
Computation of tunnels in protein molecules using
Delaunay triangulation

Petr Medek

Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

medek@fi.muni.cz

Petr Beneš
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

xbenes2@fi.muni.cz

Jiří Sochor
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

sochor@fi.muni.cz

ABSTRACT
This paper presents a new method of specific cavity analysis in protein molecules. Long-term biochemical
research has the discovery that protein molecule behaviour depends on the existence of cavities (tunnels) leading
from the inside of the molecule to its surface. Previous methods of tunnel computation were based on space
rasterization. Our approach is based on computational geometry and uses Voronoi diagram and Delaunay
triangulation. Our method computes tunnels with better quality in reasonable computational time. The proposed
algorithm was implemented and tested on several real protein molecules and is expected to be used in various
applications in protein modelling and analysis. This is an interesting example of applying computational
geometry principles to practical problems.

Keywords
protein, tunnel, Voronoi diagram, Delaunay triangulation

1. INTRODUCTION
Long-term research into the biochemical
characteristics of protein molecules has the discovery
that protein reactivity is closely related to the
presence of routes leading from the protein surface to
a biochemically relevant cavity inside the protein, an
active site. In the active site chemical reactions
between the protein and some substrate molecule
take place. One of the conditions the substrate
molecule requires to get to the active site is the
presence of an empty space connecting the surface of
the protein molecule with the active site. This empty
space is used by the substrate molecule to reach the
active site without crossing any atom of the protein
and is referred to as a tunnel. In Figure 1, a substrate
molecule can use two different tunnels to get to the
active site.
We emphasise that the geometrical existence of the
tunnel alone is not sufficient to guarantee that a

substrate molecule can access the active site. The
ability of the protein to react with the substrate is
based on many different physical and chemical
factors. Still, a tunnel computed concerning just the
geometrical point of view could provide information
that will help chemists to focus on specific parts of
the protein.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Figure 1. Tunnels in protein, the active site is
accessible by two tunnels.

active site

substrate molecule

Journal of WSCG ISSN 1213-6972 107 ISBN 978-80-86943-00-8

Considering only the geometry of the protein, the
molecule will be simplified to a set of spheres where
each sphere represents one atom. Each of these
spheres is situated in a certain position in 3D space
and has an appropriate Van der Waals radius. At this
stage we will not consider any other chemical
properties of the atoms or the molecule. The
substrate molecule is simplified to one bounding
sphere enclosing all substrate atoms. Due to these
simplifications tunnels always have circular
cross-sections and can be compared with one another
with respect to the diameter of the minimal cross-
section. This value limits the size of substrate
molecules that are able to access the active site.
The computation time is crucial especially when
analysing large sequences consisting of thousands of
‘molecule snapshots’, i.e. changes in positions of
atoms over a time period. In such cases the tunnel
computation has to be performed separately for each
snapshot.

2. RELATED WORK
The existing method of tunnel computation is based
on space discretization and is implemented in the
program CAVER [Pet06]. The space containing the
molecule is regularly sampled and the samples in the
3D raster (cubes) are evaluated by distances from the
nearest atom. The raster is interpreted as a graph with
weights at graph vertices. The search for a tunnel
with the greatest minimal distance is based on the
Dijkstra algorithm.

Another method of protein cavity analysis is based
on α-shapes [Ede94] and is implemented in the
program CASTp [Lia98]. CASTp deals with overall
cavity analysis, including determination of atoms
forming rims of cavities inside the molecule and
other analyses such as volume measurements of
cavities. Cavity analysis is done for all cavities
present (whether accessible from the outside or not)
and does not require any user input. As this
algorithm was designed as a general solution to
cavity analysis it does not deal with tunnels as export
routes and cannot be used for tunnel computation. A
fast and specialised algorithm is required.

A lot of research has been conducted in the area of
Voronoi diagram (VD) and Delaunay triangulation
(DT) modifications. In [Kim04] an algorithm for a
construction of a VD of a set of spheres, referred as
an additively weighted VD, is presented (sometimes
also referred as Euclidean VD of spheres).

In [Gho03] the additively weighted DT is used as a
solution to the problem of network routing. The
algorithm is based on 2D additively weighted DT.
Since the algorithm maintains the additively
weighted DT of sites that dynamically change its

position when users in mobile networks move, it is
more general.

3. PROPOSED SOLUTION
As mentioned above, the protein molecule is
simplified to a set of spheres S. Each sphere s ∈ S is
defined as s (cs,rs), where cs denotes its center point
and rs its radius. When we mention an atom below,
we are referring to the sphere representing this atom.

The function D (x,s) computes the Euclidean distance
of a point x from the surface of a sphere s. If x is
situated inside the sphere s, the result of the function
is negative:

D (x,s) = || x - cs || - rs

For each atom with respective sphere a ∈ S, a
Voronoi cell V (a) is defined as a set of points
satisfying the following condition:

∀x ∈ Rd: x ∈ V (a) ⇔ D (x,a) ≤ D (x,b), ∀a,b ∈ S,
 a ≠ b, d ∈ {2,3}

A Voronoi diagram V (S) is a union of all Voronoi
cells V (u), ∀u ∈ S. Hereafter the border of a
Voronoi cell will be referred to as a Voronoi edge.
This definition is equal to the definition of an
additively weighted Voronoi diagram [Kim04].

In our algorithm we employ duality between a VD
and a DT, one of the most important features of these
structures. For each VD a corresponding DT exists
and vice versa (see Fig. 2).

The minimal distance from the point x to the nearest
sphere (atom) is given by the function r (x):

r (x) = min {D (x,s) | s ∈ S }

Using these functions we can formalise intuitive
notion of a tunnel. A tunnel T leading from a point x
to a point y is defined by a centerline and a tunnel
volume. The centerline is a continuous curve aT
starting in x and ending in y. The tunnel volume is
formed by the union of spheres inserted at each point

Figure 2. Duality between Voronoi diagram
(dashed) and Delaunay Triangulation in 2D

(left) and 3D space (right).

Journal of WSCG ISSN 1213-6972 108 ISBN 978-80-86943-00-8

x ∈ aT with appropriate radius r (x). Formally, T is
defined as

T = U
Tax

xrxs
∈

))(,(

The function n (T) returns the radius of the minimal
sphere of a tunnel T:

n (T) = min {r (x) | x ∈ aT }

The function p (T) returns a set of points on the
tunnel T centerline aT satisfying the condition that
their distance to the nearest atom is n (T):

p (T) = {x | x ∈ aT ∧ r (x) = n (T)}

In most cases p (T) returns just a single point, the
centre of the „narrowest“ passage.

The order relation on the set ST of tunnels with the
centerline leading from x to y is defined by n (T):

T ≤ T ′ ⇔ n (T) ≤ n (T ′), ∀ T, T ′∈ ST

The tunnel T ∈ ST is ideal if for every other tunnel
T ′∈ ST the condition T ≤ IT holds.

Now, we state an important condition that is essential
for our method. This statement is valid for any
additively weighted Voronoi diagram and obviously,
when setting all atom radii to zero, it is also valid for
a Voronoi diagram of a set of points.

Lemma 3.1: Let S be a set of spheres in 3D,
|S | > 1. Consider an ideal tunnel T with the center-
line leading from a point x to a point y. If
x ∉ p (T) ∧ y ∉ p (T) then at least one point from
p (T) (the narrowest passage point) is situated on
some Voronoi edge of Voronoi diagram V (S).

Proof: See Appendix.

Tunnel computation
For better understanding the following concept is
explained in the plane. An extension to three
dimensions is straightforward.

Given V (S) for an input set of points S, the ideal
tunnel can be computed according to the Lemma 3.1.

The “narrowest” point of a Voronoi edge shared by
two atoms u and v is located at the intersection of the
Voronoi edge with the edge connecting u and v. If
such an intersection does not exist, the narrowest
point is located in the Voronoi edge endpoint x with
the smallest r (x). Thus, the narrowest place of every
tunnel must be located either in the Voronoi edge
intersection or in the Voronoi edge endpoint. Note
that knowledge of the shape of all Voronoi edges is
not necessary for the computation of the ideal tunnel
Voronoi edge intersections and endpoints mentioned
above are sufficient.

For computation, it is more convenient to represent
space partition with dual structure of VD, Delaunay
triangulation. DT can be interpreted as a weighted
graph G. Nodes of the graph are formed by triangles
of DT and graph edges are formed by edges shared
by the two neighbouring triangles. The edge weight
is defined as the narrowest point of the
corresponding Voronoi edge (see Fig. 4).

The graph G is used for computation of the ideal
tunnel T leading from the active site A. A possible
utilisation of this graph is described in Section 3.1.2.
The algorithm extension for computation of more
than one tunnel is proposed in Section 3.1.3. The
algorithm described is summarised by the following
pseudocode:

Input: set of atoms M
 active site A

Output: ideal tunnel

DT = delaunayTriangulation(M);
G = convertToGraph(DT);
T = computeTunnel(G,A);
output(T);

Figure 3. Tunnel T with the central line aT

T

x r(x)

y

r(y)

s cs
rs

aT

Journal of WSCG ISSN 1213-6972 109 ISBN 978-80-86943-00-8

3.1.1 Delaunay triangulation computation
The exact computation of an additively weighted VD
and an corresponding DT would be very expensive.
Since the algorithm for tunnels needs to be fast, we
propose several simplifications. We proceed from the
standard DT for a set of points instead and modify it
for a set of spheres. The following simplifications of
the exact solution are possible:
• Conservative simplification – By the definition,

the VD of a set of atoms that have equal radius is
the same as the VD of a set of points. The
simplification could be performed by setting the
radius of all atoms to the radius of the biggest
atom in the molecule. Then the DT of a set of
atom centers could be considered as the valid DT
of the set of atoms. The process of the edge weight
evaluation in the graph G is modified. The weight
of every edge is reduced by an amount
corresponding to the radius of the biggest atom in
the molecule.

• Approximate simplification – Typical protein
molecules usually consist of only a few types of
atoms and their radii do not vary significantly
(from 1.2 to 1.85 Ångström1). If we have the DT
of a set of atom centers and presume that it is a
valid DT for a set of atoms, possible error caused
by this approximation is minimal. The weight of
the edge in G is set to half the minimal distance of
the two surfaces of the atoms forming the edge.

DT could be obtained by several algorithms, e.g. the
lifting algorithm [Bar95] which uses the relation
between the convex hull and the DT. The convex
hull of a set of points in Rd+1 corresponds to the DT
in Rd. The time complexity of the convex hull
computation in R4 is O(n2), where n is the number of
points in the input set. The evaluation of edge

1 1 Å = 10-10 m

weights in the graph G is linear with respect to the
number of nodes in G.

3.1.2 Tunnel computation
 In order to compute the ideal tunnel, we process the
graph G using a modified Dijkstra algorithm. The
function f(x) evaluating each node in G provides
maximization of the minimal weight on the way from
the starting node to processed node. The Dijsktra
algorithm guarantees that the tunnel found for the
given starting point and the graph G is ideal. Time
complexity of Dijkstra algorithm is O(n2), where n is
the number of nodes in G, i.e. number of triangles in
DT.
 The output of our algorithm is one ideal tunnel for a
given active site and therefore it is not necessary to
evaluate every node in G. It is sufficient to perform
the evaluation of nodes until we reach the exterior of
the molecule. In our case, the exterior is determined
by the convex hull of the molecule. In the graph G, a
convex hull can be simply found as a set of nodes
having at least one of its neighbours missing.
Although this simplification does not improve
computational complexity in general, for real
molecules the time of computation is much faster, as
demonstrated in Section 4.

Figure 5. Example of Dijkstra algorithm
progress.

22
22

33

33

22

33

22

88

88
88

22
22

33

33

22

33

22
44

88

33

22

22
22

33

33

22

33

22
44

33

22
33

22
22

33

33

22

33

22
44

33

33
33

22
22

33

33

22

33

22 44

33

33
33

33

44

Figure 4. Example of graph G

DT
edge of G
node of G
narrowest point on edge of G

Journal of WSCG ISSN 1213-6972 110 ISBN 978-80-86943-00-8

The modified Dijkstra algorithm is described by the
following pseudocode; d[v] denotes the actual n (T)
on the centerline of the tunnel T leading from the
starting node s to the node v, previous[v] denotes the
predecessor of v on the centerline of T and w(u,v)
denotes the weight of edge (u,v) in G.

3.1.3 Modification for more tunnels
If two tunnels T1, T2 with the same
n (T1) = n (T2) satisfy the condition for the ideal
tunnel, one of them is selected randomly by the
Dijkstra algorithm. However, if p (T1) ≠ p (T2), it
could be useful to compute both these tunnels. Also
the computation of the next-best tunnels is required
sometimes. Therefore if more than one tunnel is to be
found, we propose the following solution. To exlude
already found tunnels, the graph G is modified after
each particular tunnel computation and the whole
process is repeated. To find new tunnels we may use
various graph modifications which are obvious from
geometrical point of view. However, the chemical
relevance of these modifications is not known yet.
We propose the following modifications:
• Set to zero weight of all edges of G with the

minimal weight along the computed tunnel.

• Set to zero weight of all edges of G along the
computed tunnel from the surface to the edge with
the minimal weight furthest from the surface.

• Set to zero weight of edges in the close
neighbourhood of edges with the minimal weight.

We use constraints C to determine the number of
computed tunnels. The process of tunnel computation
is repeated until C is not satisfied. As an example, for
compution of all tunnels with minimal width higher
than 1.2 Å, C would be a condition “n(T) > 1.2”.

Complexity
The time complexity of DT computation is quadratic
with respect to the number of atoms. The number of
nodes in G is linear to the number of atoms. The time
complexity of the Dijkstra algorithm is also quadratic
with respect to the number of nodes in G. Therefore
the overall time complexity is O(n2), where n is the
number of atoms

4. RESULTS

Implementation
The algorithm was implemented in Java. The
implementation uses the standard DT of a set of
points in 3D and extends it for a +set of spheres.
Both conservative and approximate simplification
were implemented. The output of our program is a
set of spheres approximating the computed tunnel. A
sphere is inserted into the center of each node and to
the narrowest point on each edge through which the
tunnel leads. Radii of these spheres are computed
during the transformation phase of the DT to the
graph G. For better accuracy of the approximate
method we check possible collisions of these spheres
with atoms in their close neighbourhood. If the
collision test is positive we decrease the radius of the
appropriate tunnel sphere so that the collision does
not occur.
The output set of spheres is used for a simple tunnel
visualization (see Fig. 6 and 7).

computeTunnel

Input: undirected weighted graph G
 starting node s

Output: sequence of tunnel nodes

for each node n in G
 d[n] = -∞;
 previous[n] = null;

d[s] = ∞;
u = s;
while (!u.onBorder())
 u = getUnprocessedMaximum(G);
 for each edge (u,v) outgoing
 from u
 if (d[v] < max(d[v],w(u,v))
 d[v] = max(d[v],w(u,v);
 previous[v] = u;

while (u != s)
 output(u);
 u = previous[u];

Extension for more tunnels

Input: set of atoms M
 active site A
 constraints C

Output: computed tunnels

DT = delaunayTriangulation(M);
G = convertToGraph(DT);
do

{

 T = computeTunnel(G,A);
 G = modifyGraph(T,G);
 output(T);

} while (C)

Journal of WSCG ISSN 1213-6972 111 ISBN 978-80-86943-00-8

Practical results
The output of both compared methods, CAVER and
our method, is a set of spheres approximating the
computed tunnel. The CAVER program was tested
with sampling densities 0.8, 0.4 and 0.15 Ångström.
The maximal error of the sampling method is
dependent on sampling density.
We tested both algorithms on real protein molecules
DhaA (consisted of 2358 atoms) and LinB (2479
atoms). The tests were performed on a computer with
P4 3.0GHz CPU and 1GB RAM. Active sites were
determined inside chemically significant cavities
inside the protein molecule.
In Table 1, comparison between the two algorithms
is done considering a real width of the narrowest
tunnel radius. This value can be achieved in the
following way. For each center cs of sphere s in the
sampled tunnel, the value r (s) is determined. If
rs > r (s) then rs is changed to r (s). Therefore the
tunnel found does not intersect any other atom and
the value n (T) of the computed tunnel T could never
be higher than n (IT) of the actual ideal tunnel IT.
A solution obtained by using an approximate
simplification cannot guarantee that the narrowest
place is determined by one of the sampled tunnel
spheres. It is possible that error can arise on the
tunnel centerline between two neighbouring spheres
in the sampled tunnel. Therefore, the tunnel
centerline is sampled densely to minimise the
probability of such errors arising.
It is not possible to set the sampling density in the
program CAVER densely enough due to the high
system requirements. Despite that we consider
CAVER results to be accurate enough.
 As shown in Table 1, when testing on two real
molecules, the solution obtained by the approximate
simplification is more accurate than the conservative
simplification. In comparison with the program
CAVER, the approximate simplification is

significantly more accurate. On the DhaA molecule
even the conservative simplification provides better
results than CAVER.
Furthermore, if we compare the computation time
shown in Table 2, the ratio of accuracy to
computation time obtained by both our methods is
much better. The computation of tunnels on the LinB
molecule took CAVER 34914 seconds to be more
accurate than the conservative simplification
(computed in 1.031 seconds) of our algorithm.
The comparison of computation time of the whole
Dijkstra algorithm and the reduced Dijkstra
algorithm is shown in Table 3. These results imply
that stopping Dijkstra algorithm on the Convex hull
brings a significant decrease in computation time of
the Dijkstra algorithm.

5. CONCLUSION
In this paper we have described a novel method of
tunnel computation in protein molecules. We
demonstrated two possible simplifications of the
proposed algorithm, which speed up the computation
process without notable loss of accuracy. The
conservative simplification gives worse but still
reasonably precise results and is faster due to its
simplicity. The approximate simplification computes
wider tunnels at the cost of possible presence of an
error in the result. In comparison with previous
solution, both our methods have much better ratio of
speed to accuracy.

There are several avenues possible for the further
research in the future. We want to implement the

CAVER using grid size DT method Minimal radius
(Ångström) 0.8Å 0.4Å 0.15Å Conservative Approximate

DhaA 1.05571 1.29359 1.4153 1.4207468 1.4772751

LinB 0.647456 0.674731 0.785306 0.7510569 0.8693304

Table 1. Accuracy comparison.

CAVER using grid size DT method Time of computation
(seconds) 0.8Å 0.4Å 0.15Å Conservative Approximate

DhaA 3.782 108.64 37152.91 0.984 1.312

LinB 3.391 100.89 34913.98 1.031 1.406

Table 2. Time of computation.

Time
(seconds) Full Dijkstra Reduced Dijkstra

DhaA 2.407 0.031

LinB 2.891 0.047

Table 3. Comparison of Dijkstra algorithm
computation.

Journal of WSCG ISSN 1213-6972 112 ISBN 978-80-86943-00-8

exact solution using additively weighted DT in 3D to
confirm our assumption that the accuracy
improvement is not worth of the speed degradation.
Utilization of more sophisticated methods of DT
computation could significantly improve the speed of
the algorithm, e.g. we could perform some space
partitioning and compute only a part of the graph G
on demand of Dijkstra algorithm.

Volume maximization of the tunnel instead of
maximization of the narrowest cross-section could be
biochemically significant. Fast analysis of large
snapshot sequences sampling molecule in time is also
demanded. Algorithm output could be also processed
with other techniques, e.g. haptical devices could
explore the tunnel surface for other biochemical
properties.

6. ACKNOWLEDGEMENTS
This work was supported by The Ministry of
Education of The Czech Republic, Contract No.
LC06008 and by The Grant Agency of The Czech
Republic, Contract No. 201/07/0927.

7. REFERENCES
[Bar95] Barber, C.B., Dobkin, D.P., and Huhdanpaa,

H. The Quickhull algorithm for convex hulls.

ACM Transactions on Mathematical Software,
22(4), pp.469-483, 1996.

[Ede94] Edelsbrunner, H., and Mucke, E. P. Three-
Dimensional Alpha Shapes. ACM Transactions
on Graphics, 13(1), pp43-72, 1994.

[Gho03] Ghosh, R.K., Gupta, G., and Rao, S.V. A
routing Algorithm for Multi-Hop Mobile Ad Hoc
Network Using Additively Weighted Delaunay
Triangulation. CIT, 2003.

[Kim04] Kim, D.S., Youngsong, C., Kim, D. Edge-
tracing algorithm for Euclidean Voronoi diagram
of 3D Spheres, Proc. of the 16th Canadian
Conference on Computational Geometry, pp.
176-179, 2004.

[Lia98] Liang, J., Edelsbrunner, H., and Woodward,
C. Anatomy of protein pockets and cavities:
Measurement of binding site geometry and
implications for ligand design. Protein Science, 7,
pp.1884-1897, 1998.

[Pet06] Petřek, M., Otyepka, M., Banáš, P.,
Košinová P., Koča, J., and Damborský J.
CAVER: a new tool to explore routes from
protein clefts, pockets and cavities. BMC
Bioinformatics, 2006.

[Pre85] Preparata, F.P., and Shamos, M.I.
Computational Geometry: An introduction.
Springer-Verlag, 1985.

Figure 6. Ideal tunnel in DhaA molecule Figure 7. Tunnel centerline (denoted by the line)

Journal of WSCG ISSN 1213-6972 113 ISBN 978-80-86943-00-8

APPENDIX

Lemma 3.1: Let S be a set of spheres in 3D,
|S | > 1. Consider an ideal tunnel T with the center-
line leading from a point x to a point y. If
x ∉ p (T) ∧ y ∉ p (T), then at least one point from
p (T) (the narrowest passage point) is situated on
some Voronoi edge of Voronoi diagram V (S).

Proof: Consider a tunel T with the centerline
leading from the point x to the point y satisfying
x ∉ p (T) ∧ y ∉ p (T). Let the set p (T) contain
only one point pT. If p (T) contains more than one
point, we perform the construction demonstrated in
this proof for each element of p (T).

Suppose that pT is not situated on any Voronoi edge
of V (S) and T is ideal (for each tunnels T ′ leading
from x to y, the condition T ≤ T ′ holds). If pT is not
situated on any Voronoi edge of V (S), then pT is
situated inside one of the Voronoi cells
V (u). This implies D (pT,u) < D (pT,v) for each
sphere v ∈ S, v ≠ u.

The point px denotes the intersection of the border
of V (u) with the part of aT, that lies between x and
pT. If more than one intersection exists, we select
the intersection closest to pT. Similarly the point py
denotes the closest intersection of the border of
V (u) with the part of aT lying between pT and y.
If x lies inside V (u), let px be the point x. If
y ∈ V (u), then py = y. The part of aT between points
px and py is denoted a′T. The curve a′T is continuous
and all points of a′T lie inside V (u),
∀v ∈ a′T ⇒ v ∈ V (u).

For each point w ∈ a′T we create a half-line with
the starting point in cu passing through w. w′ denote
the intersection of this half-line with the border of

V (u). Note that for each w, w ≠ px ∧ w ≠ py, the
condition r (w) < r (w′) holds. The set of all points
w′ forms a continuous curve leading from px to py.
We denote this curve a″T. Since we assume that T is
ideal, for each point w ∈ a′T, w ≠ pT the condition
r (w) > r (pT) holds, therefore for each point
w′ ∈ a″T the condition r (w′) > r (pT) is satisfied as
well.

We modify the centerline of T by replacing a′T with
a″T. The modified tunnel is denoted by T ′. For each
point w ∈ aT ′ the condition r (w) > r (pT) holds.
However, this implies n (T ′) > n (T), contradicting
our assumption that T is ideal.

Figure 8. Proof illustration.

u

py

w

V(S)

px

x

y

V(u)

aT

a�T

v

w�

a��T

Journal of WSCG ISSN 1213-6972 114 ISBN 978-80-86943-00-8

	!WSCG2007_Journal_Proceedings_Numbered.pdf
	B07-full.pdf
	G59-full.pdf
	H61-full.pdf
	A47-full.pdf

