUs a few years ago, modern
ones allow us full programmability similar to general
CPUs, while the streaming computation model has its
own specific issues. This has to be taken into account
when adopting the data structures and traversal algo-
rithms for ray tracing on a GPU architecture.

In this paper we compare three formerly published
papers that implement ray tracing with spatial data
structures on a GPU. These are uniform grids [Pur02],
kd-trees [Hor07], and bounding volume hierar-
chies [Gün07]. While the algorithms were successfully
mapped to a GPU, their performance have not been
carefully compared on a current programmable GPU
architecture as a common implementation framework
was not available. In this paper we first present such
a comparison study dealing with efficiency of three
different data structures for ray tracing on a GPU. We
restrict ourselves to a static setting irrespective of the

construction time as the data structures are built offline
on a CPU for our tests. We show on a kd-tree that even
small changes to the implementation of traversal code
can lead to the significant change of performance.

This paper is further structured as follows. Section 2
summarizes the previous work of ray tracing on a GPU
and performance comparison of data structures for ray
tracing. Section 3 describes our choices for implemen-
tation. Section 4 shows the results from measurements
on two GPUs for a set of scenes. Further it discusses
the bottlenecks of a contemporary GPU architecture for
ray tracing algorithms. Section 5 concludes the paper
with possible prospectives for future work.

2 PREVIOUS WORK

In this section we review chronologically the most sig-
nificant papers that address mapping of spatial data
structures for ray tracing to a GPU. We discuss briefly
all three data structures of our interest: uniform grids,
kd-trees, and BVHs, while we avoid the discussion
of results on other computer architectures except for
a GPU as such surveys for CPU implementation have
been provided for example in [Wal07].

Uniform grids. The first ray tracing algorithm
mapped fully on a GPU has been published by Pur-
cell et al. [Pur02] and uses a uniform grid. Their
implementation mapped the computation by means
of shaders while their data resided in a texture. In
a concurrent work Carr et al. [Car02] present the
architecture of a software ray tracer on a GPU with a
focus on ray-triangle intersection with predefined BVH
hierarchy. The mapping of both mentioned approaches
had been influenced by architectural limitations.
Recently, Kalojanov and Slusallek [Kal09] presented

WSCG 2010 Communication Papers 69

the algorithm for parallel construction of uniform grids
on a GPU.

Kd-trees. A stack on a GPU with a low level of pro-
grammability was studied by Ernst et al. [Ern04] and
used for stack-based kd-tree traversal algorithm. Fo-
ley and Sugerman [Fol05] presented two algorithms
for kd-tree traversal without a stack. Their first algo-
rithm called kd-restart is in fact the algorithm published
by Kaplan [Kap85]. The second stack-less algorithm
called kd-backtrack requires the storage of the bound-
ing box and link nodes to its parent for every node of a
tree, which significantly increases the memory footprint
and hence it decreases performance. Both presented al-
gorithms increase the number of nodes traversed com-
pared to stack-based traversal algorithms. Another pa-
per by Horn et al. [Hor07] addresses the lack of lo-
cal memory to implement the stack much more effi-
ciently. They propose the use of a push-down and short
stack which can avoid most of the restarts of a traver-
sal from the root node. This is possible as ray tracing
with the kd-tree traverses only a few leaves on aver-
age. In concurrent work Popov et al. [Pop07] suggest
to use the augmentation of a data structure by neighbor
links among the nodes of a kd-tree. They even exceed
the performance of CPU-based ray tracers while they
achieve comparable performance as in [Hor07]. Fur-
ther, Zhou et al. [Zho08] proposed the algorithm for kd-
tree construction on a GPU. This method yields the per-
formance of kd-tree construction comparable to CPU-
based algorithms for kd-tree construction [She07]. This
can be used for dynamic scenes up to 200,000 triangles
to yield interactive performance.

Bounding Volume Hierarchies. Bounding volume
hierarchies (BVHs) were also successfully imple-
mented on a GPU. Thrane and Simonsen [Thr05] in
fact compare kd-trees, uniform grids, and bounding
volume hierarchies implemented on a GPU (hardware
of year 2005). They conclude the performance of
BVHs is low, however higher than the performance
of other two data structures when no ray packets are
used. Carr et al. [Car06] implemented a variant of
BVHs in combination with geometry images. Günther
et al. [Gün07] use ray packets and yield interactive
performance comparable or exceeding CPU-based
implementation, but only for primary and shadow
rays. Recently, Lauterbach et al. [Lau09] present
an algorithm for fast BVH construction on a GPU,
where they report performance comparable to kd-
trees [Zho08] only for one scene. Recently, Torres et
al. [Tor09] published an algorithm for stack-less BVH
traversal, where the use of stack is replaced by ropes
connecting the nodes of a BVH in a sibling order. Very
recently, Aila and Laine [Ail09] analyze the efficiency
of various CUDA kernels for ray tracing with BVH
(This paper is not included in our study as our research
was completed in January 2009 in [Zla09].).

Comparison. For algorithms on a CPU it is believed
that the hierarchical spatial data structures (both kd-
trees and BVHs) built up in a top-down fashion yield
similar performance. A decade old study by Havran et
al. [Hav00] provides thorough performance comparison
of twelve data structures implemented on a CPU. More
recently Havran [Hav07] discusses the similarities and
differences of top-down constructed spatial hierarchies
(kd-trees and BVHs) and uniform grids. He argues that
while kd-trees and BVHs have very similar properties
as they can be mutually emulated in a constant time and
space, uniform grids can outperform hierarchical data
structures only for uniform distribution of objects in the
scene.

To our best knowledge a proper recent experimental
comparison of different ray tracers on a modern pro-
grammable GPU (year 2008 and 2009) has not been
available. We would like fill the gap by our paper for a
current GPU architecture (CUDA) of NVidia for a static
scene setting (walk-through).

3 ALGORITHM IMPLEMENTATION

We have implemented a standalone compact program
that does not need the support by other 3rd party li-
braries. The program implements a parser for scene for-
mat PLY, format BART [Lex01], and subset of Open In-
ventor format. While the data structures are built offline
on a CPU, the created data structures are transferred to
a GPU and used for ray tracing algorithm entirely on
the GPU. To study the efficiency of shooting rays using
different data structures this methodology is sufficient.
The traversal algorithms and shading on the GPU were
implemented using NVidia CUDA [PRG08].

The geometry of a scene consisting solely of trian-
gles is represented by a list Lv of vertices and list of
materials Lm, where each triangle has a list of three in-
dices to Lv plus an index to the Lm. We tested also the
variant where each triangle is represented directly by
three vertices, however the memory consumption was
increased with the negative impact to the performance.
Shading is implemented via simple Phong model and is
included in timing. The program can run in two modes
- for measurement purposes and with GUI. Since we
released the source code to public, we do not discuss
many tiny but often relevant implementation details in
this paper. Our paper serves as the summary of the Mas-
ter Thesis [Zla09], where many details are stated, deci-
sion choices for that particular solution are discussed,
and several unsuccessful attempts to improve the effi-
ciency of algorithm implementations are described.

Below we describe the selected details of our imple-
mentation for uniform grids, kd-trees, and bounding-
volume hierarchies.

WSCG 2010 Communication Papers 70

3.1 Uniform Grids

The implementation of uniform grids loosely follows
the paper [Pur02], with the traversal algorithm de-
scribed in [Ama87]. The implementation is easier as
CUDA is used instead of shaders. To decrease the
number of registers we used a constant cache to store
the values that do not change such as the direction
and origin of the ray and precomputed values for 3D
DDA traversal. This allows us to save five registers and
get better occupancy [PRG08]. The threads have to
be synchronized to compute the intersection with the
triangles in the cells. The threads for the rays that do
not intersect any cell with triangles are idle.

We tried to optimize the traversal algorithm by shar-
ing the load of rays with many ray-triangle intersec-
tions with rays that do not need to compute many ray-
triangle intersections. This required the rescheduling of
the computation during the visit to the cell. However
the resulting algorithm was several times slower than a
simple algorithm, where some threads become inactive
either when the computation is finished or a ray inter-
sects an empty cell. Further, we also tried to imple-
ment packet tracing [Wal06] on a GPU. Although the
pilot implementation has a uniform access to the mem-
ory and common branching, it resulted in an increased
number of cells that were traversed. As a result, for
packet of size 8× 8 and for packets of size 4× 4 the
performance was substantially decreased compared to
the simple implementation.

3.2 Kd-Trees

Kd-trees were built with surface area heuristics accord-
ing to the sampling approach described in [She07].
Internally, each node of a kd-tree is represented by
8 Bytes, using the compact representation described
in [Wal01].

We have been experimenting with several traversal
algorithms and finally we decided to use a short stack
traversal [Hor07] with four entries to compromise be-
tween number of traversal steps and occupancy. The
stack is stored in shared memory. We aim at minimizing
the conflicts in the shared memory as the threads for the
rays are computed rather independently. We show the
performance of two versions of kd-tree traversal code
which illustrates the performance of very similar solu-
tions. Initially, we stored three values to the short stack
- “mint, maxt, and node address”. However, we can de-
crease the size of stack entry to only two values, as for
the farther node traversed the mint is equal to maxt for
the node we just traversed. This changes the occupancy
and performance as we show in Section 4. The traversal
algorithm referred to as kdt-3 stores three values to the
stack, while the algorithm kdt-2 stores only two values
to the stack.

3.3 Bounding Volume Hierarchies
The BVHs were built in top-down fashion with surface
area heuristics using the centroids of bounding boxes
for scene triangles, following the paper by Günther et
al. [Gün07]. As a BVH does not need to store the mint
and maxt values along the ray, only the node address
is saved to the stack. For packet traversal, the stack can
be shared by all the threads in a packet, which increases
the utilization of the resources. The stack does not need
to be shortened to only several entries, which minimizes
the number of traversal steps. The stack is similarly to
kd-trees stored in shared memory.

The order of traversal among several threads is re-
solved by a concurrent write to the shared memory,
where four memory entries are first initialized to zero.
Each thread then writes the preference to one of four en-
tries, value one for one of the four cases: traverse left,
traverse right, traverse both, traverse none. The serial-
ization of write operation may occur as threads record
their information.

When rays diverge, the traversal continues to the
node where most of the rays need to traverse. This
is implemented by parallel reduction using auxiliary
memory with one entry for each thread. Each thread
writes either -1 when a left child should be visited as
first, 0 for no preference, and 1 for the right child. The
decision which first node should be traversed is then re-
solved by parallel reduction – the most node wanting to
be traversed by most of the rays is visited as first while
the other node is stored to the stack. When a thread
does not need to visit any node, the node stores simply
0 as a preference. This is different from the algorithm
described in [Gün07] and this change increases the per-
formance for secondary rays by up to 20%. The disad-
vantage of BVH compared to kd-tree is the increased
memory space required by the BVH node representa-
tion, it is 32 Bytes, which is 4 times higher than for a
kd-tree node. However, it is compensated as the num-
ber of nodes and object references is strictly limited by
the number of objects, so the storage of the whole BVH
is typically smaller than the one for a kd-tree.

4 RESULTS
In this section we describe the results for measure-
ment on nine scenes. To provide more variability to
testing, we used three scenes of individual objects
courtesy of Stanford scene repository, three scenes
from BART [Lex01] (camera animated, objects not
animated), and three other general interior architectural
scenes. The rendered images of all scenes are shown
in Figures 3, 4, and 5. These scenes are frequently
used to test the performance of ray tracing and global
illumination algorithm, the BART scenes [Lex01]
scenes were designed for benchmarking of ray tracing.

To decrease the view dependence of results, we cre-
ated a static walk-through animation for each scene of

WSCG 2010 Communication Papers 71

length 400 frames. All the performance results in this
paper were measured on a GPU NVidia GeForce GTX
280 (June 2008), which has compute capability 1.3,
240 multi-threaded processor cores on 600 MHz, and
1 GByte of memory with a bandwidth of 141.7GB/sec.
We also measured the results on an older, low-level
GPU, an NVidia GeForce 8600GT (April 2007), where
we got between 1/10 and 1/6 of the performance for the
NVidia GeForce GTX 280.

The static properties of data structures for all nine
scenes are shown in Table 1. The average computa-
tion time for the animation for a frame is shown in
Table 2 for three settings: (1) shooting only primary
rays, (2) primary and shadow rays, and (3) Whitted-
style recursive ray tracing with two bounces for sec-
ondary rays. The occupancy for three scenes is shown
in Table 3 for different settings of compilation in depen-
dence on the number of registers where the maximum
rendering times are reported. The results demonstrate
that both the setting and the use of either three or two
values stored to the traversal stack for a kd-tree have
remarkable impact on performance. The dependence
on the resolution is shown in Figures 1 and 2 for scene
Dragon and Robots. More detailed results and eval-
uation can be found in [Zla09].

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

256x256 512x512 768x768 1024x1024

ti
m

e
[m

s
]

resolution

Grid
kdt−3
kdt−2
BVH

Figure 1: The dependence of computation time[ms] on
resolution for scene Dragon for different resolutions.

 0

 20

 40

 60

 80

 100

 120

256x256 512x512 768x768 1024x1024

ti
m

e
[m

s
]

resolution

Grid
kdt−3
kdt−2
BVH

Figure 2: The dependence of computation time[ms] on
resolution for scene Robots for different resolutions.

Discussion
While an interested reader can draw his/her own con-
clusion from the numbers in tables, let us provide our

interpretation of the measured data. As we tested the
performance on two different architectures (G80 and
GT200), we can report: the progress of hardware was
the most beneficial for the performance increase of a ray
tracing with uniform grids. Similarly to the implemen-
tation on a CPU, the performance of uniform grids is
superior only for uniformly populated scenes (Bunny,
Dragon, and Buddha).

The (packet) ray tracing with BVH of incoherent
rays is memory bound but is relatively well masked
by switching threads. However, BVH has higher
performance for (coherent) primary and shadow rays.
This is in concordance with the results of Günther
et al. [Gün07]. For traversing individual diverging
(incoherent) rays such as secondary reflected rays in
path tracing, the performance of BVH significantly
deteriorates.

For diverging rays the kd-tree with its own short stack
for each ray (thread) is a more efficient solution. The
small size of each kd-tree node decreases the data traffic
between memory and the processor cores. The bottle-
neck for the kd-tree traversal is a lack of larger local and
fast memory for the stack implementation. The increase
of local memory should lead to higher performance for
upcoming GPU architecture(s).

As the performance of GPU ray tracing is depen-
dent on many details in the implementation, this
paper is accompanied by the source code available
at: http://dcgi.felk.cvut.cz/members/
havran/rtgpu2009/. We hope that the released
source code can be further utilized in rendering
applications and performance studies in future.

5 CONCLUSION AND FUTURE
WORK

In this paper that serves as a summary of [Zla09] we
have described a performance study comparing ray
tracing implemented with CUDA on modern GPU from
NVidia. We optimized the implementation for three
data structures and traversal algorithms for ray tracing
and compared the performance obtained from measure-
ments for nine scenes for shooting primary rays, ray
casting with shadow rays, and recursive Whitted-style
ray tracing. The performance differed for coherent
rays, where the bounding volume hierarchy is the
winner, and for incoherent rays, where kd-trees seem to
be more efficient on average when implemented using
the short-stack as suggested by Horn et al. [Hor07].
However, the performance of ray tracing algorithm on
a GPU is sensitive to many implementation details,
likely due to the relatively small local cache on GPU
architectures.

As future work, the implementation could be ex-
tended by several other data structures that can be ef-
ficiently mapped to a GPU architecture. The measure-

WSCG 2010 Communication Papers 72

scene grid kd-tree BVH
Grid size #refs size #trav. #int. #leaves #refs size #trav. #int. #leaves size #trav. #int.

triangles lights [MB] steps tests [×103] [MB] steps tests [×103] [MB] steps tests

Bunny 69451 1 83×82×64 3.7 8.3 47.4 37.2 154 5.5 9.2 54.0 12.3 23.0 2.84 52.1 8.0
Dragon 871414 1 273×193×122 3.1 103.1 117.3 45.5 978 2.3 58.5 68.8 10.4 295.0 35.8 114.1 28.0
Buddha 1087716 1 128×312×129 2.8 102.1 100.8 43.1 1265 2.5 76.5 64.3 8.8 389.0 44.7 130.9 30.9
Robots 71708 1 128×209×268 19.2 79.9 40.4 66.5 82 6.6 12.7 30.5 8.8 25.0 6.1 30.6 3.5
Museum 14380 2 71×43×106 9.5 5.1 60.2 33.6 26 4.5 2.0 19.2 6.7 4.6 0.9 40.1 3.9
Kitchen 110559 4 254×128×256 14.1 89.3 154.8 12.7 164 3.9 11.2 6.3 1.0 36.4 4.9 40.0 5.2
Theatre 53832 2 172×135×60 23.0 31.4 56.6 37.9 124 8.6 10.9 17.4 5.4 17.7 3.3 33.1 3.7
Office 36310 3 93×55×93 6.5 7.9 73.9 71.6 55 6.4 5.1 11.2 4.4 11.1 11.5 30.5 4.9
Conference R. 298866 2 387×246×93 10.3 121.3 165.7 31.5 338 8.7 51.6 14.3 4.8 97.9 14.5 34.6 5.9

Table 1: The properties of the test scenes and the spatial data structures built up for them. The general properties
include number of triangles and light sources. For each data structure we report the number of leaves/cells. #refs
corresponds the average number of references to objects in leaves. The storage for the data structure is given in
MBytes. The number of intersection tests and traversal steps are reported for primary and secondary rays, the other
results are in [Zla09].

primary rays primary and shadow rays primary, shadow, secondary rays
time[ms] time[ms] time[ms]

grid kdt-3 kdt-2 BVH grid kdt-3 kdt-2 BVH grid kdt-3 kdt-2 BVH

Bunny 16.0 41.6 31.5 13.8 27.4 61.7 52.1 27.0 — — —- —-
116% 301% 228% 100% 53% 118% 100% 52% — — — —

Dragon 40.2 55.9 42.3 39.0 73.3 86.0 73.4 80.0 — — —- —-
103% 143% 108% 100% 100% 117% 100% 109% — — — —

Buddha 34.6 45.6 34.2 36.8 69.1 73.5 62.9 81.8 — — —- —-
94% 124% 93% 100% 110% 117% 100% 130% — — — —

Robots 27.3 20.5 16.2 25.9 53.8 35.6 30.1 50.0 89.0 43.8 38.7 64.3
105% 79% 63% 100% 179% 118% 100% 166% 230% 113% 100% 166%

Museum 25.0 46.2 35.7 20.0 68.3 86.2 73.4 53.2 168.5 184.1 162.4 163.7
125% 231% 179% 100% 93% 117% 100% 72% 104% 113% 100% 101%

Kitchen 41.6 40.5 31.9 29.3 209.6 130.0 110.8 138.8 442.8 244.4 214.3 403.9
142% 138% 109% 100% 189% 117% 100% 125% 207% 114% 100% 188%

Theatre 43.1 42.3 33.1 34.3 119.7 87.3 74.3 93.6 379.7 201.6 177.5 292.1
126% 123% 97% 100% 161% 117% 100% 126% 214% 114% 100% 165%

Office 52.9 44.1 34.2 22.7 218.6 116.1 101.5 87.9 224.0 120.1 107.7 94.2
233% 194% 151% 100% 215% 114% 100% 87% 208% 112% 100% 87%

Conference 83.2 83.7 66.2 28.9 228.2 153.0 132.7 85.2 292.8 — — 114.1
Room 288% 290% 229% 100% 172% 115% 100% 64% (257%) — — (100%)

Average[%] 148% 181% 140% 100% 141% 117% 100% 104% 193% 113% 100% 142%

Table 2: Average computation time for a frame [ms] for three settings rendered in resolution 1024×1024 for
rendering 400 frames animations: (1) primary rays only (2) primary and shadow rays (ray casting) (3) primary,
shadow, and secondary rays for recursion depth two (one primary ray per pixel). For individual objects (Bunny,
Dragon, and Buddha) the setting (3) is meaningless. There was not enough memory for scene Conference
Room to compute the recursive ray tracing with kd-trees. Timing includes also shading by Phong model. kdt-
3/kdt-2 stands for storing 3 or 2 values to the stack during traversal.

ments and observations can provide interesting feed-
back to architects of graphics hardware in future.

ACKNOWLEDGMENTS
This work has been supported by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic under
the research program MSM 6840770014 and LC-06008
(Center for Computer Graphics) and the Aktion Kon-
takt OE/CZ grant no. 2009/6.

REFERENCES

[Ail09] Aila, T., and Laine, S.. Understanding the Ef-
ficiency of Ray Traversal on GPUs. In Proceedings
of High-Performance Graphics 2009, pages 145–
150, New York, NY, USA, 2009. ACM.

[Ama87] Amanatides, J., and Woo, A. A fast voxel
traversal algorithm for ray tracing. In G. Marechal,
editor, Eurographics ’87, pages 3–10. North-
Holland, August 1987.

WSCG 2010 Communication Papers 73

Robots Kitchen Museum

reg.
occupancy

[%] time[ms] speedup
[%]

time[ms] speedup
[%]

time[ms] speedup
[%]

grid 59 25 430.7 907.7 266.2
32 50 350.2 19 704.8 23 220.5 18

kdt-3 56 25 110.7 429.5 240.5
32 25 129.0 -18 496.2 -15 278.2 -15

kdt-2 56 25 110.7 429.5 240.5
40 37.5 96.0 13 372.2 13 211.4 12

BVH 53 25 151.0 1064.8 274.7
32 50 129.9 25 762.4 29 214.4 22

Table 3: GPU occupancy and timing for NVidia GeForce GTX 280 for three BART scenes for ray tracing with
primary, secondary, and shadow rays in resolution 1024×1024.

[Car02] Carr, N.A., Hall, J.D., and Hart, J.C. The
ray engine. In HWWS ’02: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, pages 37–46, Aire-la-
Ville, Switzerland, Switzerland, 2002. Eurograph-
ics Association.

[Car06] Carr, N.A., Hoberock, J., Crane, K., and Hart,
J.C. Fast GPU ray tracing of dynamic meshes us-
ing geometry images. In GI ’06: Proceedings of
Graphics Interface 2006, pages 203–209, Toronto,
Ont., Canada, Canada, 2006. Canadian Information
Processing Society.

[Ern04] Ernst, M., Vogelgsang, C., and Greiner, G.
Stack implementation on programmable graphics
hardware. In Vision Modeling and Visualization
2004, pages 255–262, 2004.

[Fol05] Foley, T., and Sugerman, J. KD-tree ac-
celeration structures for a GPU raytracer. In
HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 15–22, New York, NY, USA,
2005. ACM.

[Gün07] Günther, J., Popov, S., Seidel, H.-P., and
Slusallek, P. Realtime Ray Tracing on GPU with
BVH-based Packet Traversal. In Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray
Tracing 2007, pages 113–118, September 2007.

[Hav00] Havran, V., Přikryl, J., and Purgathofer, W.
Statistical Comparison of Ray-Shooting Efficiency
Schemes. Technical Report TR-186-2-00-14, In-
stitute of Computer Graphics, Vienna University
of Technology, Favoritenstrasse 9/186, A-1040 Vi-
enna, Austria, May 2000.

[Hav07] Havran, V. About the Relation between Spa-
tial Subdivisions and Object Hierarchies Used in
Ray Tracing. In 23rd Spring Conference on Com-
puter Graphics (SCCG 2007), pages 55–60, Bud-
merice, Slovakia, May 2007.

[Hor07] Horn, D.R., Sugerman, J., Houston, M., and
Hanrahan, P. Interactive k-D Tree GPU Raytracing.

In I3D ’07: Proceedings of the 2007 symposium
on Interactive 3D graphics and games, pages 167–
174, New York, NY, USA, 2007. ACM.

[Kal09] Kalojanov, J. and Slusallek, P. A parallel al-
gorithm for construction of uniform grids. In HPG
’09: Proceedings of the Conference on High Per-
formance Graphics 2009, pages 23–28, New York,
NY, USA, 2009. ACM.

[Kap85] Kaplan, M.R. The uses of spatial coherence in
ray tracing. In ACM SIGGRAPH ’85 Course Notes
11, July 1985.

[Lau09] Lauterbach, C., Garland, M., Sengupta, S.,
Luebke, D., and Manocha, D. Fast BVH Con-
struction on GPUs. Computer Graphics Forum,
28(2):375–384, April 2009. (Proceedings of Eu-
rographics 2007).

[Lex01] Lext, J., Assarsson, U., and Möller, T. A
Benchmark for Animated Ray Tracing. IEEE Com-
put. Graph. Appl., 21(2):22–31, 2001.

[Pop07] Popov, S., Günther, J., Seidel, H.-P., and
Slusallek, P. Stackless KD-Tree Traversal for High
Performance GPU Ray Tracing. Computer Graph-
ics Forum, 26(3):415–424, September 2007. (Pro-
ceedings of Eurographics).

[PRG08] NVIDIA CUDA Compute Unified Device
Architecture - Programming Guide, 2008. Version
2.1.

[Pur02] Purcell, T.J., Buck,I., Mark, W.-R., and Han-
rahan, P. Ray tracing on programmable graphics
hardware. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and
interactive techniques, pages 703–712, New York,
NY, USA, 2002. ACM.

[She07] M. Shevtsov, A. Soupikov, and A. Kapustin.
Highly parallel fast kd-tree construction for inter-
active ray tracing of dynamic scenes. Computer
Graphics Forum, 26(3):395–404, September 2007.
(Proceedings of Eurographics).

[Thr05] Thrane, N., and Simonsen, L.O. A comparison
of acceleration structures for GPU assisted ray trac-

WSCG 2010 Communication Papers 74

Figure 3: Stanford scenes: Bunny, Buddha, Dragon.

Figure 4: BART scenes: Robots, Museum, Kitchen.

Figure 5: MGF scenes: Theatre, Office, Conference Room.

ing. M.Sc. Thesis, University of Aarhus, Denmark,
2005.

[Tor09] Torres, R., Martin, P.J., and Gavilanes, A. Ray
Casting using a Roped BVH with CUDA. In 25th
Spring Conference on Computer Graphics (SCCG
2009), pages 107–114, Budmerice, Slovakia, April
2009.

[Wal01] Wald, I., Slusallek, P., Benthin, C., and Wag-
ner, M. Interactive Rendering with Coherent Ray
Tracing. Computer Graphics Forum, 20(3):153–
164, 2001. (Proceedings of Eurographics).

[Wal06] Wald, I., Ize, T., Kensler, A., Knoll, A., and
Parker, S.G. Ray Tracing Animated Scenes using
Coherent Grid Traversal. ACM Transactions on
Graphics, pages 485–493, 2006. (Proceedings of
ACM SIGGRAPH 2006).

[Wal07] Wald, I., Mark, W.R., Günther, J., Boulos, S.,
and Ize, T. Warren Hunt, Steven G Parker, and Peter
Shirley. State of the Art in Ray Tracing Animated
Scenes. In Eurographics 2007 State of the Art Re-
ports, 2007.

[Zho08] Zhou, K., Hou, Q., Wang, R., and Guo, B.
Real-time KD-tree construction on graphics hard-
ware. In SIGGRAPH Asia ’08: ACM SIGGRAPH
Asia 2008 papers, pages 1–11, New York, NY,
USA, 2008. ACM.

[Zla09] Zlatuška, M. Ray Tracing Algorithms on Mod-
ern GPUs. M.Sc. Thesis, Czech Technical Univer-
sity in Prague, Jan 2009. http://dcgi.felk.
cvut.cz/members/havran/rtgpu2009/.

WSCG 2010 Communication Papers 75

WSCG 2010 Communication Papers 76

	!_Short-papers.pdf
	B29-full.pdf

