
EXAMINING THE GENERALITY OF A
BEHAVIOURAL ANIMATION FRAMEWORK

Hanna J.R.P., Millar R.J., Johnston W.M.

School of Computing and Mathematical Sciences
University of Ulster, Shore Road

BT37 0QB Newtownabbey
United Kingdom

p.hanna@ulst.ac.uk http://www.ulst.ac.uk

ABSTRACT

This paper tests the hypothesis that it is possible to build a generic Behavioural Animation system. The
paper outlines the four models that form the key elements of a Behavioural Animation system, and a
proposed generic structure for the Behavioural Component. Three implementations, all of which follow
this structure but which differ in implementation detail, are then presented. Each implementation is tested
with several animations and the results tabulated. It is then shown that the previously proposed structure
is sufficiently generic if goals are deleted after one cycle. It is also demonstrated that, if goals are to
remain in the goal queue for more than one cycle, a rule-based system for deciding when to delete a goal
is required in order to achieve the required level of genericity.

Keywords: animation, behavioural animation.

1. INTRODUCTION

This paper is based upon the work of Millar et al
[Milla99a] who proposed that all Behavioural
Animation systems can be modelled by a common
framework. This structure is given at its most
abstract level in Fig. 1, which shows the four
interacting models that comprise the system. A
more detailed framework for the Behavioural
Component was also proposed in the original work.
This paper presents the results of an experiment
whereby three variations of the Behavioural
Components were implemented. All conformed to
the framework proposed, differing only in
implementation detail. Each was then tested with
several different animations. The results of these
tests are then used to evaluate the level of
genericity offered by each implementation.

2. BACKGROUND

2.1 The Original Hypothesis

Millar et al. [Milla99a] presented a review of
Behavioural Animation in which they investigated

the characteristics of Behavioural Animation
systems produced by various researchers. They
found evidence that all Behavioural Animation
systems could be characterised by a number of key
concepts. Based on this, they proposed that it was
possible to build a generic Behavioural Animation
system that would be capable of producing a wide
range of animations with no modifications to the
source code. The benefits of such a generic system
for both research and industry are clear.

Framework of a generic Behavioural Animation
system as proposed by Millar et al [Milla99a].

Figure 1

In their paper, Millar et al. analysed the various
tasks undertaken by a Behavioural Animation

Environment
Model

Perception
Model

Behavioural
Model

Motor
Model

Response

Update Environment Model

Stimulus



system and presented what they found to be the
basic groupings of functionality that are common to
every such system. By separating out the
functionality in this manner, they arrived at a set of
four models, each of which modelled a cohesive
aspect of the animation process [Blumb95a].

The Environment Component would maintain
information on the virtual world and all the entities
within it. This includes not only information such
as the position and appearance of each entity, but
also the internal state of each entity, for example
hunger levels or other internal variables. Thus, the
Environment Component stores both the ‘physical’
and ‘mental’ state of each entity.

Most Behavioural Animation systems provide
incomplete knowledge of the virtual world to the
entities perceiving it [Reyno87a, Renau90a]. The
Perception Component provides a common way of
specifying the sensory limitations of entities within
the virtual world. Each entity is likely to have its
own Perception Component. For example, an insect
may be able to detect the smell of a flower at a
longer distance than a human. This example also
illustrates that the Perception Component is not
limited to simulating sight: it can simulate any
other senses that are required by the animator.

The Behavioural Component models how each
entity responds to what it is sensing via its
Perception Component [Reyno87a]. Each entity has
its own Behavioural Component, giving the
animator the essential ability to assign different
behaviour to different entities. In the past, the
Behavioural Component has been hard-coded.
However, Millar et al. proposed that the animator
could use a common ‘language’ to define
behaviour, thus negating the need to modify and
recompile the source code each time a change in
behaviour is needed. This would greatly increase
the productivity of the animator. The Behavioural
Component decides courses of action and outputs
these to the Motor Component.

Just as an entity does not usually have the ability to
sense everything in its virtual world, so it is also
usually incapable of unrestricted movement within
its virtual world. The Motor Component exists to
limit the actions of entities by, for example,
limiting their speed of movement. It provides a set
of movement primitives that may be invoked by the
Behavioural Component [Reyno87a, Takeu92a]. As
well as serving this purpose, the Motor Component
also serves to model details of the entity’s
movement. Good examples of this include
modelling the wing flaps of a bird or the leg
movements of a human.

A fifth component that can be added, although it is
not strictly part of the model, is the User
Intervention Module. This module permits the
animator to intervene in an animation and modify
the physical or mental attributes of entities and the
virtual world.

The interaction between these components is
summarised in Fig 1.

2.2 The Proposed Generic Model

After having presented these findings, Millar et al.
proposed a structure that could be used to
implement a generic Behavioural Animation system
based on these four models. Central to this structure
was the Behavioural Component, which would
form the core of the system and which would be the
controlling component of the system.

The Perception Component and Motor Component
would communicate with the Behavioural
Component via standard interfaces. This level of
modularity would permit different models to be
arranged together without needing to make any
changes to the source code. The information passed
between the Perception Component and the
Behavioural Component would be details of
detected nearby entities, but would not need to
specify whether the information was gathered using
the sense of sight, sound or smell etc. Similarly, the
Motor Component would be given instructions on
what the entity was trying to do, but it would be a
matter internal to the Motor Component to decide
whether this resulted in, for example, flight,
walking or swimming.

All the entities and their components are stored
within the Environment Component. The
Behavioural Component, which is duplicated for
each entity in the system, itself consists of four
main modules:

2.2.1 The State Variables

This part of the Behavioural Component stores the
physical and mental state of the entity. The physical
state is recorded by storing information on the
entity’s position, appearance and perceived
surroundings. The mental state variables are
analogous to the memory of a real creature. The
animator is free to add any desired variables to this
area. For example, they may create a ‘hunger’
variable with which to more accurately model a
creature hunting for food. Another example may be
the level of ‘fear’.

Also within the state variables module are ‘mental
triggers’. These are rules that are fired at regular
intervals to modify a specific variable. For



example, an animator may create a mental trigger to
steadily increase the hunger level of a creature over
time.

2.2.2 The Rule Base

The rule base consists of a series of rules entered by
the animator using a common language. Each rule
takes the form ‘if this set of circumstances is met,
then carry out this action’. When evaluated, the
Boolean value of each rule will be determined.
Each rule that evaluates to ‘true’ will establish a
goal that will be placed in a queue private to that
entity. Each goal also has a priority level and a
lifetime. The priority level will allow some rules to
be deemed more important than others. For
example, fleeing from a predator is usually more
urgent than eating food. The highest priority goal in
the queue is taken and executed for one cycle. The
lifetime allows goals to be removed from the queue
after an interval of time, to prevent decisions made
in the past affecting behaviour under changed
circumstances.

2.2.3 The Memory Module

The memory module consists of the
aforementioned goal queue. The goal queue allows
an entity to recall activities that it intends to do. For
example, if an entity successfully evades a predator,
it can recall that it had intended to eat some food.
The memory module is also responsible for deleting
goals that have outlived their lifetime.

2.2.4 The Movement Module

The movement module takes goals that are to be
carried out, and translates these into a series of
generic movement commands that are to be
transmitted to the Motor Component. The
movement module is also responsible for path
planning and collision avoidance.

2.3 Testing the Hypothesis

With the goal of testing the hypothesis that a
generic Behavioural Animation system can be
produced based on the structure outlined by Millar
et al., a Behavioural Component was implemented
following this structure. As the Motor and
Perception components were secondary to the
Behavioural Component in the proposed structure,
so the implementation concentrated on the
Behavioural Component. A Motor Component and
a Perception Component were produced with
simple functionality, with the purpose of supporting
the Behavioural Component. The Perception
Component was implemented with a ‘perception
range’, whereby entities can sense other entities
within a specific range, and cannot sense entities

beyond that range. A simple User Intervention
Module was also added to give the animator greater
control.

Although the structure proposed by Millar et al.
was detailed, less rigid details were given as to the
manner in which the associated operations should
be implemented. Therefore, several
implementations were made which were similar on
the macro scale, but which had key differences in
implementation detail.

3 IMPLEMENTATION APPROACHES

3.1 Common Implementation Details

The implementation follows the discrete frame-
based approach common to many types of
animation [Thoma84a]. An integer frame counter
provides the ‘time’ element of the animation. This
timer is incremented by 1 each time a frame is
generated. All time intervals are therefore
expressed in frames.

Each entity is represented by an Object-Oriented
class, which encapsulates the data structures
outlined by Millar et al. The rules are expressed in a
simple language developed for the system. The
language allows the animator to query the
environment and to combine such queries in a
boolean manner. When executed, these goals
trigger interaction between the Behavioural
Component and the Perception Component.

In addition, the language allows the related goals to
be expressed in a common format. Each goal
represents a possible course of action. The system
supports actions such as ‘flee from entity’, ‘go to
entity’, ‘fight entity’, ‘kill entity’ and ‘wander’. The
‘wander’ goal causes the entity to move in a
random manner and is intended for use whenever
there are no other actions to be performed.
Whenever a goal is created, additional information
is attached to it. For example, in the case of ‘go to’,
the target and preferred speed of movement are
attached.

In order to enhance functionality, each goal has a
number of associated further instructions. These
instructions allow further changes to be made when
a goal is actually executed during one frame. For
example, when an entity eats food, a further
instruction could be attached to that goal which
resets the ‘hunger’ level to zero. A goal can have
zero or more further instructions.

In each implementation, the system carries out a
complete set of actions each time a frame is
generated. Once each frame is generated, it is
displayed on screen. This process is repeated for



each frame. Between frames, the animator has the
opportunity to intervene and modify the state of the
animation. Note that in each implementation, the
animator can specify the order in which entities are
parsed, and this order can be changed as the
animation progresses.

3.2 Implementation 1.

The actions that are performed with each frame of
the first implementation can be summarised as
follows:

1. The system executes all the mental triggers for
each entity. For example, if there is a mental
trigger to increase hunger level, the hunger
level variable will be incremented at this point.

2. The system executes all the rules for each
entity. This involves interaction between the
Behavioural Component and the Perception
Component. For each rule that evaluates to
‘true’, the associated goal is added to the
entity’s personal goal queue. Each goal has an
associated priority level and a lifetime. The
lifetime is expressed in frames.

3. The system chooses and removes the top
priority goal from the goal queue. This goal is
then executed for one frame. This involves
interaction between the Behavioural
Component and the Motor Component. Note
that if there is more than one goal with the
highest priority, one is chosen at random.
Additionally, if there are no goals in the goal
queue, then the entity performs no action
during that frame.

4. The system goes through the goal queue of
each entity and deletes all expired goals.
Expired goals are goals that have been in the
goal queue for longer than their specified
lifetime. Since goals are removed after being
executed for one frame, expired goals are
always goals that have not been chosen for
execution.

5. The system displays the state of the virtual
world on the screen and invites the animator to
intervene. Assuming that the user has not
chosen to terminate the animation, control then
returns to action 1.

The key features of this implementation are thus:
• Goals are added regardless of whether the same

goal was added on a previous frame. It is thus
possible to have duplicate goals in the goal
queue. This is necessary since an executed goal
will be deleted after one cycle, even if it has
only partially met its goal.

• Goals are deleted as soon as they have been
executed for one cycle. The same goal cannot
be executed more than once.

• Expired goals are purged.

3.3 Implementation 2.

The second implementation is an extension of the
first. Mental triggers and rules are executed as
before. However, the implementation of goals is
different.

Instead of deleting goals after being executed for
one frame, goals are deleted only when they have
been ‘achieved’. When a goal is executed for one
frame, it returns with one of two values: ‘achieved’
or ‘not yet achieved’. For example, the ‘go to’ goal
is deemed to have been achieved when the entity is
within a certain minimum distance from the target.
Similarly, the ‘flee from’ goal is deemed to have
been achieved once the predator is no longer within
perception range. If the goal has been achieved,
then it is deleted. If it has not yet been deleted, it
remains in the goal queue.

Note that the ‘wander’ goal is never ‘achieved’ and
will thus remain in the goal queue as a low-priority
goal to be executed whenever nothing more
interesting is to be done.

As the same goal can remain in the goal queue and
be executed for several frames, it becomes
unnecessary to add the same goal to the goal queue
multiple times. Therefore, in this implementation, a
goal is only added to the goal queue if it is not
already present.

Finally, since goals are deleted once achieved, it
becomes unnecessary to have a mechanism for
purging goals. Therefore in this implementation,
there is no facility for purging expired goals.

The key features of this implementation are thus:
• Goals are only added to the goal queue if not

already present.
• Goals are deleted only when they have been

completely achieved.

3.4 Implementation 3.

The third implementation is an extension of the
second. In this implementation it is recognised that
goals may ‘fail’ as well as being ‘achieved’ or ‘not
achieved’. As an example, if an entity is trying to
‘go to’ another entity but the other entity moves
outside perception range, than the ‘go to’ goal has
failed because there is no longer any information
with which to continue the action.

Therefore, in this implementation, a goal returns
either ‘achieved’, ‘failed’ or ‘neither’ when
executed. A goal is deleted from the goal queue
whenever it is either achieved or has failed.



As in implementation 2, not all goals can return all
three results. The ‘wander’ goal cannot either be
achieved or failed. Similarly, the ‘flee from’ goal
cannot fail. If the enemy is within perception range,
then the entity is still attempting to flee from it, so
it returns ‘neither’ achieved nor failed. If the enemy
is not within perception range, then the goal has
been achieved.

The key features of this implementation are thus:
• Goals are only added to the goal queue if not

already present.
• Goals are deleted only when they have either

been completely achieved or have failed.

4 TEST CASES

In order to test the genericity of the system, a
number of test cases were chosen. Each was chosen
to test a certain aspect of the system and all were
chosen to be as different from each other as
possible, in order to test as much of the spectrum of
animations as possible.

The first test case is a simple predator/prey
situation. At the start of the animation, the prey and
predator are within perception range of each other.
The prey has the advantage of being able to move
faster than the predator. Thus, assuming the entities
have been programmed to follow the expected
predator/prey behaviour, the prey will have moved
beyond the perception range of the predator after a
period of time. This test case provides an indication
of the manner in which the rules governing the
predator’s behaviour are operating.

The second test case is a set of four entities with
identical attributes whose behavioural rules cause
them to engage and ‘fight’ one another. Winning a
fight results in the losing entity being removed
from the animation. After a period of time, only one
entity will remain. This test case provides an
illustration of three competing rules operating
together – ‘wander’, ‘go to’, and ‘fight’. These
three rules have definite priorities: for example, ‘go
to’ is always a higher priority goal than ‘wander’.

In the third test case, an entity exists in a world that
contains several pieces of food. The entity
maintains an internal hunger level that increases
with time in a linear fashion. It wanders randomly,
ignoring the food when its hunger level is below a
certain value. Once the hunger level reaches this
certain value, the entity looks for food. Once food
is found, the food is removed from the animation
and the hunger level reset to zero. If the hunger
level reaches a third, higher, value then the entity
itself perishes. This test case provides an
illustration of rules being dependent on an
internally controlled condition.

The final test case is an implementation of zones of
tolerance. An entity is initially placed at some
distance from a disinterested creature that is
moving randomly. The entity also moves randomly.
However, if it strays within a certain distance of the
central creature, a ‘flee from’ goal is triggered to
move it away again. If it moves too far away from
the central creature, a ‘go to’ goal is triggered that
moves it closer again. The effect is for the entity to
move within a fixed range of distances from the
central creature. This test case demonstrates two
opposing actions that are constantly competing with
one another. Unlike the second test case, the two
actions do not have definite pre-definable priorities
over one another.

Table 1 summarises the behaviour as observed in
each test case for each of the three
implementations.

5 EVALUATION

In 9 of the 12 test cases, the animation proceeded as
expected. However, there were two distinct cases
when this was not the case.

5.1 Limitations of having no ‘failed’

In the predator/prey animation under
implementation 2, the predator was able to continue
pursuing the prey despite the fact that the prey was
beyond perception range. In this case a goal
instructing the predator to ‘go to’ the prey had been
added to the predator’s goal queue. Each time this
goal’s action was executed, it moved the predator
towards the prey. However, since the prey was
moving faster it always returned a ‘not achieved’
result. Thus, the goal was never be deleted.

Hence, the goal and target were still in the goal
queue as valid goals when the prey had moved
beyond perception range. This allowed the predator
to follow the prey even though it supposedly could
not sense where it was.

One solution to this failing would be to modify the
Motor Component so that it would not permit
movements towards entities that were beyond
perception range. However, this solution is not
entirely satisfactory because the Behavioural
Component would be unaware that its course of
action was not allowed. It would thus continue to
attempt to move towards the prey, preventing any
lower-priority goals from being executed. If no
goals of a higher priority appeared in the goal
queue, the predator would appear to ‘freeze’ and
would stop all movement. This issue could be
resolved by returning the information from the
Motor Component. However this solution would
result in an implementation almost identical to



Implementation 1 Implementation 2 Implementation 3
Predator / Prey Predator chases prey.

When prey successfully
moves beyond
perception range, the
predator begins
wandering randomly.
Expected result.

Predator chases prey.
Even when the prey has
successfully moved
beyond perception
range, the predator is
still able to pursue
successfully. Incorrect
result.

Predator chases prey.
When prey successfully
moves beyond
perception range, the
predator begins
wandering randomly.
Expected result.

Four entity fight Entities move
randomly. When they
meet, they engage and
one entity is deleted
until there is only one
entity left. Expected
result.

Entities move
randomly. When they
meet, they engage and
one entity is deleted
until there is only one
entity left. Expected
result.

Entities move
randomly. When they
meet, they engage and
one entity is deleted
until there is only one
entity left. Expected
result.

Hungry / seeking food Entity moves randomly
until hunger level
reaches a certain value.
At this point, it seeks
food and wanders again
when food has been
found. Expected result.

Entity moves randomly
until hunger level
reaches a certain value.
At this point, it seeks
food and wanders again
when food has been
found. Expected result.

Entity moves randomly
until hunger level
reaches a certain value.
At this point, it seeks
food and wanders again
when food has been
found. Expected result.

Zones of tolerance Entity moves at
random. When it strays
too close, it moves
away. When it strays
too far, it moves
towards. Expected
result.

Entity moves at
random until it strays
too close, at which
point it moves away
indefinitely until it
reaches the edge of the
virtual world.
Incorrect result.

Entity moves at
random until it strays
too close, at which
point it moves away
indefinitely until it
reaches the edge of the
virtual world.
Incorrect result.

Results of testing animations under each of three implementations.
Table 1

implementation 3, except that the Components
would exhibit greater coupling.

This would seem to indicate that only permitting a
goal to be ‘achieved’ or ‘not achieved’, is not
sufficient to create a usable generic Behavioural
Component.

5.2 Limitations of not deleting until achieved or
failed

In the zones of tolerance example, the animation
did not proceed as expected under implementations
2 or 3. The expected behaviour was that the entity
would move randomly. If it moved too close to the
central creature, a ‘flee from’ goal would be
triggered to move the entity away again. Similarly,
if it moved too far away, a ‘go to’ goal would be
triggered to move the entity closer. This expected
behaviour was reflected under implementation 1.

However, under implementations 2 and 3 the entity
moved randomly until the first time it strayed too

close to the central creature. At this point, the entity
moved away from the central creature and stopped
only when it reached the edge of the virtual world and
could move no further. It then remained at this point.

Under implementation 2, the cause of this was
again due to there only being an ‘achieved’ or ‘not
achieved’ state for each goal. When the entity
strayed too close to the central creature, a ‘flee
from’ goal was created. This was then repeatedly
executed while the central creature was still within
the perception range. Despite the fact that the entity
had moved back into the zone of tolerance, and did
not need to move further, the ‘flee from’ goal was
not removed from the goal queue.

Once the entity had begun to move too far from the
central creature, a ‘go to’ goal was also created.
However, because this goal had a lower priority
than ‘flee from’, it was never triggered. Simply
making ‘go to’ the higher priority goal would not
work either, because the entity would then display
the opposite, and equally undesired, behaviour of



moving towards the central object and remaining
‘attached’ to it. Giving them equal priorities and
letting chance decide which is executed may be
satisfactory for some purposes, but could not be
depended upon to produce the required behaviour
consistently.

A naïve solution to the problem would be to set the
entity’s perception range to the same distance as the
inner distance of the zone of tolerance. This way,
the goal would return ‘achieved’ as soon as it
reached this distance and the ‘flee from’ goal would
be deleted. However, this solution does not work
because the entity is then unable to sense where the
central object is and thus can not respond when it
moves too far from the central object.

It would appear that in implementations 2 and 3, no
arrangement of ‘achieved’, ‘not achieved’ or
‘failed’ results is sufficient to produce the range of
results desired.

A better solution to the problem may be to produce
a more flexible implementation of the goal deletion
process, for example, by permitting the animator to
enter a rule for each goal that would determine
when the goal should be deleted. Such a method
would allow goals to be deleted not only when they
were achieved or failed, but when other conditions
were met: in this example, it could be deleted when
the entity was back within its zone of tolerance.

In this test case, if there had been a facility for
deleting the goal when the entity was back within
the zone of tolerance, implementation 3 and
implementation 1 would have produced the same
results. Thus it would appear that a more flexible
rule-based process for removing goals would be
capable of producing the same animations as the
immediate deletion method of implementation 1.

The immediate deletion method of implementation
1, although its goal queue management is less
efficient, produced the desired result in every case.
This is because goals are deleted after one frame,
meaning that the problems outlined above do not
occur. Although implementation 1 could produce
the same results as implementation 3, it is not
certain that it could produce the full spectrum of
results that could be achieved by enhancing
implementation 3 with deletion rules as discussed
above.

Thus, of the three implementations tested,
implementation 1 offered the simplest and most
consistent results by deleting goals after one cycle.
However, as discussed above, if the goals are to
remain in the goal for more than one cycle, it may
be necessary to include a rule-based system in order
to present the animator with the required genericity.

6. CONCLUSION

This paper investigated the hypothesis by Millar et
al. [Milla99a] that it is possible to produce a
generic Behavioural Animation system based on a
four-component structure comprising Environment,
Perception, Behavioural and Motor components.
Millar et al. also presented a proposed structure for
a generic Behavioural Component. Three different
Behavioural Components, all following this
structure but differing in their precise
implementation details, were discussed and tested
with the same animations.

It was shown that in some cases, the
implementations produced different animations
from the expected results. This was shown to be
due to the manner in which goals are managed
within each Behavioural Component, and in
particular the circumstances under which they are
deleted. The test animations demonstrated that the
Behavioural Component displayed satisfactory
genericity when goals were deleted after each cycle.

It can thus be concluded that the framework
proposed by Millar et al. does provide a suitable
structure for the production of a generic
Behavioural Animation system.

REFERENCES

[Blumb95a] Blumberg,BM, Galyean,A: A
multi-level direction of autonomous
creatures for real-time virtual environments.
Proceedings of Computer Graphics, pp47-
54, 1995.

[Milla99a] Millar,RJ, Hanna,JRP, Kealy,
SM: A review of Behavioural Animation,
Computers and Graphics, Vol. 23, No. 1,
pp127-143, 1999.

[Renau90a] Renault,O, Magnenat-
Thalmann,N, Thalmann,D: A vision based
approach to behavioural animation, Journal
of Visualization and Computer Animation,
Vol. 1, No. 1, pp 18-21, 1990.

[Reyno87a] Reynolds,CW: Flocks, herds,
schools: a distributed behavioural model,
Proceedings of the SIGGRAPH ’87
Computer Graphics, Vol. 21, No. 4, pp25-
34, 1987.

[Takeu92a] Takeuchi,T, Unuma,M,
Amakawa,K: Path planning and its
application to human animation systems,
Proceedings of Computer Animation ’92,
pp163-175, 1992.

[Thoma84a] Thomas,F: Can classic Disney
animation be duplicated on the computer?,
Computer Pictures, Vol. 2, No. 4, pp20-26,
1984.


