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ABSTRACT 
Ray tracing is an inherently parallel visualization algorithm. However to achieve good performance, at 
interactive frame rates, an acceleration structure to decrease the number of per ray primitive intersections is 
required. Grid acceleration structures have some of the fastest build times, with O(N) complexity, but 
traditionally achieved this at a high memory cost. Recent research has reduced the memory footprint by 
employing compression for one-level grids. Render time performance can be improved using multi-level grids. 
We describe two methods for building such multi-level grids. In the first method we employ a recursive 
compressed grid in which grid cells are adaptively subdivided in a variable fashion.  The second method uses a 
finely divided compressed grid, with a lower resolution macrocell overlay to speed up traversal. We analyze the 
performance of these new algorithms, which enable improved render times, versus existing solutions.  
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1. INTRODUCTION 
Realtime ray tracing is an active area of research 
[Wal07]. Even traditionally skeptical hardware 
vendors have recently demonstrated, or made 
available, realtime ray tracing solutions [Sei08]. Ray 
tracing is desirable for several reasons, namely per 
pixel accurate shadows, reflections and refractions. It 
can also be used as a base for other global 
illumination algorithms such as path tracing, and 
photon mapping, to add more effects such as caustics 
and diffuse interreflections. 
In the naive ray tracing algorithm, it is necessary to 
search the nearest intersected primitive for each ray. 
Without an acceleration structure, the complexity for 
such an algorithm is O(N), where N is the number of 
primitives in the scene. Hence to enable realtime ray 
tracing for complex scenes, with many primitives, 
acceleration structures are used. These acceleration 
structures can theoretically reduce per ray complexity 
to O(log N). 

 

Ideally an acceleration structure should be fast to 
build and use as little memory space as possible, 
while still delivering good render time performance. 
This work describes our efforts to combine the 
desirable traits of multi-level grid [Jev89,Wal06] 
render time performance, with the low build time and 
memory consumption characteristics of row 
displacement compression [Lag08]. 
Existing related work in this area is surveyed in 
Section 2. Section 3 describes the proposed multi-
level grid construction methods. The performance 
results of these methods are analyzed in Section 4. 
Finally conclusions are presented in Section 5.  

2. RELATED WORK 
Grid acceleration structures for ray tracing were first 
described by Fujimoto et al. [Fuj89]. These 
acceleration structures subdivide 3D space in near 
cubical cells. It was found that grids, by eliminating 
vertical traversal time costs present in other 
acceleration structures popular at the time, had 
increased overall render time performance. 3DDA, a 
3D extension of the raster line drawing algorithm, 
was employed for ray grid traversal. 
An improved grid traversal algorithm was later near 
simultaneously devised by several researchers 
[Woo87,Cle88]. This algorithm is still employed 
today. The historical grid ray tracing acceleration 
structures around this period are described by Havran 
et al. [Hav99]. Grid dimensions (Mx × My × Mz) are 
determined based on heuristics related to the number 
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of scene primitives, scene bounding box, and certain 
constant factors. 
Recently Lagae and Dutré [Lag08] employed grid 
row displacement compression (i.e. hashing) to 
reduce the memory footprint of this kind of 
acceleration structure. It does this by compressing 
empty cells. By allocating all memory, before 
inserting primitives into the data structure, build time 
performance was also improved. The render time 
performance of this one-level grid algorithm is 
however inferior to non-compressed multi-level 
algorithms, such as the rgrid used by the Manta ray 
tracer [Big06], as shall be seen in Section 4.  
Kim et al. [Kim09] have created compressed versions 
of the bounding volume hierarchy (BVH) 
acceleration structure, one of the acceleration 
structures first used in ray tracing. Kim et al. also 
compress the triangle mesh and page data to the disk 
providing increased memory savings.  
BVH acceleration structures have higher construction 
time complexity than grids. BVH construction 
complexity is O(N log N) versus a grid construction 
complexity of O(N). 
More recent, faster to build, grid acceleration 
structures have many advantages. However further 
work is necessary to improve their render time 
performance. This work aims at filling this gap. 

3. METHODS 
The classification of multi-level grid construction 
methods employed here is based on that of Jevans 
and Wyvill [Jev89]. 
Variable construction methods recursively subdivide 
the grid, by employing subgrids in each cell. Subgrid 
dimensions are chosen using a similar heuristic to 
that employed for the first cell division level. 
Memory consumption is hard to predict, usually 
leading to the use of dynamic memory allocation 
along the construction method. 
Fixed construction methods use a fixed ratio, finer 
subdivision than a regular one-level grid would 
employ. Since the total size of a grid acceleration 
structure can be known in advance, all memory 
allocation can be done before the method is 
employed. A fixed construction grid can be build 
using macrocells for the lower resolution levels. 
Fixed construction methods have good performance 
for uniformly distributed scenes, such as laser 
scanned models. Variable construction methods 
adapt more easily to varying scene primitive 
distribution but at increased memory consumption 
and build time costs.  
The following heuristic, attributed to Woo, is 
employed to determine grid dimensions: 

 
Equation 1. Woo’s heuristic. Si is the scene 

bounding box size in dimension i, ρ is 4. 
Via profiling we noticed some characteristics in the 
existing algorithms [Lag08,Big06] described at 
Section 2. Grid traversal dominates render time, and 
one-level grids spend a lot more time doing 
ray/triangle intersections than multi-level grids. In 
attempting to improve render-time performance we 
posed the following hypothesis: we can reduce the 
number of ray/triangle intersections by using smaller 
cells, with fewer triangles per cell. To reduce 
traversal time we can employ a multi-level structure 
to skip empty cells in larger steps.  

3.1. Multi-Level Variable Hashed Grid 
This subsection describes the multi-level variable 
hashed grid implementation. It is a recursive grid, 
with the top level grid and subgrids using the hashed 
grid [Lag08] algorithm. This grid has a maximum 
grid depth size of 2.  
First the top level hashed grid is built using the 
algorithm described by Lagae et al. [Lag08] but 
using the heuristic from Equation 1. We selected a 
grid density ρ of 4 since it empirically provided good 
render time performance. Each cell of this top level 
grid is then subdivided using the same algorithm, 
creating a new subgrid, for each cell containing more 
than a certain number of primitives. 

3.2. Multi-Level Fixed Hashed Grid 
In this subsection a multi-level fixed hashed grid is 
described. It is a high resolution hashed grid [Lag08] 
with multi-level macrocells [Wal06] to speedup 
traversal. 

 
Figure 1. Timings for the Buddha scene according 

to grid density. 
First a finely divided one-level hashed grid is built in 
a similar fashion to that of Lagae et al. [Lag08], but 
using the grid heuristic described in Equation 1 with 
a high grid density parameter to reduce cell size. 
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Bunny Dragon Buddha 
 

Asian Dragon 
 

Thai Statue 

Scene statistics 
# triangles 69.45K 871.41K 1.09 M 7.22 M 10 M 
memory 1.2MB 15.0MB 18.7MB 123.9MB 171.7MB 

Manta recursive grid [Big06] 
Primitive intersections/ray 1.58 1.58 1.56 0.91 1.17 
Cell traversals/ray 4.73 5.80 4.95 6.44 7.00 
Grid traversals/ray 1.38 1.28 1.17 0.72 0.82 

Build Time (s) 0.47 3.46 4.50 20.44 29.59 
Render Time (s) 0.30 0.52 0.34 0.36 0.58 
Time to Image (s) 0.78 3.98 4.84 20.80 30.17 

One-level hashed grid [Lag08] 
Primitive intersections/ray 8.35 9.87 9.53 13.15 12.67 
Cell traversals/ray 14.53 35.23 26.93 93.14 100.76 
Grid traversals/ray 0.00 0.00 0.00 0.00 0.00 

Build Time (s) 0.02 0.22 0.26 1.48 2.07 
Render Time (s) 0.58 0.89 0.78 1.60 1.80 
Time to Image (s) 0.60 1.11 1.04 3.09 3.88 

Multi-level variable hashed grid 
Primitive intersections/ray 3.99 3.83 3.92 1.93 2.63 
Cell traversals/ray 15.12 26.05 17.21 68.31 69.38 
Grid traversals/ray 0.54 0.53 0.53 0.27 0.36 

Build Time (s) 0.09 0.75 0.81 4.09 6.29 
Render Time (s) 0.51 0.64 0.55 1.00 1.11 
Time to Image (s) 0.60 1.39 1.36 5.10 7.39 

Multi-level fixed hashed grid 
Primitive intersections/ray 6.14 8.26 10.06 8.74 9.06 
Cell traversals/ray 14.04 17.86 13.10 29.97 27.31 
Grid traversals/ray 0.57 0.47 0.45 0.24 0.25 

Build Time (s) 0.04 0.39 0.29 3.09 3.45 
Render Time (s) 0.57 0.68 0.67 0.79 0.82 
Time to Image (s) 0.61 1.07 0.97 3.88 4.27 

Table 1. Scene triangle mesh statistics, render time profile results, timings for the studied grid 
acceleration structures. 

We empirically chose the grid density parameter by 
analyzing the behavior for the Buddha scene as can 
be seen in Figure 1. We selected a grid density ρ of 
32 since it features adequate render time without 
having a severe impact on time to image. 
Next multi-level macrocells [Wal06], are built to skip 
empty cells in larger steps during traversal. 
Macrocells overlay a coarser grid over the finely 
divided grid. The macrocells for each level consist of 
a 3D bit array with information if a region of space is 
empty of not. To speed up this construction step 
macrocells are downscaled by a factor S of 6 on each 
extent. We arrived at this value by empirically 
analyzing algorithm behavior for the tested scenes. 
Wald et al. [Wal06] reached the same value with a 

different heuristic and test scenes. Macrocell 
downscaling can be done with a quick 3D bitmap 
scaling operation. 

4. PERFORMANCE AND RESULTS 
This section evaluates the performance of the grid 
construction methods. 
All tests were performed on a single Intel Core 2 
Duo processor at 3 GHz. The machine has 4GB of 
RAM running the Linux operating system. The 
algorithms were implemented in C++ using STL and 
Boost without use of assembly or intrinsics. 
Only a single thread was used, with one ray per pixel 
and diffuse shading, at 1024×1024 resolution. A 
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Figure 2. From bottom right clockwise: memory consumption; build time; render time; time to image 
acceleration structure statistics for the tested scenes.

variety of models from the Stanford 3D Scanning 
Repository were used for the evaluation. 
The top of Table 1 shows scene statistics such as 
number of triangles, memory used by the triangles. 
These scenes were chosen because the system is 
expected to support visualization of laser scanned 
architectural models. Scene memory usage is 
computed by using 12 bytes per triangle to store 
vertex index information (three machine words for 
each vertex index), plus 12 bytes per vertex (three 
floating point numbers for each coordinate). This 
provides reduced memory usage in an expedient 
fashion. Ray/triangle intersection was done using the 
Möller-Trumbore [Mol05] intersection algorithm 
because of its low memory requirements. 
For performance comparison purposes with existing 
published algorithms the recursive grid from the 
Manta interactive ray tracer [Big06] was tested. An 
implementation of the hashed grid algorithm by 
Lagae and Dutré [Lag08] was added to the system to 
serve as the one-level compressed grid baseline. 
The multi-level hashed grid structures feature 
improved render time performance compared to the 
one-level hashed grid. This is markedly so for the 
larger scenes where over twice the render time 
performance is achieved. Of the multi-level hashed 
grid methods, the fixed hashed grid is better for the 
larger scenes, as can be seen at top left in Figure 2. 
Fixed grid features improved render times, versus the 
variable grid, due to several factors: the fixed grid 
has a smaller memory footprint (and increased 

memory coherence); the cells of the top hierarchical 
level of the fixed grid have a larger volume, skipping 
empty regions of space faster, this is reflected in the 
cell traversals/ray. 
The recursive grid from Manta has even better render 
time performance, although the performance 
difference varies according to the tested scene. 
These performance results required a more in depth 
examination by profiling the acceleration structures 
in terms of number of primitive intersections, 
horizontal cell traversals and vertical grid traversals. 
Profiling, seen in Table 1, shows improved Manta 
render time performance is due to the lower number 
of ray/primitive intersections and horizontal cell 
traversals used by the recursive grid to display the 
same scene. 
Manta employs a deeper variable grid structure with 
maximum depth of 3 and has a modified heuristic. 
This enables improved render time performance but 
comes at a big build time penalty. It takes six times 
longer to build the acceleration structure for the Thai 
Statue scene for example as can be seen at the bottom 
left of Figure 2. 
Memory usage paints a similar picture to the build 
time statistics. The Thai Statue scene uses around ten 
times more memory in the non-compressed Manta 
multi-level acceleration structure versus the fastest 
compressed multi-level acceleration structure we 
implemented. 
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The compressed multi-level grid acceleration 
methods of note feature much improved performance 
on the figures of merit. Time to first image in 
particular is much improved versus the times 
achieved by Manta using algorithms of the same 
class. The multi-level fixed hashed grid has a 
similarly low time to image compared to the one-
level hashed grid. This makes it the best option 
among the multi-level grids for the tested scenes. 

5. CONCLUSION 
Multi-level compressed grid methods achieve best of 
class performance by combining the desirable traits 
from existing algorithms: low memory requirements, 
fast build and render times. The algorithms presented 
here could still use some work in the heuristics, as 
the multi-level heuristic from Manta has quicker 
render times. There is also room for expansion in 
improving the number of cell traversals and primitive 
intersections per ray. Alternative methods for 
speeding up traversal time by skipping empty voxels, 
not studied in this work, include proximity clouds 
[Coh94], macro-regions [Dev89], and similar 
directional techniques [Sem97]. 
We would also like to implement these algorithms on 
GPUs to investigate the performance characteristics 
of compressed structures on that hardware class.  
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