

COMPONENT-BASED ARCHITECTURES FOR COMPUTER VISION
SYSTEMS

Aris Economopoulos, Drakoulis Martakos

Department of Informatics

Hypermedia Digital Libraries – Internet Applications Group (HyDiLib – INA)
National and Kapodistrian University of Athens, Panepistimiopolis, Ktiria Pliroforikis

157-71 Athens
Greece

pathway@di.uoa.gr, martakos@di.uoa.gr http://hydilib.uoa.gr

ABSTRACT

Research performed in the field of computer vision has steadily ignored recent advances in programming tools
and techniques, relying on well-established traditional methods, such as Unix-based C programming. While this
can certainly be effective, modern computer vision research may benefit significantly from the new tools and
technologies that have recently become available. This paper addresses the use of component-based
programming methods and proposes a model loosely based on 3-tier architectures, for the creation of robust and
reusable computer vision systems, in order to improve code modularity and reusability, and to ultimately foster
cooperation between researchers in the field. It outlines a basic design strategy and exposes the benefits and
drawbacks of migrating to component-based code. The model is used to build a component-driven framework
that is designed based on the principles of 3-tier applications. Its purpose is to aid in the creation and
maintenance of stable, dependable testing and development environments. We have listed the main advantages
of this approach and have concluded that although the learning curve for the programming skills required is
steep, the benefits to be reaped are worth it.

Keywords: computer vision, applications, components, development, testing, cooperation, COM, MTS

1. INTRODUCTION

Computer Vision is an especially active area of
research. The main damper on the development of
this highly active field was, until recently, the high
cost of the equipment required to set up a vision lab.
With the advent of new, powerful microprocessors
and low-cost high-quality frame-grabbers, this
hurdle has been finally overcome. But even in the
midst of an era where technological breakthroughs
are considered commonplace, many vision
researchers still adhere to the past, using what some
consider old but well-proven methods of
implementation to experimentally justify their
theories. Some of the more typical algorithm
implementations are hand-written in C, linked to
arcane graphics libraries and tested only on some
particular flavor of a free Unix clone, such as Linux
or FreeBSD. These methods certainly represent
viable alternatives for researchers who merely wish
to quickly put their theories into practice. However,
such methods are gradually proven inadequate when
it comes to several key development factors such as

code portability and reusability, or when the object
is to allow other researchers to duplicate one’s
results. The computer vision community is a rather
active one and there is an undeniable need to
facilitate the sharing of information. And while
several authoritative textbooks serve to familiarize
seasoned and beginning researchers alike with
proven concepts and techniques, it is very rare for
code to be made readily available in an easy to use
format that does not require the user to jump through
a lot of hoops just to get it to compile. This situation
could be avoided if the community slowly made a
shift towards modern programming techniques, such
as component-based programming using a widely
known object model, such as COM (Component
Object Model) [Micro00a] or CORBA (Component
Object Request Brokering Architecture) [OMG99a].
The nature of component-based architectures offers
several advantages that a researcher might
appreciate, such as programming language
independence and code reusability, as described in
[Kirtl98a], [Malon99a] and [Eddon99a].

In this paper, we discuss the benefits and drawbacks
of a possible migration towards component-based
programming, specifically concentrating on 3-tier
architectures. Based on our expertise with COM,
DCOM and their successor, COM+, we present a
basic strategy for the design and implementation of
modular, robust computer vision systems, loosely
based on the 3-tier programming model (data tier,
business tier, presentation tier) that is implemented
by Windows DNA (Distributed Internet Application
Architecture). In the effort to create a basic
programming framework for the sharing of reusable
components between researchers, we have adopted a
set of documentation and programming guidelines
that enforce and enhance portability and stability.

In Section 2, we present an overview of 3-tier
architectures. In Section 3, we present the benefits of
working with components and offer an overview of
the programming framework that we propose.
Section 5 gives an in-depth view of the framework,
including an example that showcases the
methodology’s advantages. In Section 5 we present
our conclusions and future work.

2. AN OVERVIEW OF 3-TIER
ARCHITECTURES

The advent of the Internet and the popularity of e-
commerce have rendered the basic client-server
model of software design obsolete. Programmers are
being called upon to produce application code that
can scale to serve hundreds of thousands of users
and that can work in a completely distributed and
often session- and state-less environment. This was a
challenge that demanded a paradigm shift in the
entire process of application creation, from design
on through to implementation. This paradigm shift
brought about the concept of 3-tier architectures
(Fig. 1). The idea was to design and implement
applications in such a way so that features like high
scalability and distributed design would be
implicitly derived from the design methodology
itself. The main difference between 2-tier and 3-tier
architectures is the presence of the Business Tier.
The first step in the creation of durable client-server
applications was the separation of the data services
layer from the rest of the application, as depicted
below. Separating the core functionality from the
user interface was the next logical step, and that is
precisely what 3-tier applications are all about: The
separation of the Business Logic from the rest of the
application. In two-tier applications, the data
services layer (or Data Tier) is a distinct logical
entity. As such, multiple clients can access it
simultaneously, regardless of where in the network it
is located. There is no separation between business
tier and user interface.

Figure 1 - 2-tier and 3-tier architectures

In 3-tier applications on the other hand, while the
data services layer continues being a separate entity,
presentation services and business services have also
become separated. Indeed, the business tier now
consists of several different components. This has
several benefits and a few drawbacks. One of the
main drawbacks is that a researcher wishing to
implement an application using a 3-tier architecture
has to acquire new skills that include several
optimization techniques, which may seem strange to
seasoned professionals. And the learning curve is
steep. On the other hand, one gains several distinct
advantages. The most obvious of these advantages is
the modularity that one is forced to adopt. By
breaking down an application into logical
components, one adheres to the age-old and well-
known method of picking a problem apart in order to
solve it in a satisfactory manner. Add to that the fact
that component-based applications have a much
improved scalability factor than their client-server
cousins, and it is clear why lots of software houses
are slowly redesigning their applications from the
ground up, in order to draw on the numerous
advantages of component-based design.

3. COMPONENTS IN COMPUTER VISION

Computer Vision testing platforms are often
complex. In order to experimentally arrive at a
result, and in order to codify that result within the
context of scientific theory, these platforms must be
able to conduct tests that can be duplicated, re-run
and examined in great depth. It is fruitless and
frustrating, being forced to spend hours writing code
in order to test one small part of a particular
approach or method, then, when and if the results are
satisfying, to scrap that piece of code and begin
anew, trying to make sense of the next piece in the

puzzle. We believe that many researchers in the field
are forced to redo work that they have done before,
simply because they are limited by their choice of
development methodology. We propose a paradigm
shift towards component-based programming for the
following key reasons: Using components is in
keeping with traditional problem solving techniques.
One breaks down the problem into multiple yet
smaller problems, and then proceeds to best each
one of those in turn. When writing a component,
modularity is a prime consideration. This allows for
the reuse of a component under different scenarios.
Picture a component that performs Gaussian
smoothing on input frames. Smoothing is a common
requirement in many scenarios. In each and every
one of those, the same component can be reused,
without having to write a single additional line of
code. In addition, since components are usually built
according to some particular standard (such as
COM), integrating another researcher’s code into an
application becomes a trivial task. Performance can
often be an issue where computer vision is
concerned. This is why many researchers opt for
low-level languages, avoiding the use of high-level
data constructs and the like. With the advent of
component servers, however, 3-tier applications
outperform monolithically programmed ones
through extraordinary management of their
resources. This allows programmers to utilize the
full extent of a language’s capabilities without
hampering performance.

Applications that are programmed using a
component-based approach are easily maintainable.
The latest component servers (such as Microsoft’s
Transaction Server) provide fully graphical
interfaces, through which one can easily manage an
application’s components, methods and interfaces.
The 3-tier approach leads to extensible applications.
With each component taking care of specific tasks, it
is easy to check, remove or add functionality at will.
This can be accomplished either by modifying an
existing component or by adding a new one. In
either case, the programmer will need merely
concern himself with the particular piece of code to
be modified. Since each component is an
autonomous piece of software that performs a
particular function on behalf of the application, there
is no reason why one couldn’t use more than one
programming language throughout the development
cycle. Programming language independence is a
great asset, especially for teams of researchers with a
mixed skill base. All the above benefits can be
blended into a programming framework that will
enable vision researchers to concentrate their efforts
in producing solutions, not in overcoming hurdles
imposed by design limitations and poor
implementation decisions. An overview of such a
framework follows in Fig. 2 below.

Figure 2 - A framework for Computer Vision
programming

As shown above, input frames are captured by one
or more cameras and fed into what is essentially the
Business Tier. Several different components coexist
within this framework, all hosted within a
component server. Each component handles one or
more specific tasks. In the above example, there
exist components to perform frame differencing,
Sobel or Laplace edge-detection, Gaussian
smoothing and so on. These components could be
considered to be ‘plug-ins’, as they can be added or
removed at will. Output can be redirected to the
screen at any point during the processing. This
enables us to monitor our output at any time. For
example, we may want to see the raw input frame,
followed by the image of the frame after being
subjected to a smoothing filter. Likewise, we can
make use of relational or non-relational data-stores,
saving raw and processed frames alike for later
study. We can also use the programming framework
to reverse the process. It is often the case that one
may want to test an algorithm on a predetermined
piece of video footage. In this case, we can use the
data tier as an input as well as an output device.

The disadvantages to the approach described above
are few. The most notable among them is that
researchers not familiar with component-based
programming will have to acquire new skills. While
the learning curve is often steep due to the radical
differences between component-oriented
programming techniques and traditional
programming techniques, the possible gains well
justify the effort. Purists and advocates of the object-
oriented programming mindset will have to learn
several new things, but will find it easier to adapt to
the necessary philosophy. A question that may be
pertinent to ask is what are the tools that one should
use to build such an environment. There is a

multitude of tools available. We have thoroughly
experimented using Microsoft technologies. Our
Data Tier consists of SQL Server 7.0 and data
components that are hosted within Microsoft
Transaction Server. Our Business Tier uses
transactional business components hosted within
Microsoft Transaction Server. MTS is the backbone
of the Business Tier. It allows for the creation of
‘applications’ – packages of components, each with
different properties. Since many of our
‘applications’ utilize the same or similar
components, the ability of MTS to share components
between applications is very useful. For our
Presentation Tier we use two different clients. The
first is a thick client that utilizes the Windows32
API, while the second is a thinner client that uses
Internet Explorer to load an ActiveX control. Both
clients include real-time observation of the video
stream and offer full camera control through the
VISCA protocol.

4. BUILDING THE FRAMEWORK

4.1 Purpose and Overview

The purpose of building a programming framework
is to enable researchers to cut down on their
development time by providing a centralized testing
ground for their various algorithms and
methodologies. The idea is to focus on what you are
doing, instead of how to do it. The design of this
framework, as presented in the previous sections, is
generic enough to accommodate any type of
computer vision system, whether it is a single-
computer monocular vision system or a massively
distributed system geared towards binocular vision.
Reusability is the prime concern. It is what initially
drove us to develop this programming framework.
This concern manifests itself both through the ability
of a researcher to reuse his own code and through
his ability to seamlessly integrate the code of others
into his application. The latter may indeed be more
important, as it effectively nullifies the need to
‘rediscover the wheel’. There is no point in writing
code that has been written a hundred times before,
such as simple edge-detection or thresholding
algorithms. Researchers that adopt similar
programming frameworks should have no trouble
exchanging code, assuming certain precautions are
observed during the coding process. Even the
component model being used does not place an
absolute limit on component compatibility. Several
products, both commercial and not, exist only to
‘bridge’ different models, such as COM and
CORBA. Our implementation of the framework is
based on the Distributed Internet Application
Architecture (DNA), evangelized by Microsoft. As
such, our components have all been designed to
meet the specifications of COM+.

Figure 3 - A 3-Tier Programming Framework for
Computer Vision

4.2 The Data Tier

The design of a 3-tier system traditionally begins
with the design of the data tier. This is generally the
case due to the fact that most three-tier applications
being built are meant for commercial use. As such,
they are mostly-data driven and hence the proper
design of the data services layer is of prime
importance. While data is probably of less
consequence in our case, we will nevertheless also
consider the data tier first, because of its relative
simplicity. How much functionality we intend to
implement for our data tier depends entirely on our
needs. In our case, what we needed was a way to
store all the data coming in and out of the system so
that we could later review it at leisure. In order to
accomplish that goal, we decided to use a relational
database system. We allocated a large amount of
space for the database and its log files and created a
single table to hold all the data. Each row in this
table consists of the following fields: flag, path,
image, application, date, and producer. The flag
field simply exists to indicate whether we chose to
store the data in the image field provided, or whether
we chose to store it directly on the hard disk. In this
case, the image field is left blank and the path of the
file is entered into the path field. The application
field stores the name of the application to which the
data belongs. The date field holds the date and time
at which the entry was made. The producer field
indexes the component that actually produced the
data. We have programmed a component that simply
takes data in a specified format from higher-level
components. It then stores that data in the database.
Options specified when calling the component’s

methods are used to indicate whether the data should
be stored in the database itself, or whether it should
be stored on the disk with a pathname stored to point
to its location. Our second data component is similar
to the first, but works in exactly the opposite way.
Its purpose is to retrieve data from the database and
feed it to a higher-level component for processing.

Both components were pretty simple to code and it
would truly be trivial to modify them so that they
could work with any type of table underneath. To
improve performance and to ensure the integrity of
the data, both components are hosted in Microsoft
Transaction Server (MTS).

4.3 The Business Tier

The business tier of our framework is entirely hosted
within MTS as well. Although we only utilize the
transaction options that MTS offers to a small
degree, we have programmed all our components to
support those options. Naturally, the component
model that we are implementing is Microsoft’s
Component Object Model (COM), in its latest
incarnation, COM+. All components that are part of
this tier have the capability for both input and output
of data. Also contrary to the tenets of object oriented
analysis and design, none of our components have
any properties whatsoever. They only implement
methods. This is in keeping with several component
statelessness guidelines that exist in order to
facilitate easier distribution of components among
several different physical servers. In addition to the
above, each component in the business tier can call
upon another, in order to utilize its functionality.
Instead of hard-coding an object hierarchy, we opted
to implement a ‘root’ component for each testing
scenario. This ‘root’ component is charged with the
task of calling the necessary components in the
proper order. It is also responsible for
communicating with the presentation tier. In most of
our testing scenarios, we are also using the ‘root’
component to call the data components. Although all
the other business components also have the
capability to call the data components directly, we
often find it more convenient to perform all data
input and output in the root component. The MTS
runs as part of the Windows 2000 Advanced Server
operating system that hosts the business tier of the
framework. Most of the components were written in
Visual Basic 6.0 and Visual C++ 6.0, with a couple
of them having been written in Java. For each
scenario that we wish to explore, for each hypothesis
that we need to test, all we have to do is create a new
application from within MTS’ graphical control tool.
An ‘application’ in the MTS context is simply a
package, a placeholder for components that may be
hosted either within a single ActiveX DLL
(Dynamic Linked Library), or within multiple DLLs.
Since several such applications might need to use

the same component, MTS also allows for the
sharing of components between applications. In this
way, we simply pick and choose which components
we need, according to the functionality that our
scenario requires. If the situation demands
functionality that is not available through any of our
existing components, we design and implement a
new component. This procedure is fast and painless
and allows for virtually infinite flexibility.

4.4 Programming considerations

On the down side, there are several considerations
when writing code for components. After a little
research, we decided to go with the consensus that
claims that MTS components should be completely
stateless. MTS provides the SPM (shared property
manager), a mechanism through which one may
implicitly force an application’s components to hold
state, but its use is not recommended. Another
important point is that objects must always be
destroyed immediately after they cease to be useful.
In order to fully take advantage of a component
server’s exceptional resource handling, one must get
used to the idea of acquiring resources late and
releasing them early. All our procedures for object
creation and destruction are governed by this
maxim. In order to support transactions, components
have to be properly set up. Unless specific
requirements exist, the generally accepted practice is
to set up those business components that may at
some point initiate a transaction as ‘requiring a new
transaction’. Components that will never initiate a
transaction, but which will be called by other
components higher in the hierarchy will need to be
flagged as able to ‘use an existing transaction’. This
will enable these components to work within the
same transaction context as their callers. It is also
important to never let a user directly manage
resources in any way. This will dramatically
decrease the performance of any 3-tier application
and directly violates one of the primary design goals
of the DNA architecture, Autonomy (the ability of
an application to maintain total control over its
critical resources – such as database connections).
Instead, one should always force the user to go
through the business objects in order to accomplish
what he needs. If a component is likely to interact
with another component often, it pays to implement
them as classes in the same DLL. We did this for
several of our components and watched the
performance increase, as components made out-of-
process calls less frequently. This gave our
application a hefty performance boost and
contributed towards proper marshalling of the data.

A corollary that we drew from our experience with
the previous point was that it also pays to try to
strike a balance between having complex
components with really small hierarchies and having

simple components with very deep hierarchies.
Based on small-scale evaluations and measurements,
we believe that calling eight nested components
should be the limit. If one finds the need to call more
than eight components in succession, a re-evaluation
of the application’s design may be necessary. We
took enough time designing this development
environment so as to make sure that it would
properly satisfy our needs. In particular, we paid
great attention to the design of each component’s
interface – namely its methods and their arguments.
One can easily change the code of a method in the
future. If however, one is forced to add a new
method, or modify an existing one (by adding a new
parameter for example) after having deployed the
application, binary compatibility with the old
version of the component is broken and a lot of work
has to be done in redeploying the application. We
also avoided hard-coding several options into our
components. We may be using 320x200 images, but
other researchers that may wish to use these
components might need to run them for 640x320
images. We tried to always implement the most
generalized solution possible and let the
component’s methods accept arguments concerning
the specifics of its operation. Where that was not
possible, #define statements or Const declarations
were used. Finally, we decided to document our
system as best as possible. Well-placed comments
within the code itself will allow those who may use
our code in the future know what we did and why. In
all cases, the minimum documentation that is
provided is a purpose declaration for the entire
component and a listing of its methods. Each method
is also documented properly, its purpose stated, its
methods and arguments shown. An example of use
is often provided, and any assumption made (image
size, color depth, specific data format), is also noted.

4.5 The Presentation Tier

We decided that we wanted to be able to control our
system both locally and via our intranet. This led us
to the design and implementation of two separate
clients. The first client is a full-blown thick client
that utilizes the Win32 API. The second client is a
thin, browser-based client that uses Internet Explorer
to load an ASP-based (Active Server Pages)
interface. The presentation tier is probably the most
customized part of the framework and it is likely that
each researcher will model it according to his or her
needs. With rapid application development tools
such as Visual Basic being widely available
nowadays, one can either opt to implement a
minimum-functionality user interface (as we have
done), or may choose to design and implement a
fully-configurable and all-encompassing user
interface that can adapt to any scenario with little
trouble.

4.6 Physical deployment and the role of COM+

COM+ has been successfully described as the glue
that binds the three tiers of a DNA application
together. It is the model that the majority of
component-based applications are based on.
However, it is far more than that. COM+ is actually
a set of services that programmers can use in order
to code components that are dependable and
portable. These services include support for
transactions and queuing, as well as the often-
misunderstood COM+ events. By harnessing the
power of COM+, developers can create powerful
infrastructures such as the one presented in this
paper. The possibilities are truly limitless. The
flexibility of COM+ also allows for developers to
deploy their applications as they see fit. 3-tier
architectures preach independence between the three
tiers, but with COM+, it is even possible to host the
components of the business tier within different
servers. This way, components that are expected to
be processor or memory intensive can be deployed
on dedicated servers, while ‘lighter’ components can
be grouped together. Since our resource
requirements are still relatively small, we have
chosen to deploy the entire framework on a single
server.

5. EXAMPLE OF DESIGN AND
IMPLEMENTATION

In order to provide the reader with an example of
how a computer vision application may be designed
and implemented using components, we present an
outline of how a well-known face-recognition
technique, described in [Turk91a], would be coded
within the framework we propose.

The goal in the system presented in that paper is to
detect the presence of faces in an image and then to
classify those images by comparing what the authors
have dubbed the images’ eigenvectors. It is beyond
the scope of this paper to go into detail about how
the process of recognition works. Epigrammatically,
however, we shall mention the steps involved in that
process. During system initialization, a set of
characteristic face images of known individuals is
collected. The set should contain more than one
image per person, with some variations in facial
expression and lighting. The eigenfaces are
calculated from the training set. All but M images
that correspond to the highest eigenvalues are
discarded (definition of the face space). Each
individual’s facial image is projected into the face
space, and the corresponding distribution in weight
space is calculated. One presented approach to face
detection involves spatiotemporal analysis,
thresholding, motion blob analysis, and rescaling.
Finally, for the process of face recognition, an input

image is projected onto each of the eigenfaces and a
set of weights is calculated. The system determines
whether the image is actually a face. If it is a face,
the image is classified as a known or unknown
person.

The Data Tier is pretty simple to put together here.
All that is needed is storage and retrieval of image
frames. A data component with store and retrieve
methods that communicates with our RDBMS
suffices. Assuming coarse component granularity
[Micro97a], the tasks listed above might be carried
out using the following components in the Business
Tier: An acquisition component (acquires a frame
and stores it in the database), a frame-differencing
component (performs spatiotemporal analysis), a
thresholding component (produces a binary motion
image), a rescaling component (estimates scale
based on blob sizes and rescales), an initialization
component (calculates eigenvectors and eigenfaces)
and a recognition component (projects images into
face space and performs analysis).

These components will obviously consist of several
different methods. For example, the recognition
component may contain one particular method for
projecting an image into the face space, another to
determine whether the image actually represents a
face or not, and yet another to classify a facial
image. Likewise, the initialization component may
contain a method that calculates the average face Ψ
of the training set, another to perform principal
component analysis and so on.

Let us assume now that we wish our data to be
presented to the user of the application both through
a Windows client (Win32) as well as through the
Internet. This can be achieved by designing and
coding two different user interfaces. Fig. 4 below
presents a logical diagram of the system, as it would
have to be configured. However, what is worth
noting here is that many of the components shown
above are fully reusable. Let us take the acquisition
component for example. This component, if written
in a sufficiently generic style, could be used in any
number of applications that require image capturing.
Thus, if we had need of similar functionality in the
past we will already have this component ready for
use. It can even be simultaneously shared between
two or more applications. Likewise, frame
differencing, thresholding and rescaling are
operations that many applications utilize. It is more
than likely that if we have employed such
components in a previous application, we will be
able to use them for this one as well. Essentially,
every piece of the application shown above could be
drawn from a library of components, either custom-
built, purchased, or downloaded. The only
exceptions to that are the two components that are
involved directly

Figure 4 - Example overview

with the theory of eigenfaces – namely the
initialization and recognition components. And that
is precisely what we wish to show – that the process
of applying a new theory is simplified and
shortened, through reuse of existing application
building blocks, which is a by-product of adopting a
component-based methodology. The second
important consideration is the requirement for two
different user interfaces. Normally, this would
require a substantial amount of additional
development and programming. Using a three-tier
approach however, the presentation tier, and hence
the GUIs, are completely discrete from the
functionality of the application and from its data.
The latter two reside in the Business and Data tiers
respectively. Thus, as long as certain rules are
obeyed, both GUIs can be based on the same set of
business components.

What was presented in this section was merely an
example of how an application that performs
specific tasks may be put together by developing
new components and using already-existing building
blocks. This component-based approach to software
engineering furthers two main goals, as shown
through this example: reusability and
modularization. The benefits of these are argued
throughout this paper.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a programming
framework that advocates the use of components. It
is loosely based on the 3-tier architectural model and
its purpose is to aid in the creation and maintenance
of stable, dependable testing and development
environments. We have listed the possible
advantages of this approach and have concluded that

although the learning curve for the programming
skills required is steep, the benefits to be reaped are
worth it. The main advantage of this framework is
its flexibility and modularity. This is achieved
through the extensive use of components, which
empower researchers to rapidly create customized
environments in which to experiment and test their
theories and algorithms. We believe that there is a
need for standardization in this area and we argue
that this can be achieved by adopting widely used
component models, such as COM and CORBA. We
have shown how we have constructed such a
framework using Windows-based technologies such
as Windows 2000, the Component Object Model
and the Microsoft Transaction Server and have
outlined the choices we had to make and the reasons
why we made them. We believe that the computer
vision community stands to gain a lot by migrating
to new technologies and by blending new
programming techniques with existing ones. The
programming aspect of the science has long been
regarded as lesser in importance and has therefore
remained dependent upon old practices.

This component-based approach to computer vision
programming offers significant advantages. By
eliminating the need to constantly rewrite code to
handle routine application needs, it allows
researchers to think more about the problem and its
solution. It also fosters cooperation between
researchers by promoting consistency in code. We
have offered an example of how this sort of
development environment could be utilized to
design and implement a vision system. Our example
was inspired by a well-known paper by Turk and
Pentland [Turk91a]. Code will be available at
http://www.hydilib.uoa.gr/vision.

The next steps involved in the process of coming up
with a generalized computer vision testing and
development environment should lead us in two
directions. The first of those would be to continue to
improve the platform and to make certain decisions
that we have so far avoided, because of several
thorny connotations. A primary, pre-determined
image format should be one of those decisions.
Particular sub-designs for alleviating some of the
concerns and problems connected to binocular
vision systems should also be one of our next steps.
In addition, other protocols besides COM+ will be
investigated. The objective of course, is to develop a
platform that the majority of researchers can use and
benefit from. A platform that is usable, infinitely
extensible, easy to program and add to, but above
all, one that can be used to span the entire spectrum
of research needs – from displaying an image after
the application of an edge-detection algorithm, to
handling a distributed application that can provide
functionality to other researchers across the Internet.
It is also our intention to perfect our platform and

transform it, so that our Lab can become what is
known as an Application Service Provider (ASP),
exposing the platform to the Internet. Under this
software schema, other researchers will be able to
use components that we have developed, or which
we are hosting for others, under the guise of
universally available services. These services will be
available to Internet-aware applications around the
world in a format that is easy to understand and use.

REFERENCES

[Bortn99a] Bortnicker M., Conard J: Professional

Visual Basic 6 MTS Programming, Wrox
Press, 1999

[Davie97a] Davies, E.R.: Machine Vision: Theory,
Algorithms, Practicalities, Academic Press,
1997

[Eddon99a] Eddon G., Eddon H.: Inside COM+
Base Services, Microsoft Press, 1999

[Fauge99a] Faugeras O.: Three Dimensional
Computer Vision: A Geometric Viewpoint,
MIT Press, 1999

[Jain95a] Jain R., Kasturi R., Schunck B.G.:
Machine Vision, Academic Press, 1995

[Kirtl98a] Kirtland M.: Designing Component-Based
Applications, Microsoft Press, 1998

[Klett98a] Klette R., Schluens K., Koschan A.:
Computer Vision, Three Dimensional Data
from Images, Springer Verlag, 1998

[Malon99a] Maloney J.: Distributed COM
Application Development Using Visual
Basic 6.0 and MTS, Prentice Hall, 1999

[Micro97a] Microsoft Corp.: Business Logic in
Microsoft Transaction Server Components,
http://msdn.microsoft.com/library/backgrnd
/html/msdn_buslog.htm, 1997

[Micro00a] Microsoft Corp.: COM Specification,
http://msdn.microsoft.com/library/specs/S1
CF83.HTM, 2000

[OMG99a] OMG: CORBA/IIOP 2.3.1 Specification,
http://sisyphus.omg.org/technology/docume
nts/formal/corba2chps.htm

[Parke97a] Parker J.R.: Algorithms for Image
Processing and Computer Vision, Wiley &
Sons, 1997

[Steve00a] Stevens R., Miller C.: Wrapping and
interoperating bioinformatics resources
using CORBA, Briefings in Bioinformatics,
Vol. 1, No. 1, pp. 9-21, 2000

[Sundb00a] Sundblad S., Sundblad P.: Designing for
Scalability with Microsoft Windows DNA,
Microsoft Press, 2000

[Trucc98a] Trucco E., Verri A.: Introductory
Techniques for 3-D Computer Vision,
Prentice Hall, 1998

[Turk91a] Turk M., Pentland A.: Eigenfaces for
Recognition, Journal of Cognitive
Neuroscience, Vol. 3, No. 1, pp. 71-86

	1
	1. INTRODUCTION
	2. AN OVERVIEW OF 3-TIER ARCHITECTURES
	3. COMPONENTS IN COMPUTER VISION
	4. BUILDING THE FRAMEWORK
	5. EXAMPLE OF DESIGN AND IMPLEMENTATION
	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

