

Fast Approximate Visibility on the GPU using pre-

computed 4D Visibility Fields

Athanasios Gaitatzes
University of Cyprus

75 Kallipoleos St.
P.O.Box.20537

 Cyprus (CY-1678),
Nicosia

gaitat@yahoo.com

Anthousis Andreadis
Athens University of

Economics & Business
76 Patission St.
Greece (10434),

Athens
anthousis@gmail.com

Georgios Papaioannou
Athens University of

Economics & Business
76 Patission St.
Greece (10434),

Athens
gepap@aueb.gr

Yiorgos Chrysanthou
University of Cyprus

75 Kallipoleos St.
P.O.Box.20537

Cyprus (CY-1678),
Nicosia

yiorgos@cs.ucy.ac.cy

ABSTRACT
We present a novel GPU-based method for accelerating the visibility function computation of the lighting
equation in dynamic scenes composed of rigid objects. The method pre-computes, for each object in the scene,
the visibility and normal information, as seen from the environment, onto the bounding sphere surrounding the
object and encodes it into maps. The visibility function is encoded by a four-dimensional visibility field that
describes the distance of the object in each direction for all positional samples on a sphere around the object. In
addition, the normal vectors of each object are computed and stored in corresponding fields for the same
positional samples for use in the computation of reflection in ray-tracing. Thus we are able to speed up the
calculation of most algorithms that trace rays to real-time frame rates. The pre-computation time of our method
is relatively small. The space requirements amount to 1 byte per ray direction for the computation of ambient
occlusion and soft shadows and 4 bytes per ray direction for the computation of reflection in ray-tracing. We
present the acceleration results of our method and show its application to two different intersection intensive
domains, ambient occlusion computation and stochastic ray tracing on the GPU.

Keywords
indirect lighting, pre-computed visibility, uniform distribution, hemisphere, tracing rays.

1. INTRODUCTION
The acceleration of the computation of the lighting
equation in real-time on the GPU and especially the
visibility term, one of the most intensive parts of the
computation, is still a very active field of research.
Ambient occlusion computation and real-time ray
tracing are just two of the fields where the fast
computation of the visibility queries is very
important.
Ambient occlusion is defined as the attenuation of
ambient light due to the occlusion of nearby
geometry. It gives perceptual clues of depth,
curvature, and spatial proximity and thus is important
for realistic rendering. It is a technique that

approximates the effect of indirect global
illumination without trying to simulate the interplay
of incident and reflected light.
Ray tracing is a general and versatile algorithm that
performs image synthesis by shooting rays through
each pixel, finding the closest intersection with the
scene geometric entities. The generic backwards ray
tracing algorithm is capable of capturing both local
illumination and basic indirect specular effects such
as mirror-like reflections and refraction.
In this paper we improve and expand the method
proposed by Gaitatzes et al. [Gai08] by moving the
implementation to the GPU, taking advantage of the
shader units parallelism and demonstrating
significant performance gains. While the core of the
visibility queries mechanism remains the same, the
paper shows how the method is adapted to both
interoperate with a generic ray tracing system and
accelerate the generation of high quality ambient
occlusion. First, at pre-processing time, we construct
the visibility field (Figure 1). It stores the intersection
distances of a hemisphere of rays originating from
sample points on the bounding sphere of an object

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 Communication Papers 131

and directed towards the model itself. We construct
one map for each sample point (see Section 3.1).
After the construction of the visibility field maps, we
compactly fit them in one volume texture (see
Section 4.1) for easy access on the GPU. In addition,
all mesh information (i.e. coordinates, normals and
materials) are stored in maps and passed on to the
GPU. Then, at run time, when a ray from the
environment towards an object (or vise versa)
intersects its bounding sphere, we perform a simple
ray-sphere intersection test and recover from the pre-
computed maps the rest of the ray distance for the
ray-object intersection test.
The advantage of the method described in Gaitatzes
et al. [Gai08] is that the bulk of the computation is
moved to a pre-processing stage. The results are
stored in compact gray-scale textures; 1 byte per ray
direction for the computation of ambient occlusion

and soft shadows and 4 bytes per ray direction for the
computation of reflection in ray-tracing, providing
for each object a constant size of additional
information, independent of the complexity of the
original model. Then the real-time algorithm
performs a simple intersection test with the bounding
sphere of the object and a constant-time map lookup
(see Section 3.2).
For dynamic scenes with rigidly moving objects,
visibility fields accelerate the computation of the
approximation of the indirect lighting term of the
rendering equation to real-time frame rates as well as
the computation of soft shadows and reflection in
ray-tracing. The performance of this approach does
not depend on the polygon count to a large extent;
instead, it is directly related to the number of visible
pixels shaded by the GPU. This is a significant
advantage over existing approaches. In addition, our
acceleration structure is flat by nature and thus more
suited to the GPU architecture.
In Section 2 we give an overview of the previous
work, followed by a description of our method in
greater detail in Section 3. In Section 4 we discuss
the GPU implementation and in Section 5 our results
from the application of the visibility fields method in
ray tracing and especially the benefit of shadow rays
and secondary rays as well as secondary diffuse
illumination (termed ambient occlusion).

2. BACKGROUND AND PREVIOUS
WORK
We distinguish the previous work in two areas that
both share the computation of the visibility function;
the acceleration of the computation of ambient
occlusion on the GPU and the acceleration of
stochastic ray tracing algorithms on the GPU. Note
that we apply our method only to a GPU-based ray
tracing algorithm in order to compare timings with
the fastest approach.

2.1 Ambient Occlusion on the GPU
In ambient occlusion the indirect component can be
computed as:

() () ⋅⎢ ⎥⎣ ⎦∫x n x no o oΩ

1
A , = V ,ω ω dω

π

Where ()oV ,ωx is an empirical function that maps
distance from surface point x to the closest surface
along direction οω to visibility values between 0 (no
occlusion) and 1 (full occlusion).
By tracing rays outward from a given surface point x
over the hemisphere around the normal n , ambient
occlusion measures the amount that a point is
obscured from light. This average occlusion factor is
used to simulate soft-shadowing.

Figure 1: A hemisphere of rays emanating from
the bounding sphere towards the object is pre-

computed for a large number of sample points on
the sphere. Bottom: Volume texture of the

visibility field. Row by row each map is placed
into a slice of the volume texture thus minimizing
the volume space requirements. As a result a 5123

volume will hold four 2562 maps per slice.

WSCG 2010 Communication Papers 132

Ambient occlusion (AO) computation on the GPU
was first used by Bunnell [Bun05], who
approximates the AO by modelling the receiver
surface as disk-based occluders and evaluates the
ambient occlusion caused by the disks using an
analytic method. He uses a heuristic method to
combine the shadows cast from multiple disks into a
noise free image but requires high tessellation of
scene geometry and a big pre-computation step.
Shanmugam et al. [Sha07] compute ambient
occlusion as a post-processing pass based on a depth
buffer from the eye’s point of view. They split the
AO computation into two phases, one for high
frequency near detail, and another phase for low
frequency detail with a wider search. The second
phase allows large objects to inter-occlude as they
pass next to each other. Their approach requires no
scene-dependent pre-computations. On the downside,
over occlusion artefacts might show up when
multiple neighbouring spheres contribute occlusion
to the same pixel.
Mittring [Mit07] does a full screen post-processing
pass where z-buffer data is sampled around each
pixel and an AO value is computed based on depth
differences. Sampling occurs randomly in a sphere
around each pixel, and AO is proportional to the
number of sampled occluders. Like other screen
space techniques, such as [Bav09], this view-
dependent approach is fast, requires minimal or no
pre-calculation, but cannot model AO correctly,
because depth discontinuities, such as object edges
and buffer boundaries, produce popping effects.

2.2 Real-time Ray Tracing on the GPU
Most GPU ray-tracing methods accelerate already
established mechanisms for limiting the number of
intersection tests. On the other hand, our approach
provides an alternative and fast ray-surface
intersection test, while it can certainly take advantage
of the mentioned methods, to further improve final
performance.
Carr et al. [Car02], Purcell et al. [Pur02], [Pur04],
Karlsson et al. [Kar04] and Christen et al. [Chr05]
implemented a streaming ray-triangle kernel on the
GPU, fed by buckets of coherent rays and proximate
geometry organized by a CPU process. However,
there was a frequent communication of results from
the GPU to the CPU over a narrow bus, negating
much of the performance gained from the GPU
kernel. Streaming geometry to the GPU became
quickly the bottleneck.
To improve the performance of the GPU ray tracing,
different acceleration structures have been widely
adopted, such as the incorporation of kd-trees by
Havran [Hav00] and Ernst et al. [Ern04]. However,
these approaches had limited performance; by far not

reaching the frame rates of the CPU based ray
tracers. The main problem was the limited GPU
architecture. Only small kernels without branching
were supported. In addition a stack was usually
required, which was poorly supported on GPUs.
Foley et al. [Fol05] presented two implementations
of a stack-less kd-tree traversal algorithm for the
GPU, namely kd-restart by Kaplan [Kap85] and kd-
backtrack. Foley showed, that on graphics hardware,
there are scenes for which a kd-tree yields far better
performance than a uniform grid. Although better
suited for the GPU, the high number of redundant
traversal steps led to relative low performance.
Besides grids and kd-trees there are also several
other approaches that use a BVH as an acceleration
structure on the GPU. Carr et al. [Car06]
implemented a limited ray tracer on the GPU that
was based on geometry images but it required careful
parameterization of the geometry. It could only
support a single triangle mesh without sharp edges.
The acceleration structure was a predefined bounding
volume hierarchy which could not adapt to the
topology of the object. To alleviate the need for a
stack Thrane et al. [Thr05] presented stack-less
traversal algorithms for a BVH. They conclude that
on the GPU, the bounding volume hierarchy traversal
method is up to 9 times faster than that of a uniform
grid and a kd-tree. Also, the technique proves the
simplest to implement and the most memory
efficient.
Horn et al. [Hor07] reduced the number of redundant
traversal steps of kd-restart by adding a short stack.
With their implementation on modern GPU hardware
they achieved a high performance of 15–18M rays/s
for moderately complex scenes. At the same time,
Popov et al. [Pop07] presented a parallel, stack-less
kd-tree traversal algorithm without the redundant
traversal steps of kd-restart but with a poor GPU
utilization of below 33%. With over 16M rays/s,
their GPU ray tracer achieved similar performance as
CPU based ray tracers. However, both GPU ray
tracing implementations demonstrated only medium-
sized, static scenes. Günther et al. [Gün07] presented
a BVH based GPU ray tracing method for large
models achieving close to real time rates using hard
shadows.

3. APPROXIMATE VISIBILITY
COMPUTATION
The computation of exact visibility is a time
consuming task even for the new GPU architectures.
We briefly describe here the visibility field
acceleration method that follows that of Gaitatzes et
al. [Gai08] but emphasizing the GPU architecture.

WSCG 2010 Communication Papers 133

3.1 Visibility Field Computation
The main idea of encoding visibility fields into maps
is as follows. Consider a rigid object possibly
moving through a scene. At a pre-processing step,
from a discrete set of sample points on the objects
bounding sphere, described as spherical coordinates
(u, v), a hemisphere of rays is cast around the inward
normal direction (Figure 1). For each ray (u, v, θ, φ),
the closest distance between the bounding volume
and the model surface is found and recorded as a
compact integer value after being normalized by
twice the sphere radius. Thus, for each sample point
(u, v) a visibility gray-scale map is obtained that
represents the distance travelled along the ray in the
direction (θ, φ) before hitting the model surface. We
define the visibility field of the object to be the
collection of all visibility maps generated from all
sample points on the bounding sphere of the object.

3.2 Visibility Field Indexing
During the real-time part of the execution an incident
ray to the object intersects its bounding sphere and
the distance between the ray origin and the
intersection point is recorded. The intersection point
q is transformed into the object coordinate system:

1 ,−′ = ⋅ q M q where M is the transformation matrix
with respect to the reference frame of the ray. We
need to acquire the closest point (u, v) on the sphere
for which we have a visibility map and therefore the
index of the corresponding visibility map. In addition
we need to transform the corresponding (θ, φ) of the
incident ray into a visibility map cell coordinates.
The indexing is performed following the
methodology proposed in Gaitatzes et al. [Gai08].
We can now index into the visibility field for the

given ray (u, v, θ, φ) and extract the distance
information which is then added to the intersection
distance above and this is our approximated distance
value of the ray origin from the object’s surface.
A special case arises when the rays originate from
the object being queried for visibility. As we can see
in Figure 2, when a ray originates on the object at
point p0, the distance d1 in direction 0 1p p is
computed and compared to distance d2 in direction

1 0p p which is extracted from the visibility map at
point p1. If d1 is greater than d2 then point p0 is
occluded.

4. Visibility Fields on the GPU

4.1 Ambient Occlusion
Directional ray samples on a reference hemisphere
aligned with the z-axis are pre-computed and stored
in a texture for passing to the GPU. In the fragment
shader (Algorithm 1), the pre-computed ray
directions are transformed according to the local
normal vector and intersected with the bounding
sphere of each occluder. We are able to handle both
rays originating outside and inside the bounding
sphere for inter-object and intra-object occlusion
respectively. The only difference in the computation
is the respective step to compute the final ray-object
intersection distance at line 7 of Algorithm 1.
The indexing of the visibility fields is executed
entirely on the GPU as is the Monte Carlo ray casting
to evaluate the resulting ambient occlusion. The
visibility maps are compacted and stored into a single
3D texture as slices, as shown in Figure 1. As the
number of positional samples (i.e. visibility maps)
can exceed the maximum volume texture dimension
supported by the hardware, we compact as many
visibility maps on each 2D slice of the volume as the
texture hardware permits.

4.2 Ray tracing
For our proof-of-concept case study, we wanted to
further improve ray-tracing timings of an already fast
ray tracer. We used the method of Amit Ben-David
et al. [Ami07] that implemented both a CPU and a
fast GPU ray tracer by exploiting a BVH acceleration
structure that has been proven to work better in some
cases [Gün07] and is better suited for dynamic
scenes. We did not replace the primary ray
intersection tests because the regularity of the ray
distribution emphasized the sampling pattern on the
bounding sphere. Furthermore GPU rasterization
provides better timings for the primary rays pass. In
conjunction with the fact that for complex (and
therefore time consuming) scenes with elaborate
materials, most time is spend on secondary rays, we
applied the visibility fields method only to secondary

Figure 2: Visibility computation for intra-

object occlusion.

1: for all emanating rays do
2: if ray intersects bounding sphere of occluder object
3: discretize intersection point (u, v)
4: discretize ray (φ, θ)
5: access distance in visibility field volume
6: end
7: use distance for occlusion approximation
8: end
9: compute occlusion at pixel x

Algorithm 1: Pseudo code of shader algorithm
for AO rendering, using visibility fields.

WSCG 2010 Communication Papers 134

rays, including shadow rays. To capture the intricate
reflection effects of non-perfect reflection surfaces
and to highlight the advantage of our method when
intersection tests increase significantly, we extended
the implementation to stochastic ray-tracing.
As in the case of the ambient occlusion computation,
the rays are stored in a 2D map but this time are re-
computed for each running pass. For the ray-object
intersection the visibility maps are used in a fragment
shader on the GPU (similar to Section 4.1) along

with the additional pre-computed maps of normals.
The generated fragments correspond to intersection
test results and the fragment shader returns the
intersection point and distance to the actual surface
as extracted from the visibility field. These results
are used for shading or for spawning secondary rays
for the next ray-tracing iteration.

5. Tests and Results
We implemented the real-time part of the above
algorithm using the OpenGL® Shading Language
[Kes06] on a 32bit Intel Core 2 Quad Q6600 at 2.4
GHz CPU and 4GB of main memory equipped with a
GeForce 8800 GTS GPU with 512MB of texture
memory. The window size was set to 512x512 for a
total of 262144 pixels.

5.1 Ambient Occlusion
For most of the test runs the active pixels were about
200000 as only 75% of the window was rendered
(the rest being black).
To acquire a reference image against which to
compare our acceleration method in speed but mainly
in image quality, we implemented ambient occlusion
on the GPU using the uniform grid acceleration
structure (see Figure 3 bottom-right).
We observe (in Figure 3) that the RMS error of the
images compared to the reference image of the
bunny, is very low and the achievable draw time,
even for large models, is real-time. Based on the
RMS error using 4226 64x64, visibility maps gives
the same results as using maps of size 16642 32x32.
We also infer from Figure 4 that the draw time is
unaffected by the number of maps used thus the
space required for the visibility maps depends only
on the image quality that we would like to achieve.
 In Figure 5 the visibility fields were used for the
generation of intra-object occlusion but because the
ray sphere intersection algorithm always succeeds at
finding an intersection (worst case since we are
inside the bounding sphere of the object) the
rendering times are up to 4 times slower than the

Visibility field directional samples
32 x 32 64 x 64 128 x 128

10
90

 81.2 ms,
RMS 0.59578

82.7 ms,
RMS 0.58886

82.9 ms,
RMS 0.58606

42
26

 83.2 ms,
RMS 0.45392

83.3 ms,
RMS 0.42404

16
64

2

V
is

ib
ili

ty
 fi

el
d

po
si

tio
na

l s
am

pl
es

 84.2 ms,

RMS 0.42054

Figure 3: Inter-object AO of a bunny model
using the visibility fields method with 256 rays
per pixel implemented on the GPU. We report

the draw time and the RMS error. On the
bottom right the reference image rendered on
the GPU using 256 rays per pixel in 7126 ms.

The model itself is rendered using fixed-pipeline
direct rendering.

Figure 4: The draw time of the bunny model

(39000 tris) plotted against different rays/pixel
versus the size of the visibility maps.

WSCG 2010 Communication Papers 135

inter-object occlusion case. Still the performance rate
is above the one reported by Horn et al. [Hor07]. We
also observe that more visibility maps are required in
this case in order to render a believable image. We
attribute this to the fact that multiple rays, with small
angular differentiation, originating on close points on
the object, hit the same sample point on the objects
bounding sphere. Thus the same visibility map is
used and the occlusion result looks grainy. When
more maps are used the problem is alleviated.
In Figure 6 we show the Sponza Atrium rendered
with several large polygon models inside it. The

resulting draw time is contributed to the rendering
method that uses one pass for each caster model. Just
before each caster model is drawn, we enable
subtractive blending (with OpenGL blend equation
GL_FUNC_REVERSE_SUBTRACT), in effect,
removing colour from the image. The poor draw time
is also attributed to the fact that non-visible pixels
(the Sponza Atrium has a lot of non-visible
geometry) are not culled before the fragment shader
is executed on the GPU.
Even though the visibility fields method is only an
approximation, it does a very good job at preserving
image quality given the low memory requirements
and achieved draw time.

5.2 Ray tracing
In Figure 7 we show a close-up of the bunny ears of
using the visibility-fields method. We show that very
good results of soft shadows can be achieved while
using 20 shadow ray samples along with 4226 64x64
visibility maps (i.e. 16.51MB of memory).
In Figure 8 we render a slightly more complex scene
using 3 light sources of radius 2. As in the previous
cases, the rendering time is almost completely
affected by the primary rays which perform triangle
intersection tests. Our method completes the
rendering in 3268 ms, of which 70% is for the
shadow rays. It produces a very good approximation
of soft shadows using 20 shadow rays per pixel. For
the total of 11,838,600 shadow rays, this corresponds
to 1.9323 10-4 ms per shadow ray which is a very
encouraging result. In the corresponding BVH GPU
method to produce sharp shadows using just 1
shadow ray per pixel, the draw time is 48047 ms to
compute the final image. Of that time 70% is used
for the 591930 shadow rays yielding 5.682 10-2 ms
per shadow ray.
In Figure 9 we use the visibility fields algorithm to
render non-perfect-mirror reflections. The polished
reference image is rendered with 4 rays for each
reflective pixel leading to slower rendering times.
However, we notice from the images and the RMS
factor that the reflected sub region of our method is
much closer to the result of the brushed metal
reference image than the perfect mirror reference
image. This strengthens our position that the
proposed method is suitable for stochastic ray-
tracing, as the quality of the rendered image is
comparable to the reference image. Furthermore, the
rendering time, even using 4 rays per reflective pixel,
is very close to ray-casting without secondary rays.

6. Limitations of the Visibility Fields
The visibility fields method is not very well suited for
elongated models. The occlusion produced, even
when using 16642 maps is pretty grainy. In addition

Igea 67170 tris

202 ms - 119.80 M rays/s
Santa 75777 tris

183 ms - 132.24 M rays/s

Elephant 157160 tris

400 ms - 60.5 M rays/s
Super Shape 261120 tris
330 ms - 73.33 M rays/s

Figure 5: Intra object ambient occlusion
rendered on the GPU using 16642 64x64

visibility maps requiring 65 MB of space and
121 rays per pixel.

Figure 6: A scene of the Sponza Atrium with a
bunny (38889 tris), a cow (92864 tris) and an

elephant (157160 tris) rendered in three passes
(one per object) with the visibility fields
algorithm using 4226x64x64 maps and

rendering in 2.5 frames per second.

WSCG 2010 Communication Papers 136

models that are highly concave would fail to produce
accurate visibility maps as it would not be possible to
record all of the tight concavities of the model.

7. Conclusions
We have presented the visibility fields, a
discretization of the visibility around an object,
implemented on the GPU. We have shown how it
can be used for an interactive inter-object ambient
occlusion approximation computation. For the intra-
object occlusion case the number of required maps is
large and the draw time needs improvement when the
model covers a lot of pixels on the screen. But in a

game environment where several models exist on the
screen and their coverage is not very big, the intra-
object occlusion method can be used even for high
triangle count models.
The method especially favours large model data sets,
where we maintain a constant computation time,
independent of the model complexity. Our method is
robust, has a relatively small memory footprint

Visibility field directional samples
32 x 32 64 x 64 128 x 128

42
26

348.0 ms,
RMS 5.95,
4.127 MB

348.5 ms,
RMS 4.82,
16.508 MB

348.7 ms,
RMS 4.44,
66.031 MB

16
64

2

V
is

ib
ili

ty
 fi

el
d

po
si

tio
na

l s
am

pl
es

348.5 ms,
RMS 5.94,
16.252 MB

348.6 ms,
RMS 4.80,
65.000 MB

Close-up of the bunny ears from
the reference image.

Figure 7: Close-up of the bunny ears rendered
using the visibility fields for the generation of
soft shadows using 3 lights and 20 shadow ray
samples on the GPU. We report the required

time, the RMS error and the total space
requirements. Bottom: Reference image

rendered using the BVH method with 3 lights
and 256 rays per pixel taking 913,210 ms on the

GPU.

Figure 8: Close-up of a more complex scene
using 3 point lights and 20 shadow ray samples
rendered in 3268 ms using the visibility fields

method. The BVH GPU method for sharp
shadows takes 48047 ms.

Reference image
 GPU: 5530 ms

Reference Image
GPU: 112910 ms

(top) 4226 64x64 maps

441 ms, 4.480 RMS error,
66.031 MB used

(bottom) 4226 32x32 maps
440 ms, 4.555 RMS error,

16.508 MB used

(left) 4226 64x64 maps
1900 ms, 8.137 RMS error,

66.031 MB used

(right) 4226 32x32 maps
1897 ms, 9.392 RMS error,

16.508 MB used

Figure 9: Polished reflection of the elephant
(157160 tris) and the bunny (39000 tris) using 4
rays per reflective pixel. First row: Reference

images using the BVH method (GPU draw
times). Second row: Close-up view of our

visibility fields GPU method where we report
the draw time, the RMS error and the space

requirements.

WSCG 2010 Communication Papers 137

against comparable existing methods and the time
required to generate the visibility maps depends only
on the complexity of the occluder geometry. In
addition, the number and resolution of the maps used
in the visibility fields can be adjusted depending on
the required accuracy and the available memory. The
same maps can be used for both inter and intra-object
ambient occlusion computation.
Furthermore, our algorithm can be applied to ray
tracing calculations where exact ray hits are not
critical, for example for shadow and secondary ray
intersection tests, such as soft shadow rays and
Monte Carlo ray tracing.
We have shown that in the above mentioned cases
the production of the desired image is accelerated
while the results remain close to the reference
images. The hybrid method we propose favours large
model data sets as in ambient occlusion. This result is
expected as all triangle intersection tests for shadow
and secondary rays are replaced with constant time
operations. In this way rendering time is affected
mostly by the primary rays that give us the visibility
of the scene.

8. REFERENCES
[Ami07] Amit B., Elber G.: GPU Ray Tracing. Master's

Thesis, Technion Israel Institute of Technology, 2007.
 [Bav09] Bavoil, L., Sainz, M.: Image-space horizon-based

ambient occlusion. In ShaderX7 - Advanced Rendering
Techniques, Delmar, 2009.

[Bun05] Bunnell M.: Dynamic ambient occlusion and
indirect lighting. In GPU Gems 2, pages 223–234.
Addison Wesley, 2005.

[Car02] Carr A. N., Hall D. J., Hart C. J.: The Ray Engine.
In Proc.Graphics Hardware 2002, pg. 37–46, Sep.
2002.

[Car06] Carr A. N., Hoberock J., Crane K. Hart C. J.: Fast
GPU Ray Tracing of Dynamic Meshes using Geometry
Images. In Proceedings of Graphics Interface 2006,
Quebec, Canada, June 07-09, 2006.

[Chr05] Christen M., Engel W., Hudritsch M.: Ray Tracing
on GPU. Diploma Thesis Univ. of Applied Sciences
Basel (FHBB), 2005.

 [Ern04] Ernst M., Vogelgsang C., Greiner G.: Stack
Implementation on Programmable Graphics Hardware.
In Proceedings of the Vision, Modelling, and
Visualization Conference 2004 (VMV 2004), pp. 255–
262.

[Fol05] Foley T., Sugerman J.: Kd-tree acceleration
structures for a GPU ray tracer. In Proc. Graphics
Hardware, pages 15–22, 2005.

[Gai08] Gaitatzes A., Chrysanthou Y., Papaioannou G.:
Presampled Visibility for Ambient Occlusion. In Proc.
of the 16-th International Conference in Central Europe
on Computer Graphics, Visualization and Computer

Vision (WSCG '2008), Czech Republic, February
2008.

[Gün07] Günther J., Popov S., Seidel H.-P., Slusallek P.:
Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proc of the IEEE / Eurographics
Symposium on Interactive Ray Tracing 2007, pp. 113–
118.

[Hav00] Havran V.: Heuristic Ray Shooting Algorithms.
Ph.D. thesis, Department of Computer Science and
Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, November 2000.

[Hor07] Horn R. D., Sugerman J., Houston M., Hanrahan
P.: Interactive k-D Tree GPU Raytracing. In
Proceedings of the Symposium on Interactive 3D
Graphics and Games, ACM Press, pp. 167–174, 2007.

[Kap85] Kaplan R. M.: Space-Tracing: A Constant Time
Ray-Tracer. In Proc. Computer Graphics 19, 3 (July
1985), pg. 149–158. (Proceedings of SIGGRAPH 85
Tutorial on Ray Tracing).

[Kar04] Karlsson F., Ljungstedt C. J.: Ray tracing fully
implemented on programmable graphics hardware.
Master's Thesis, Chalmers Univ. of Technology, 2004.

[Kes06] Kessenich J., Baldwin D., Rost R.: The OpenGL
Shading Language. Version 1.2.8. 3Dlabs, Inc. Ltd.
2006.

[Mal88] Malley T. J. V.: A shading method for computer
generated images. In Master’s Thesis, Computer
Science Department, University of Utah, June 1988.

[Mit07] Mittring M.: Finding next gen: CryEngine 2. In
ACM SIGGRAPH 2007 Courses, San Diego,
California, August 05-09, 2007.

[Pur02] Purcell J. T., Buck I., Mark R. W., Hanrahan P.:
Ray tracing on programmable graphics hardware. In
Proc. SIGGRAPH, 2002.

[Pur04] Purcell J. T.: Ray Tracing on a Stream Processor.
Ph. D. Dissertation, Stanford University, 2004.

[Pop07] Popov S., Günther J., Seidel H.-P., Slusallek P.:
Stackless KD-Tree Traversal for High Performance
GPU Ray Tracing. In Proc. of Computer Graphics
Forum 26(3), pp. 415–424, 2007, (Proceedings of
Eurographics)

[Sha07] Shanmugam P., Arikan O.: Hardware accelerated
ambient occlusion techniques on GPUs. In Proceedings
of the 2007 Symposium on interactive 3D Graphics
and Games, Seattle, Washington, April 30 - May 02,
2007.

[Shi97] Shirley P., Chiu K.: A low distortion map between
disk and square. In Journal of Graphics Tools 2, 3
(1997).

[Sla02] Slater M.: Constant time queries on uniformly
distributed points on a hemisphere. In Journal of
Graphic Tools 7, 1 (2002), pp. 33–44.

[Thr05] Thrane N., Simonsen L.O.: A comparison of
acceleration structures for GPU assisted ray tracing.
Master’s Thesis, University of Aarhus, Denmark, 2005.

WSCG 2010 Communication Papers 138

	!_Short-papers.pdf
	C89-full.pdf

