

OBJECT-CENTERED NAVIGATION IN VIRTUAL
CONSTRUCTION APPLICATIONS

Colette Elcacho, Thomas Dingel, Reinhard Klein

Department of Animation and Image Communication

Fraunhofer Institute for Computer Graphics, Rundeturmstr. 6,
64283 Darmstadt

Germany
{elcacho, tdingel, rklein}@igd.fhg.de www.igd.fhg.de/~{elcacho, tdingel, rklein}

ABSTRACT

In this paper we present a novel concept for navigation in virtual environments. While a variety of
navigation metaphors have been proposed for immersive VR, desktop scenarios are typically based on
mouse navigation, using a flying, walking or driving metaphor. Steering all six degrees of freedom in this
way is a complicated task even for a trained user. We propose an innovative object-centered concept for
navigation, which allows exploring an unknown environment by directly going to the objects one desires
looking at closely. The user specifies the object by its name, e.g. “table”, an aspect, e.g. “front” and a
distance level, e.g. “near” in an intuitive fashion and is immediately transferred to the desired look-at
point. This is done by pointing to an object with the mouse or using a simple speech recognition approach.
The object-centered viewpoints are computed dynamically and need not be predefined. Our new
navigation concept has been approved by different users and has been tested in an interactive construction
environment.

Keywords: navigation, object-centered, 6DOF, interaction, human computer interaction, construction
kits, virtual reality (VR), desktop VR.

1. INTRODUCTION

Moving through a virtual environment in an intuitive
fashion is a dream that has not yet turned into reality,
a tale told by the many publications related to the
subject.
The focus of this work is on the development of new
navigation techniques for virtual 3D-construction
kits where the user virtually constructs his model
from single parts, like in a Lego game.
Special snap points and special snapping behavior on
all the parts allow the easy and exact combination of
the parts. Each goal snap point matches one origin
snap point. The generic definition of the snap
behavior and rules of construction parts allows us to
easily create different kinds of construction kit
behavior.
Although the special snapping mechanism greatly
simplifies the construction task, navigation in the
already constructed scene is still a very time
consuming task even for trained users: Before we
can attach a new part to our model for example by
dragging the part with the mouse towards the

corresponding snap points the user must position
her/himself correctly with respect to the part she/he
is attaching the new one to.
The same navigation tasks must be performed for
inspecting a certain part of a model for investigating
how a model is build up from single parts. To free
the users hands we aimed for an interaction metaphor
that is simply steered by a mouse but can also be
driven by speech. Before presenting our new
approach we briefly summarize previous work and
discuss its deficiencies.
The early and recent publications are generally
concerned with the problem of immersive navigation
[WaOs90][BBCH00][StCP95]; a few mention the
desktop problem [MaCR90].
In an early publication Ware and Osborne analyze
the nature of the problem [WaOs90]:

 “The task of placing a viewpoint in a virtual
environment has basically six degrees of freedom –
three for positional placement and three for angular
placement …”.

 Ware and Osborne investigate three different
interaction metaphors:
Eyeball in hand: the user navigates the scene by
moving a special hand held device as a virtual
camera through the scene;
Scene in hand: This metaphor interprets the
movement of the interaction device as a movement
of the entire scene;
Flying vehicle control: the interaction device is
considered a flying vehicle and the image displayed
corresponds to the image the user would see if he or
she were placed inside the vehicle.
They tested the acceptance of the metaphors on three
typical environments and found that the flying
vehicle control is least suited for moving around a
closed object and best suited when navigating inside
an object, such as a maze. The scene in hand
metaphor is reported least suited for the navigation
through a maze and best suited for the movement
around a closed object.
Variations of the flying vehicle metaphor are the car
driving and the walking or locomotion metaphor the
latter introduced by Brooks et al. [Broo86], cited in
[HPCK94]. In 1994 Pausch et al. [HPCK94]
introduce a new interaction technique: the ray cast
metaphor. Here a ray is cast at an object intended for
selection or as a navigation goal.
This theoretical background applies for mouse-based
desktop VR applications, such as realized in the
standard browser CosmoPlayer [Cosm99]. Here a
pragmatic solution to the navigation problem. is
provided; constrained to fulfill the ISO/IEC
specification [ISO-97], which requires navigation
modes for:
Walking: The camera moves through the scene
bound to a certain height;
Examine: The motion of the input device is mapped
to a motion of the scene, not the camera.
Flying: The motion of the input device is mapped to
a motion of the camera.
The implementation uses a dashboard metaphor
offering two sets of controls, one for walking and
flying and a second one for examining the scene,
displayed in figure 1a and 1b respectively. The walk
and fly mode, is switched by selecting a gravity on /
off button.
Change-controls chooses between the examination
and the move mode. The latter presents a
combination of the eyeball in hand metaphor (go)
and the flying vehicle metaphor (tilt, go, slide); while
the first mode can be interpreted as a derivative of
the scene in hand metaphor (rotate, pan), where the
scene can be rotated and translated. Seek (seek),
allows selecting an object and then moving closer;
similar to the ray cast metaphor, presented in
[HPCK94].
The metaphors are complete in the sense of allowing
for all desired navigational motions. However, they
are complicated to handle for novice users and even

trained persons may find a special navigation task
difficult to accomplish. The software documentation
explicitly mentions that one:

“… could easily become disoriented by switching
from one set of controls to another. …” [Cosm99].

This experience is not limited to a special browser,
but found in all similar software today. It might be
the reason for a different concept that is also
supported: the navigation by viewpoints. A
viewpoint is described by a position, the look at
direction and an angle describing the field of view.
Browsers allow navigating a scene along a number
of predefined viewpoints. The browser interface
displays a list of available viewpoints and provides a
navigation control for “forward” and “backward”.
The browser supports a direct linear interpolation
between these viewpoints. The scene designer must
however take care that the path connecting two
viewpoints does not intersect any objects.

Free navigation interface

 of a standard browser (walk/fly)
 Figure 1a

 Free navigation interface of a standard browser
(scene manipulation)

Figure 1b

If they intersect an object, the browser will stop at
the object, if collision detection is turned on, and
move through the object, if it is turned off. The
browser does not perform any other than the direct
path computation, and the design of the path is in the
responsibility of the application designer. The
navigation is easy and informative, if the path is well
defined. But here a free movement in the scene is not
supported, i.e. when the visitor wishes to see
something else, than the guided tour path, he or she
faces the problem of free navigation using the
interaction metaphors described before. The
problems reported by Ware and Osborne for
immersive environments [WaOs90], are similar for
desktop environments [MaCR90], even though here,
the visitor of the scene has a better overview being
outside the environment. The object-centered

navigation metaphor tackles all these issues and
allows directly accessing a desired object in an
intuitive fashion.

2. THE CONCEPT OF OBJECT-CENTERED

VIEWPOINTS

The concept of object-centered viewpoints provides
a new metaphor, which allows the user to select the
object of interest, directly go for it and then use
relative positioning to move around the object. All
viewpoints are dynamically computed during the
navigation, they need not be predefined.
Each object in the scene is associated with a set of
object-centered viewpoints for an orientation or
aspect, i.e. a view from:

• Back
• Front
• Left
• Right
• Below
• Above

And for each of these orientations or aspects a level
of distance to the object can be specified as:

• Near
• Far
• Intermediate

In this way each object provides a total of eighteen
object-centered viewpoints.

Navigation controls for object-centered navigation in

a construction kit
Figure 2

The object-centered navigation keeps track of the
current front position, i.e. which direction the visitor
is looking at the scene. If the user moves on to the
next object, by selecting it, the current front position
is kept, such that the user does see the newly selected
object from the object-centered aspect of orientation
(back, front, left or right, above or below) that is
closest to the current front position.
For navigation of the scene, the visitor can easily go
to the position he or she wishes, by directly
addressing the object. Figure 2 shows the navigation
controls for object-centered navigation. Figure 3
shows an object from three different object centered
viewpoint positions.

Object-centered viewpoints

Figure 3

A task such as putting an object somewhere or using
a tool, etc. is much easier, when the system supports
navigation directly to the point of interest. When
moving left or right, the system keeps track of the
current look at position as the front position and
defines the left, right, and back orientation relative to
the current front view, using a counterclockwise
numbering of the directions.
For a more fine-grained navigation around an object,
in addition to the basic orientations back, front, left,
right, which are at the corresponding sides of a

bounding box surrounding the object, intermediate
steps are also provided, such as:

• Turn “a little” left
• Turn “a little” right

These small step widths are useful, when the visitor
of the scene is to complete certain tasks with the
objects in an interactive environment. This allows us
to easily detect, where the relative front positions of
the surrounding objects lie:

• Front -> 0
• Right -> 1
• Back -> 2
• Left -> 3

The currently viewed side of the object is always
defined as the relative front face. When navigating in
the environment, the user has the option to select a
new object for moving there, or examining current
object. If the current object is examined more
closely, the user can go round the object using the
left, right, front and back navigation or the colloquial
“turn a little” left / right navigation. Moreover the
distance can be varied switching from near to far or
intermediate in any desired sequence. Every object
may have a predefined front, back, left and right
position that can be used for absolute positioning,
this is however optional.
When moving from one viewpoint to the next, we
use a simple interpolation and camera animation that
smoothly takes the visitor to the new look-at position
and beforehand we use a simple visibility test.

3. INTERPOLATION BETWEEN VIEW-

POINTS AND PROBLEM OF VISIBILITY

In order to allow a smooth motion among the
viewpoints, an interpolation must be performed for
the animation of the camera. It should move along a
natural path; objects that intersect the line between
source and target viewpoint must be properly
detected and traveled round.
A trivial method for avoiding visibility problems is
not to perform an animation. This method is often
referred to as teleporting. It is possible with object-
centered viewpoints, but generally not satisfactory
for the visitor, since it does not explore the full
experience of 3D space.
The first step in defining a camera animation is
determining the camera path in the scene. The
second step is the display of the animation. An
optimal algorithm should detect the shortest viable
path between the two viewpoints and guide the
visitor to the new location.

Object-centered viewpoint model

Figure 4

Before computing the camera animation it must be
checked that the target viewpoint is not inside an
object. For adjacent objects some of the near-
viewpoints may intersect a neighboring object, or lie
inside it. In these cases the corresponding viewpoint
must be locked for navigation.
The object-centered navigation allows moving
around an object (left, right, a little left, a little right)
and a change of the focused object, i.e. the
navigation to a new object. Both navigation tasks
take the visitor to a different object-centered
viewpoint.

Navigation around an object For the navigation
around an object, the object-centered viewpoints:
left, right, front, and back are possible targets, and
the directions: “a little” left and “a little” right, too.
Turning right or left uses an angle of 90 degrees,
turning back of 180 degrees. To move “a little” left /
right uses an angle of 30 degrees. The object-
centered viewpoint positions lie for each of the
distances near, intermediate, and far on a circular
line with different radius around the object’s
bounding box. The interpolation is done in a linear
fashion along four interpolation points, the start
viewpoint, the end viewpoint and two equidistant
intermediate positions, facing the center of the
bounding box, see figure 4. If no collision is detected
along the interpolation line, which is also the camera
path, the path is used for the camera animation. If a
collision is detected, the path is computed for the
next level of distance of the two viewpoints. I.e. if
the current level of distance is “intermediate” the
next tested level is the “far” level.
The animation contains then five interpolation
points, first a zoom out to the next level of distance
viewpoint, then the animation as described above
and then a zoom in on the original level of distance
for the new viewpoint. If going up the levels of
distance does not work either, going down the levels
of distance is tried, and if this does not work, the
next level of hierarchy of objects is used for the

computation of the viewpoint animation path. The
smallest level of hierarchy in the scene structure is a
simple atomic object and the highest level of
hierarchy corresponds to the entire environment.
This method is useful, when object hierarchies are
available.
The intersection test is repeated until no intersection
is found. The algorithm works well for scenarios,
where for each pair of objects, such a condition can
be met. Generally this is possible for sparsely
populated scenes such as e.g. the interior of a room.
Densely populated scenes with many intersecting
objects or scenes that form a maze are difficult or
even impossible to handle without intersection. The
current implementation does ignore an intersection,
when it is found on the highest level of distance.
Here future implementation must provide an
algorithm that allows smoothly moving around
objects. For the test scenarios, shown in figure 3, 6, 7
and 8, the algorithm however worked fine, and
allowed us to perform the user tests on the
navigational ease of use of the object-centered
viewpoints and the comparison to the free navigation
metaphor.

Navigation to a new object Here the user selects
the target of his or her motion and then is taken
there. To compute the path for the corresponding
camera animation, we use a simple algorithm. First
the front object-centered viewpoint of the new object
is determined. The angle formed by the normal
vector of the object-centered viewpoint and the
current front direction is computed and the viewpoint
with the smallest angle is selected as the appropriate
new front direction, the distance level is adopted
corresponding to the current distance level, see
figure 5.
For the new object-centered viewpoint and the
current object-centered viewpoint, a visibility test is
performed. If no other object lies on the interpolation
line, the camera path is set and the animation is
performed. If an occluding object intersects the
camera path, the other distance levels are checked
for occlusion. First the up direction, then the down
direction is considered, according to the same
schema used for the navigation around an object. If
no occlusion-free path is found, the next hierarchy
level is considered up to the first level of hierarchy
that comprises both objects. Then the interpolation
strategy changes to the one described before for the
navigation around an object, since both objects
belong to the same hierarchy group, and are
contained in an identical bounding box. Again the
algorithm works fine for sparsely populated scenes.
In arbitrary scenes it cannot be granted that a valid
animation path is found, nor can a decision be made
on whether a valid camera animation is possible or
not.

Object-centered navigation to a new object.
Figure 5

This restriction must be considered, when the object
centered animation is intended for use in an extended
fashion, i.e. “blindly”. In the experiments we did, the
scene was visible, i.e. the user was navigating among
the objects he or she could see. And of course, if
there is a line or “curve” of sight for the user
between two objects, a camera path does exist.
In “blind” environments, i.e. environments, where
the user gets the option to navigate to locations he or
she does not immediately see, a different method
must be applied for the visibility testing, and an
optimal reliable algorithm must be used.
Here our focus was in first place on the evaluation of
the object-centered navigation and on the
comparison with the free navigation, concerning the
ease of use. Therefore we focused on sparse
environments, which are sufficient for the test
purpose, since according to [WaOs90] even for very
basic tasks, such as the navigation around an object
or moving between different signs, a free navigation
is difficult.
In order to allow for a navigation to all reachable
viewpoints, even if no valid camera path is detected,
the algorithm in the current implementation ignores
the topmost found occlusion and takes the user in an
animation to the new viewpoint, regardless of the
collision.
The great advantage of object-centered navigation
over the six degrees of freedom interfaces is obvious.
It can still be improved by adding a new option:
speech interaction. This feature frees the users hands
for other tasks while exploring the scene.

4. NAVIGATION BY SPEECH

INTERACTION

Speech interaction and other natural interaction
methods are analyzed in an early publication by
Nielson, who surveys non-command user interfaces
and comes to the conclusion that even non-command
based user interfaces have to face the issue that:

 “… there are tasks that are more naturally
accomplished by explicit commands …” [Niel93].

The aim of non-command based interfaces is that of
a more natural interaction with the computer.
Nielson cites the example of a card table system,
where the user is playing a game. An other examples
of non command-based interfaces is eye tracking,
which Nielson however considers “esoteric”, and
difficult to realize since:

 “… Users do not have full control over their eye
movement; and the eyes run all the time, even when
the user does not intend to have the computer do
anything. …”

The advantage of eye tracking lies in the option
freeing the user’s hands. This advantage can also be
achieved using speech interaction [JKLS00]. Speech
recognition is still a difficult and unsolved task for
the general case, but systems trained on recognizing
special commands in a well-defined context tend to
work well.
Issuing spoken navigation commands allows the user
to navigate via voice interaction through the scene
and keep performing a different task with his or her
hands. This is especially useful in applications such
as virtual construction manuals or construction
demonstrations using 3D models and animation. The
user may navigate the manual by voice interaction
while assembling or fitting an object, e.g. a piece of
furniture.
With the voice interaction he or she can easily move
the focus to a special detail of interest, all while
continuing the manual work. Voice interaction based
navigation is also useful in a large number of other
scenarios and applications [JKLS00].
For object-centered navigation the voice commands
directly correspond to the interaction commands of
the navigation interface depicted in figure 2.
I.e. the speech navigation interface provides the
following set of commands for navigation around an
object:

• Turn to the Front (say: “front”)
• Turn to the Back (say: “back”)
• Turn Left (say: “left”)
• Turn Right (say: “right”)

For navigation to a specific object, the user would
click the object in the non speech-based object-
centered navigation, described in section 2. Here,
each object is given a label, containing a number for
identification. To move to an object, the user just
says its number. The animation of the camera path is
done in the same fashion as for the non voice-based
navigation, described in section 3.

Object-centered speech navigation,

identification by numbers
Figure 6

Technically the voice interaction we used is based on
a Java wrapper to a standard speech engine of
Microsoft for PC platforms.
We found that the speech interaction works fine and
has the same positive effects as the object-centered
navigation without speech interaction. There is a
slight difficulty in the recognition of the words, if the
person using the speech engine does not train the
system beforehand. Moreover, the speech engine
often recognizes command words from discussions
taking place close to the microphone, although no
command was spoken. Figure 6 shows a screenshot
of the object numbering for easy identification of
navigation targets.
In this work, we have implemented an object-
centered navigation for object-level navigation, i.e.
without considering more than two levels of
hierarchy. For a general ease of use, a navigation
system could provide more than just object level
navigation. It may be useful to select groups of
objects and then focus on the group as a whole
instead of a single object.

5. PROBLEM OF HIERARCHIES

When exploring an environment one typically has a
certain idea of what he or she wishes to see next. In
an unknown building, a museum for instance, one
may wish to go to a certain exhibit or tableau
directly. In these cases the object-level navigation is
useful. The tableau or exhibit is an object-level
target. For accessing intermediate camera positions
between objects or for focusing on more than one
object, a different method is required.
Approaches presented in related publications often
rely on artificial intelligence based solutions, without
managing the complexity of the problem [JKLS00].
The object-centered navigation model can be
extended easily using hierarchies to encompass these
problems of colloquial motion specification such as
expressed by the instruction: move “close to” a

group of objects. Hierarchies allow recognizing
objects in groups of interest, such as e.g. a table in a
room surrounded by several chairs.
The user may wish to first step close to the group,
and then in a second step from a closer position
decide again, which chair to choose.

Simple Object Hierarchy

Figure 7

In some of these cases the navigation can be handled
using a predefined hierarchical structure of the
model. Streets, buildings, and rooms form such a
hierarchy, e.g. in geographic information systems. In
some cases a predefined hierarchy may be
inappropriate. As an example consider again an
entrance hall of a large unknown building, where the
one wants to visit a corner showing an advertising
pillar, a door and an information desk. From there it
is easy to decide which of the three objects may be
of further interest.
In such a case, a predefined hierarchy will most
probably fail offering a navigation target that
comprises such an individual group of three objects,
since they do not share any logical connection that
would justify placing them in a joint hierarchical
wrapper. A more flexible method is needed. We
suggest a method that allows the user to select a
certain number of objects at once. In a test
algorithm, we allow the user to select up to three
objects as navigation targets. The algorithm
computes the bounding box that comprises all three
objects and generates the object-centered viewpoints
for the joint bounding box. Figure 7 shows an
environment, for which a simple two level hierarchy
is implemented. Hierarchies are also helpful, when
using large and complex models of single real world
objects, such as e.g. an aircraft or a car. Buildings
and geographic information systems, too, are typical
hierarchical structures.

6. RESULTS

We have tested and evaluated the navigation with
object-centered viewpoints in a construction kit
scenario, which lets the user build new furniture and

other models [Ding00]. We have used the same
scenario for the test, in one version it contained the
object-centered navigation, in the other version it
only supported the free navigation controls. The
scenario is depicted in figure 8.

Test environment for construction and navigation

Figure 8

The persons testing the applications were instructed
to construct twice the same furniture model using the
free navigation model first and the object-centered
navigation second; they were asked for a comparison
concerning the ease of use for both interfaces. The
test persons comprised novice users and experienced
game players who were already habituated to free
navigation controls. Both groups did the construction
in considerably less time using the object-centered
navigation. While the novice users expectedly
performed very badly with the free navigation as
compared to the experienced users, they took about
the same time for construction using the object-
centered navigation. Both groups unanimously
preferred the object-centered navigation for the
construction task. The reasons stated were: it allows
subjectively traveling faster; it allows directly getting
to a desired position; it avoids the many false and
unintended motions. It was also considered to be
easier to handle and understand.

7. CONCLUSION

In this paper we have introduced a new object-
centered concept for navigation in virtual
construction scenarios that provides a set of
dynamically computed viewpoints for each object
and a simple algorithm for the camera animation for
motion in the scene.
We have shown that the discretized set of object-
centered viewpoints serves well as an interface for
speech based navigation and allows us to perform
imprecise motions such as “a little” left/right and
“close to”, to name some. Both, the object-centered
navigation and the object-centered navigation with
speech interaction have been tested in different
virtual construction scenarios. Although the speech
recognition sometimes made erroneous
interpretations of the spoken commands, the test
persons approved the concept.
It was generally stated that the object-centered
navigation was very helpful for the virtual
construction scenario.
Extensions in the path finding concept will allow
applying the object centered navigation in arbitrary
“blind” virtual reality environments.

8. FUTURE WORK

In addition to the here tested virtual construction
scenarios, the concept of object-centered viewpoints
is applicable to a variety of other navigation
problems in virtual reality.
For the use of object-centered navigation in complex
environments, future work must consider an
algorithm for global path finding and a refined
hierarchical concept. Additions should allow
performing complex navigation path calculations in
unknown environments such as e.g. large buildings.
Moreover, it provides the basis for an integration of
the navigation system with tagged information
systems, such as e.g. virtual product catalogs or
virtual location manuals.

REFERENCES

[BBCH00] Bowman, D.; Billinghurst, M.; Cugini,

J.R., Hinckley, K.; et. al.: 20th Century 3D
User Interface Bibliography: an annotated
bibliography on 3D user interfaces and
interaction:
http://www.mic.atr.co.jp/~poup/3dui/3duibib.
htm

[Broo86] Brooks, F. P. Jr.: Walkthrough, a dynamic
graphics system for simulating virtual
buildings; Proceedings of the ACM
Workshop on Interactive 3D Graphics, 1986,
pp. 9-21.

[Cosm99] CosmoPlayer2.1 online documentation,
http://www.cai.com/cosmo/.

[Ding00] Dingel, Th.: Authoring von interaktiven
Verhaltens-komponenten für 3D-Modelle im
WWW; Diploma thesis, FH Darmstadt,
March 2000.

 [HPCK94] Hinckley, K.; Pausch, R.; Goble, J.C.;
Kassell, N.F.: A survey of design issues in
spatial input; Proceedings of the ACM
symposium on User interface software and
technology, 1994, Pages 213-222.

[ISO97] ISO/IEC 14772-1:1997: The Virtual Reality
Modeling Language (VRML97);
http://www.web3d.org/.

[JKLS00] Jung, B.; Kopp, S.; Latoschik, M.E.;
Sowa, T.; Wachsmuth, I.: Virtuelles
Konstruieren mit Gestik und Sprache;
Künstliche Intelligenz, 2/00, pp. 5-11.

 [MaCR90] Mackinlay, J.D.; Card, S.K.; Robertson,
G.G.: Rapid Controlled Movement Through a
Virtual 3D Workspace; Proceedings of
SIGGRAPH’90, pp. 171-176.
www.hitl.washington.edu/publications/.

[StCP95] Stoakley, Richard; Conway, Matthew J.;
Pausch Randy: Virtual Reality on a WIM:
Interactive Worlds in Miniature; in
Proceedings of CHI’95.

 [WaOs90] Ware, Colin; Osborne, Steven:
Exploration and Virtual Camera Control in
Virtual Three Dimensional Environments;
Proceedings of the 1990 symposium on
Interactive 3D graphics, 1990, pp. 175-183.

