DEGRADE: a New Color Shading Tool

Vincent Boyert and Jean-Jacques Bourdini

1 Centre de Recherche en Informatique de Lens, Université d’artois, rue de 'universite,
SP 16, 62307, Lens Cedex, France, boyer@iut-lens.univ-artois.fr
1 Laboratoire d’intelligence artificielle, Département Informatique, Université Paris 8,
2 rue de la Liberté, 93526 Saint-Denis Cedex, France, jj@ai.univ-paris8.fr

ABSTRACT

Pictures or nature rarely present uniform colored regions. Most drawings include
shaded and/or color shaded surfaces. Therefore for any graphic designer the color
shading tool is of major importance. The tools included in a graphics library have to
respect two important conditions: they have to be fast and they have to be intuitive.
Most color shading tools don’t conciliate these two constraints. This paper presents
a new model of color shading. Its implementation uses the fastest computation
techniques up-to-date. Four examples of pictures drawn with DEGRADE, the new

color shading tool, are then presented.

Keywords: Shading, Texture, Two-Dimensional Graphics, Animation, Extrusion,

Silhouette

1 Color shading in two dimensions

In 2D graphics the color shading tool has
an important function: to fill a region of
the picture with various colors and with
no noticeable color separation. It is this
task that is focused on in this paper. The
term of color shading may also be used
to denote the region filled with a color
shading. In nature color shading is visi-
ble everywhere. See the delicate colors of
a sky at dawn, from the red light of rising
sun to hazy grey of sky through the pale
pink subtly increasing. Clouds are shaded,
leaves are shaded (different tones of green
compose a leaf). From deep blue to cyan,

the color of tropical seas is naturally color
shaded.

In the art of painting the filling of a re-

gion is rarely uniform but more often color
shaded. Color shading may be used to
give a lighting impression (see for exam-
ple the horse on Guernica [Picas37]) or a
volume effect (as in the sky and stacks on
Van Gogh’s painting [Gogh90]) or to give
a 3D impression [Vasar73] which is purely
subjective since the picture is plane.

Volumizing, making an object look far-
off, emphasizing its presence, present a
worn out aspect, or even coloring it natu-
rally are common tasks for any graphic de-
signer. These tasks should be performed
by the color shading tool in image synthe-
sis.

In computer graphics color shading is
mainly underestimated in its importance
and usage. For example 3D graphics con-

sider it as a native part of the global il-
lumination process. Even in landscape
pictures where the color’s saturation of
the farest objects should be very low, a
color shading process based on the far-
ness is almost never used. In 2D graphics
the color shading tools are essential: Pix-
elpaint [Harri89], Photoshop [Syste98al,
Powerpoint [Micro97] or Adobe Illustra-
tor [Syste98b], present various color shad-
ing tools. But even these marketed tools
should be improved.

2 Current Methods

In the paper, the following notations are
used:

A pixel P(z,,y,, c,) of the raster de-
vice is given by its coordinates z, and
yp and its color ¢,

e The color of a pixel P(x,,yp,c,) is
given by the function C' and C(P) =
¢p- The color may be an entry in a
Color Look-Up-Table (Color LUT) or
a triplet representing the values in a
color model like RGB, CMY, HLS,
HSV, XYZ, YIQ, ...

e A pixel P is connected to a pixel ()
if

|z, — x| € {—1,0,1},
lyp — vy | € {-1,0,1} and
|$P_xq|+|yp_yq| #0
o A contour C (C =

{P\,P,,...,P,,P,}) is a set of n
(n € IN*) connected pixels.

e A region R is the largest connected
region of pixels inside a given con-
tour.

e A color shading will denote a region
of the plane filled with various colors
without any noticeable color separa-
tion.

e An area A. = {P € R/C(P) = ¢}
will denote an isochromatic subset of
pixels. Note that these pixels may or
may not be connected.

There are many different color shading
methods:

e Partitioning: PixelPaint color shad-
ing tool [Harri89] partitionates the
region into connected areas. The
shapes of these areas are successive
approximations of the region’s form.
For example the areas within a tri-
angle would be triangles. Due to
the discretisation the inner areas may
be partially degenerated. Moreover
as the partitioning process is slow it
must be limited to small numbers of
areas. Therefore the color separation
may be clearly visible.

e Bourdin’s method [Bourd90]: This
method generalizes the partitioning
to unconnected areas. FEach area
is associated to a value and each
value is associated to a color (for ex-
ample with a Color Look-Up-Table).
The partitioning is replaced by the
computation of the adequate value
for each pixel of the region. The
general shape of the areas is not
bound to the form of the region.
To reduce the expensive comput-
ing time, a class of very fast al-
gorithms based on Discrete Differ-
ential Analysis [Brese65] was pre-
sented [Bourd90]. This method was
also used to present very fast angu-
lar shading [Bourd95]. This method
is therefore quick but any new shape
has to be analyzed and programmed
before use.

e Automatic-airbrushing: This
method consists to apply a color
shading as a filter on a region. The
filter and the region are defined sep-
arately by the user. Once built the

filter may be reused. As mentioned
by Williams [Willi91], this technique

is useful in animation.

e Bi-interpolation: In Gouraud’s algo-
rithm [Goura71] a set of vertices de-
fines a set of polygons that forms a
partition of the region. FEach ver-
tex is associated to a precomputed
color. Each polygon is filled by a
bi-interpolation: vertical interpola-
tion for the elements of the contour
and horizontal interpolation filling
the polygon line by line. The polygo-
nal roughness of the shading implies
a further use of an anti-aliasing tool.

e Subset shading: Little &
Heuft’s [Littl79] method is a
generalization of Gouraud’s. It

divides a region into triangle and
trapezoid subsets and fills each of
them line by line. High speed is
obtained by using integer arithmetic
computation. This algorithm is
quicker than Gouraud’s but the
aliasing remains visible.

3 DEGRADE

The main problems of the current meth-
ods are the area or subset decomposi-
tion (for the partitioning, bi-interpolation
shading and subset shading) and the pro-
grammation of any new shape (for Bour-
din’s method). Nobody wants to program
a new shape for each new color shading
and nobody conceives color shading as an
area or subset decomposition. Our pur-
pose is to produce an intuitive and fast
color shading tool. This section presents
a new model for color shading. This
model has been used to design our tool:
DEGRADE was designed. It is a very fast
and intuitive color shading tool.

3.1 Model

To define a region by two subsets of its
contour, one has to find two sets & and
&, of pixels such that:

1. for each pixel P of the region there
exists a pixel P; of & and a pixel P,
of & such that P belongs to [P, Ps],
and

2. for each pair (P, P,) of pixels of & x
&, each pixel P from [P, P;] belongs
to the region.

If this decomposition is not possible the
region will be partitioned into smaller
parts. In the following & and & are
supposed given. &; is a set of n; pixels
(& =A{P, P, ..., P, }) and &, is a set of
ny pixels (& = {P], P;,..., P, }) and are
called the edges of the region R. It has
been proved [Braqu91] that the edges have
to be 4-connected.

The new algorithm consists in two steps:

e the computation of the color of each
pixel P; (and P) of the edges & (and
&;) with a curvilinear interpolation.

e the filling: for each pair of corre-
sponding pixels (P, P}) of the edges
a color shaded line is drawn from P;

/
to P]

The next subsections will be focused on
the three main problems encountered:

e The adequate non linear interpola-
tion for the colors of each pixel of the
edges.

e The correspondence of two pixels P;
and Pj if the edges have not the same
length.

e The computation of the 3D line be-
tween P; and PJ’

P
PI;},- P
P |
o,

Figure 1: Our model.

3.2 Curvilinear interpolation

The determination of the color of each
point of the edge can be done either man-
ually or automatically. The manual choice
may be a too long task therefore an auto-
matic determination is more suitable.

It can be done, as in Gouraud’s algo-
rithm [Goura7l] by an interpolation be-
tween the two extremities of the edge. Let
P(xp,yp,cp) be a pixel of the edge and
Q(xq, Yg: ¢q), R(2r, yr, ¢;) are the extrem-
ities of the edge.

_do(P,Q) x ¢, d.(P,R)x*c,
7T AR QT d(RQ)
The d.(R,Q) function can be

the FEuclidean distance, or as in
Gouraud [Goura7l] the abscissae dif-
ference or a curvilinear length. As the
edge is not linear a curvilinear length
seems more adequate.

For example if the edge is a circle of
radius p, let P and @) be two points of the
circle, (p,0,) and (p,0,) being their polar
coordinates. The circumferential distance
between P and () is:

dc(Pa Q) = p|0q - 9p|

3.3 Corresponding pixels

If the edges £, and & have the same num-
ber n of pixels (n = ny = ny), for each
pixel P; of £ there is one and only one cor-
responding pixel P/ of £. Therefore the

lines to draw are (P;, P/) for each i € [1, n].
If ny < ny then for each pixel Pj(of & there
is one pixel P; of & such that:

For example if n; = 7 and ny = 4 the
lines to draw will be (P, P)), (P2, P{),
(P37 P2,)7 (P47 P2I)7 (P57 P?i): (Pﬁa Pé) and
(P, P;). This computation is a linear in-
terpolation between n, and n, and can be
realized by a discrete line computation al-
gorithm [Boyer99].

3.4 The 3D line computation

Between each pair of pixels (P, P})
the algorithm computes and draws a
shaded line. If the color is given as a
simple integer value (an entry in a Color
Look-Up-Table) or a gray scale, a simple
3D line is computed. If the color is given
in a three dimensional space (as RGB,
XYZ, HSV...) the line to compute is
a 5D line: from Pj(x;,y;, hi, si,v;) to
Pi(xh, ys, by, 8%, v%) for example. In most
shadings two of these values are similar
and the graphic tool keeps these values as
constant. For example in figure 2 every
line drawn is of constant Saturation and
Hue.

Therefore DEGRADE automatically
adapts to compute a 2D, 3D, 4D or 5D
discrete line.

The principles of fast 2D lines
has been extensively studied
(see [Brese65, Rokne90, Boyer99]),
the fastest of these algorithms is used.

A 3D discrete line is mainly computed as
projected on two axis planes [Kaufm88].
An efficient technique was used involving:

e the inner symmetry of lines to com-
pute only half the line [Boyer99].

e properties to limit the computation
to the first hexadecant.

e the double step technique as
in [Rokne90, Boyer00].

e the ged simplifications in [Angel91].

e the direct computation of the largest
row of pixels (called the spans) as
in [Brese85, Boyer99].

e the Discrete Differential Analysis
(DDA) [Brese65].

The 4D or 5D lines are computed using a
similar method.

3.5 Using DEGRADE

The new technique is very fast. The com-
putation time of each color shading is less
than one second on rather old SGI Indigo.
Due to the properties of the line (symme-
try, spans, ...) our algorithm is faster ac-
cording to the length of the line.
Examples of images produced with
DEGRADE are presented hereafter.

Note that in this postscript version, the
images are degenerated. Therefore a gif
version is attached to this document.
Note that none of these images have been
anti-aliased.

e The Red Sphere (see figure 2). How
can a sphere be described in 2D? There is
a point of illumination P; with maximal
light and a disk where pixels are shaded
proportionally to the distance to P;. In
HSV mode the Hue and Saturation values
are constant within the disk. The pixel
P, is set to the maximal Value. The two
edges are: the pixel P; (&) and the cir-
cumference of the disk (£2). The Values of
the pixels of & are given by their distance
to P, and computed automatically. Then
DEGRADE is used and the whole disk is
colored and look like a sphere.

e The Cone (see figure 3). To describe
a cone one has to draw two secant lines.
Their intersection is the point where the
first edge is located: the top point of

the cone. The other edge is the visible
part of the cone base. Here also the Hue
and Saturation values are constant within
the figure. The Light values (in HLS) or
the Value (in HSV) of the extremities of
each segment to draw are identical. The
Light (or Value) value increases from left
to right to a maximum at one third of the
edge length and then decrease constantly.
The pure 2D effect makes this figure look
like a cone.

e “Le Louvre” (see figure 4). The sky is
drawn with an horizontal color shading.
The description of the pyramid is similar
to that of the cone.

e The road (see figure 5). This picture il-
lustrates different kinds of color shading.
The edges of the balloon are two bezier
curves. The edges of the sphere are the
point of illumination and a circle. The
edges of the road are two lines. The trees
are composed by two color shading. Each
of them is defined by a bezier curve and a
line. These examples illustrate how easy
it is to use the DEGRADE color shading
tool. The method is very intuitive and
the shape of shading easily predicted. The
method is quick to be implemented in an
interactive tool.

4 Conclusion

Based on a generalization of bi-linear al-
gorithms a new method to produce color
shading was presented. The DEGRADE
color shading tool permits to produce eas-
ily different kind of effects. This new
method is also very intuitive and it is easy
to produce any shape of color shading de-
sired. It permits to realize color shading
very quickly, intuitively and uses no area
computation and no polygonal decompo-
sition. Moreover the algorithms used for
this method are very short, so this tech-
nique could be implemented easily in a
graphic library and in hardware with a
limited memory space.

Figure 4: “Le Louvre”

Figure 5: The road

REFERENCES

[Angel91] E. Angel and D. Morrison.
Speeding Up Bresenham’s Algo-
rithm. IEFE CG&A, 11:16-17,
November 1991.

[Bourd90] J.-J. Bourdin and J.-P.
Braquelaire. Color Shading in 2D
Synthesis. In Proceedings of Euro-
graphics’90, pages 41-49,547-548,
1990.

[Bourd95] J.-J. Bourdin. Fast color shad-
ing. In Winter School in Computer
Graphics, Plzen, 1995.

[Boyer99] V. Boyer and J.-J. Bourdin.
Fast Lines : a Span by Span
Method. In Proceedings of FEuro-
graphics’99, volume 18(3) of Com-
puter Graphics forum. Blackwell
Publishers, September 1999.

[Boyer00] V. Boyer and J.-J. Bourdin.
Auto-adaptive step straight-line al-
gorithm. TEEE CGEA, 20(5), 2000.

[Braqu9l] J.-P. Braquelaire and P. Guit-
ton. Q%d scene update by insertion

of contour. Computer & Graphics,
15(1):41-48, 1991.

[Brese65] J.E. Bresenham. Algorithm for
computer control of a digital plot-
ter. IBM System Journal, 4(1):25—
30, 1965.

[Brese85] J.E. Bresenham. Run Length
Slice Algorithm for Incremental
Lines. In Fundamental Algorithms
i Computer Graphics, pages 59—
104. Springer-Verlag, 1985.

[Gogh90] V. Van Gogh. Field with Wheat
Stacks, July 1890.
http://www.vangoghgallery.com/
painting/p_0809.htm.

[Goura71] H. Gouraud. Continuous Shad-
ing of Curved Surfaces. IEEE Trans-
actions on Computers, 20(6):623—
629, June 1971.

[Harri89] J. Harris, K. McGregor, J. Wol-
cott, and A. Samborn-Kaliczack.
Pixel Paint Professional User’s Man-
ual, 1989.

[Kaufm88] A. Kaufman. Efficient Al-
gorithms for Scan-Converting 3D
Polygons. Computer € Graphics,
12(2):213-219, 1988.

[Littl79] W.D. Little and R. Heuft. An
area shading graphics display sys-
tem. IEFEE Transactions on Com-
puters, 28(7):528-531, July 1979.

[Micro97] Microsoft.
1997.

PowerPoint 97,

[Picas37] P. Picasso. Guernica, 1937.
http://museoreinasofia.mcu.es/e/
colecc/Sla06/de0050.htm.

[Rokne90] J.G. Rokne, B. Wyvill, and
X. Wu. Fast line scan-conversion.
ACM TOG, 9(4):376-388, October
1990.

[Syste98a] Abobe Systems. Adobe Pho-
toshop 5.0 Classroom in a Book.
Abode Systems Incorporated, 1998.

[Syste98b] Adobe Systems. Adobe II-
lustrator 8.0 Classroom in a Book.
Adobe Systems Incorporated, 1998.

[Vasar73] V. Vasarely. Planetary folklore.
Chene Paris, 1973.
http://www.masterworksfineart.com/
inventory /vas_bio#tplanetary folklore.

[Willi91] L. Williams. Shading in Two Di-
mensions. In Graphics Interface’91,
pages 143-151, 1991.

