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ABSTRACT

The wide availability of hardwired Z-buffer has sparked an explosion in the number of applications of the
algorithm whose origins lie in hidden surface elimination. This paper presents a much-needed survey of
key applications of the Z-buffer from the fields of rendering, modelling and vision in a common notation
in order to help users make better use of this resource.
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1. INTRODUCTION

When the depth buffer (Z-buffer) algorithm was
originally proposed in the middle 1970’s as a hidden
surface elimination technique [Catmu74], most
people dismissed it as impractical due to its “huge”
memory demands. Today the Z-buffer is a standard
feature in all graphics cards, due mainly to its
generality and simplicity, which makes it easily
implementable in VLSI. The wide availability of the
hardwired Z-buffer and its embodiment in well
known graphics libraries such as OpenGL [Segal99]
has pushed its application domain beyond the realm
of hidden surface elimination. It must be noted that
the Z-buffer is one of the few pieces of hardwired
logic that is so commonly available. Several novel
and ingenious methods have been proposed ranging
from symmetry detection to voxelisation. Many of
them originate from our Computer Graphics
Laboratory [CGL00].

In this paper, we present the applications of
the Z-buffer that we consider most interesting, giving
references where necessary for further details. We do
not discuss its well-known use for hidden surface
elimination. To our knowledge this is the first survey
on this important and very practical subject. We first
define some common notation that will be used in
the description of the applications.

Assume a right handed world coordinate

system centered at (0,0,0)O =  and the unit vectors

, ,X Y Z
uur ur ur

along the 3 major axes. The operation of the
Z-buffer is captured by a function Z which, given a
set of parameters, returns a mapping from 2D pixel
coordinates to depth value:

:zmap num num num× →

( , , , , , , )zmap Z C V U N near far operator=
ur ur uur

where , , ,C V U N
ur ur uur

 specify a viewing co-ordinate
system centred at the point where an imaginary
observer is, near and far specify the clipping limits

(distances from C ) which allow normalisation of the
depth values and operator is the Z-buffer test which,
following OpenGL, can be one of
{LESS,EQUAL,GREATER,GEQUAL,LEQUAL}.

For example:

((1,2,6), , , ,5,10, )zexample Z X Y Z LESS=
uur ur ur

specifies a Z-buffer calculated from (1,2,6)C = with

viewing axes parallel to the respective world co-
ordinate axes, minimum and maximum allowed Z
depths of  6+5 and 6+10 respectively (allowing for
the normalisation (11 0,16 1)→ → ) using the LESS

test (strictly smaller values pass).

The applications presented below cover
rendering (paragraphs 2,3,4), modelling (paragraphs
5,6) and vision (paragraphs 7,8).



2. IMAGE COMPOSITING

It is often necessary to combine objects rendered
separately into a single image. One might, for
example, prefer to use a certain package for human
animation and a different one for producing smoke
and clouds out of particle systems. If depth and
viewpoint conditions are respected, the various
objects may be rendered in separate pairs of frame
and Z-buffers and then combined into the final
image, eliminating hidden surfaces [Porte84,
Duff85]. Suppose we have N separately rendered
objects whose Z-buffers are calculated with the same
viewing characteristics:

1

2

( , , , , , , )

( , , , , , , )

...

( , , , , , , )N

z Z C V U N near far LESS

z Z C V U N near far LESS

z Z C V U N near far LESS

=

=

=

ur ur uur
ur ur uur

ur ur uur

If the respective frame buffers are 1... Nf f ,

then the final depth-merged frame and Z-buffers 0f

and 0z  can be computed with the following piece of

pseudocode:

for each pixel (x,y)

( ) ( )0 1, ,z x y z x y=

( ) ( )0 1, ,f x y f x y=

for ( )2 1i N=

if ( ) ( )0, ,iz x y z x y<

( ) ( )0 , ,iz x y z x y=
   

( ) ( )0 , ,if x y f x y=

A similar idea is used to place a 3D cursor in a
3D scene, hiding parts of it that are occluded by
scene objects [Foley91]. The frame and Z buffers of
the cursor are simply combined with those of the
scene in the above manner, except that in this case
the contents of the scene Z buffer are not altered.
Also the operation need not span the whole image
area but only the cursor’s bounding box.

3. SHADOW MAPS

The most popular alternative use of the Z-buffer
algorithm is the fast generation of shadows from
spotlights or parallel projectors. This shadow
generation technique was first introduced by
Williams in 1978 [Willi78] and its variations are still
widely used in rendering software and real-time
applications, like computer games.

Let a spotlight or projector with a lighting
range Lrange  be placed at point L  in the scene and

point along the direction LN
r

 (Fig. 1a). Let also LM

and LP  be the geometric transformation and

projection matrices of the light source

( , , ,L L LL V U N
r r r

). The shadow test itself is very simple

and is divided into the following two steps:

§ Render the scene from the light-source’s point

of view L  using LN
r

 as camera axis (Fig. 1b)

and store the corresponding depth-map
(shadow-map):

      ( , , , ,0, , )L L L L LZ Z L V U N range LESS=
r r r

§ Revert to the normal camera view and render the
scene (Fig. 1c). A point P  on a surface is
shadowed if it is located at greater distance than
the value stored in LZ , when P  is expressed in

the light-source’s viewport coordinates:
1

L LP P−′ = ⋅ ⋅P M , that is, if ( , )Lz Z x y′ ′ ′> .

 If z′  is outside the range [0, ]Lrange , P  is

considered to be in shadow.

In order to apply this method to non-
directional lights, multiple shadow-maps must be
combined in a spherical or cubic map so that any
direction on the unit sphere centred at L  is
addressable. If multiple light sources participate in
the scene, the above procedure is duplicated for each
of them.

The main advantages of Z-buffer-based
shadows are the simplicity and generality of the

Generating shadows with the Z-buffer
Figure 1



algorithm, its speed as well as the ability to produce
soft shadows. Today’s graphics hardware can take
advantage of single-cycle multi-pass rendering to
provide good quality shadows in real-time, even with
a high polygon count.

The most noticeable problem of the
shadow-maps is the production of aliasing effects.
The regular sampling of the Z-buffer may produce
annoying jagged shadow edges, especially in low
buffer resolutions. Because of the discrete form of
the shadow-map, ( , )LZ x y′ ′  must be interpolated by

filtering the map over an area of map cells in the
neighbourhood of ( , )x y′ ′ . This interpolation, if not

performed carefully, can lead to bad distance
comparisons and therefore, misplaced shadows.
Solutions to the above aliasing problems have been
proposed, as in [Cook86] and [Reeve87].

A generic drawback of Z-buffer shadow
generation is the inability of the (original) algorithm
to handle filtered-shadows from partially transparent
surfaces or volume data, a problem, which other
methods like ray-traced shadows successfully tackle.
However, due to its speed and ability to effectively
produce soft shadows, it is the most commonly used
shadow generation technique in commercial
programs.

4. CSG RENDERING

Constructive Solid Geometry (CSG) is a
very common method of modelling complex 3D
objects from simple primitives by performing
Boolean operations on their volumes. The
relationship between the primitives is described as a
CSG tree whose leafs are the primitive objects and
intermediate nodes represent the partial Boolean
operations. The root of such a tree represents the
final CSG object.

Rendering of the CSG object can be done
after the surface boundary of the final object is
evaluated by displaying the resulting surface
elements (e.g. clipped and tessellated triangles) or
before the actual surface generation, in image-space.
The later category includes ray-casting, scan-line and
Z-buffer-based techniques.

Z-buffer methods utilise the standard Z-
buffer algorithm implemented in conventional
graphics hardware in order to render a CSG
hierarchy using multiple passes of clipping (stencil
test) and depth sorting (depth test) operations. Such
algorithms are proposed in [Goldf86, Epste89,
Wiega96, Stewa98, Stewa00].

A key point to the Z-buffer CSG rendering
techniques is the conversion of the initial arbitrary
CSG tree into a normalised CSG tree. A CSG tree is
normalised when it is transformed in a sum-of-
products form (union of primitive differences or
intersections). A product may consist of a primitive
and a normalised CSG sub-tree.

A representative algorithm of the Z-buffer-
based CSG rendering category is the one proposed
by Goldfeather et al [Goldf86] and implemented in
non-specialised hardware by Wiegand [Wiega96]. In
this algorithm, after bringing the CSG hierarchy in
the form of a normalised CSG tree, each (convex)
primitive surface is clipped in image-space by its
siblings using the depth and stencil tests. The partial
surfaces are finally merged with a simple Z-buffer
operation (z-less-than) (Fig. 2).

The technique uses one Z-buffer (surface Z-
buffer) to store the visible surface of each primitive
and another one (output Z-buffer) to compose in
correct depth-order the partial results of the surface
Z-buffers. A stencil buffer is also necessary for the
clipping of the primitives in the surface Z-buffers.
Each time a primitive is compared with the surface
Z-buffer, the stencil test is configured so that the
stencil buffer holds the number of surfaces in front
of the Z-buffer already stored. The general algorithm
is as follows:

The CSG algorithm by Goldfeather et al
Figure 2



Clear the output Z-buffer to z=far.
For each CSG tree product P:
     For each primitive A in P:
          Clear the surface Z-buffer to z=far.
          If A is subtracted
               Draw back of A into surface Z-buffer.
          Else
               Draw front of A into surface Z-buffer.
          For all other primitives B in P:

                         Update the stencil buffer and mask the
                         surface Z-buffer appropriately:
                         If B is subtracted
                             Accept pixels with even stencil value.
                         Else

                   Accept pixels with odd stencil value.
         Draw the surface Z-buffer into the
         output Z-buffer where
         surface z value < current output z value.

Stewart and Leach [Stewa98] introduced the
idea of grouping the primitives into layers in order to
perform more than one writes to the surface Z-buffer
in a single pass. The generation of such layers
depends on the depth complexity of the composite
object under a certain angle of observation. The term
depth complexity refers to the number of
overlapping surfaces in the z-direction.

Z-buffer CSG rendering allows the
interactive previewing of Boolean operations on 3D
objects before the (often expensive) computation of
the actual CSG surface geometry is performed. In
case of non-convex primitives, object-space methods
can be used to partition the primitives into convex
ones.

5. VOXELISATION

Volume graphics is a domain that has a rather short
history, but is gaining increasing popularity and
voxel-based models are currently used in a variety of
applications. Voxelisation is the process of
approximating a continuous object by a set of voxels,
which consists of sampling the initial object and
assigning a value to each voxel of a three
dimensional raster.

The z-buffer has been used in a simple and
very fast binary voxelisation algorithm, which
rapidly produces volume data from any type of
original model [Karab99].

The algorithm assumes that the object to be
voxelised is surrounded by a bounding box, and that
each face of the box is a viewing plane. A depth
buffer is generated for each face by a parallel
projection of the object onto it (see Fig. 3).
Assuming the bounding box is centred at the axes
origin and its dimensions are Xd , Yd  and Zd  along

the three major axes, the following six depth buffers
are generated:

( )1 , - , - , ,0, ,X XX Z C Z Y X d LESS=
r r r

( )2 , - , - , ,0, ,X XX Z C Z Y X d GREATER=
r r r

( )1 , , , ,0, ,Y YY Z C X Z Y d LESS=
r r r

( )2 , , , ,0, ,Y YY Z C X Z Y d GREATER=
r r r

( )1 , , - , ,0, ,Z ZZ Z C X Y Z d LESS=
r r r

( )2 , , - , ,0, ,Z ZZ Z C X Y Z d GREATER=
r r r

where ( )2,0,0X XC d= − , ( )0, 2,0Y YC d= −  and

( )0,0, 2Z ZC d= −

For each pair of bounding box faces the
algorithm obtains two values for each pixel from the
two buffers, representing the minimum and
maximum distance between the object and the view
plane. As a result, any given voxel centre will have
three pairs of values associated with it, one pair per
axis. If a voxel’s location is bounded by all three
pairs, then the voxel is inside the object.

The method presents the limitation that it
can miss concavities: if some area of the surface is
not visible from any of the six faces, then this area
will not be properly voxelised. While this is a
disadvantage over more accurate (and slow)
methods, in practice the majority of objects can be
quickly and successfully voxelised by this algorithm.

Buffer setup for voxelisation.
Figure 3



The algorithm described above voxelises the entire
object. A variation exists to voxelise only the surface
of the object.

6. DISCRETE VORONOI DIAGRAMS

Hoff et al [Hoff99] propose a method for the
computation of discrete Voronoi diagrams, i.e.
Voronoi diagrams over a discrete space such as the
image plane, using the Z-buffer.

Let the discrete space be the image plane
and suppose that the Voronoi sites [Voron08] are
points distributed over the image plane. One way to
compute the Voronoi diagram is:

for every pixel p

mind MAXINT=
for every Voronoi point v
         ( ) ,  d dist v p=

         if mind d<
     mind d=

     ( ) ( )colour p colour v=

The above algorithm colours every pixel
with the colour of the nearest Voronoi site.
Alternatively the algorithm may be rearranged to
iterate through the sites, computing distances to all
pixels, and updating the colour and minimum
distance (kept per pixel) accordingly. Now this
sounds very much like the Z-buffer and indeed it is.
All that is necessary is to create a distance function

( )( ), ,  dist v x y  which yields the distance of pixel

( ),x y  from site v. For point sites this is simply a

right circular cone with its apex at site v, see Fig. 4.

The cone can be approximated by a set of
triangles proceeding radially outward from the apex.
Hoff et al estimate that in order to achieve subpixel
accuracy in a 512x512 resolution image plane we
only need 60 triangles.

These approximated cones are rendered,
each in different colour, using the Z-buffer with
parallel projection and the result is the 2D discrete
Voronoi diagram of the point sites. Hoff et al
generalise the method to line-segment- and polygon-
sites as well as to 3D.

7. OBJECT RECONSTRUCTION

The Z-buffer algorithm, apart from its many
uses in the computer graphics domain, has been also
applied to solve computer vision problems. Such a
case is presented in [Papai00a], where the
reconstruction of objects from their fragments is

attempted. In this procedure, object fragments have
to be tested one against another for complementary
matching in order to be glued together later.

 The complementary matching is based on
the minimisation of a point to point distance-based
matching error between the facing surface segments
of two fragments. As the method must be able to
handle objects of arbitrary shape and mesh topology,
the matching error estimation is image-based and
utilises the Z-buffer for the uniformly sampled point-
to-point distance between the fragments. This
matching error is minimized, employing a standard
global optimization scheme, to determine the relative
positioning of the two fragments that corresponds to
their best complementary fit.

More specifically, the two fragments are
positioned in a way that two of their broken facets
are facing each other (Fig. 5a). A set of seven pose
parameters is adequate for the alignment of the two
fragments. The first object is allowed to perform a
full circle around the axis of alignment 1( )ρ , deviate

from this axis 1 1( , )φ θ  by up to 10o and slide along

the broken facet 1 1( , )x y . The second object need

only diverge from the axis of alignment by up to 10o

2 2( , )φ θ .

The matching error calculation uses the
derivatives of the point-to-point distance between the
facing sides of the fragments (surface curvature).
These distances are evaluated by rendering each
object using as viewing plane a separating plane (p)
between the objects (Fig 5b).  If

1 1 ( 1) ( 1) ( 1)( , , , , , , )obj obj objZ Z O X Y Z R R LESS= − −
r r r

 and

2 2 ( 2) ( 2) ( 2)( , , , , , , )obj obj objZ Z O X Y Z R R LESS= − − −
r r r

where R is the maximum radius of both objects, the
matching error dε  is given by:

v

Image Plane
Y

X

distance

Distance Function of a Point Site
Figure 4



dε = 1 2( , ) ( , )1

s S

Z u v Z u v

A u u

 ∂ ∂
+ + ∂ ∂

∫∫

     1 2( , ) ( , )Z u v Z u v
dS

v v

∂ ∂ 
+ ∂ ∂ 

where S is the buffer region where the two facets
overlap and SA  is the corresponding area of overlap.

Ideally, if the broken surfaces of the
fragments are complementary, the matching error
should be zero for a relative pose of the two pieces
where they “fit” together. For all other placement
configurations or for incompatible fragments, there
is a significant matching error between the fragment
facets.

This application is one of the rare cases
where rendering is not used just for visualization, but
actively participates in the solution of a computer
vision problem.

In order to define which sides of the
fragments to test for complementary matching, the
following method is used [Papai00b]: A fragment’s
mesh is first partitioned into regions of nearly

coplanar polygons (facets) by a region growing and
merging scheme. Then, those facets that exhibit
higher surface irregularity are assumed to be
fractured and are labeled as potential for matching.

A measure of the facet’s irregularity can not
be estimated directly from the original mesh (unless
the surface is uniformly sampled) because each facet
consists of polygons of arbitrary connectivity and
varying area. Instead, an image-based bumpiness
measure is calculated on the elevation map of the
facet. Obviously, the elevation map corresponds to
the Z-buffer if the facet triangles are rendered with
the viewing direction parallel to the average facet
normal (Fig. 6).

The bumpiness of a surface is associated
with the rate of elevation variance and can be
effectively estimated on the elevation map with an
image filter, such as the Laplace image operator.

8. SYMMETRY DETECTION

Symmetry of three-dimensional objects is a valuable
property that is of use in a wide range of
applications, e.g. object recognition and

Complementary matching between 2 object
fragments using the Z-buffer.

Figure 5 Detection of fractured faces on an object.
Figure 6



reconstruction from views, or data compression.

Reflectional and rotational symmetry of a
3D object can be measured using a modified version
of the traditional depth buffer, where all depth values
are stored, instead of the minimum ones [Karab00].
For every pixel ( ),x y , the modified depth buffer

holds all corresponding depth values, in ascending
order. This is modelled by introducing a new depth
buffer operator ALL.

A 3D object has reflectional symmetry if it
is invariant under reflection about a plane, which
crosses the object’s centre of mass. If (p) is a
candidate reflectional symmetry plane for a given
object, the viewing plane is placed to coincide with
(p) (as in Fig. 7). Without loss of generality, let this
plane be 0z = . If (p) is indeed a plane of symmetry,
every object point which lies on one side of (p) must
have a counterpart on the other side, with identical

( ),x y  coordinates and opposite z values. Any

difference in the number of discrete object points
encountered at each side of (p), or in the z values that
correspond to a given ( ),x y , leads to a deviation

from perfect symmetry.

If a modified depth buffer

( )min max, , , - -, , ,ZAZ Z C X Y Z z z ALL=
r r r

 is generated,

the above conditions can be checked simply by
examining the z-buffer values for each pixel ( ),x y .

Let ( ),
i

AZ x y , ( )1... ,i N x y=  represent the i-th

buffer value at ( ),x y . Let also ( ),N x y+  and

( ),N x y−  be the number of positive and negative z-

buffer values at ( ),x y , respectively. The object is

non-symmetrical at ( ),x y , if :

( ) ( ), ,N x y N x y+ −≠

or

( ) ( ),1... , : ( , ) ( , )i N x y ii N x y AZ x y AZ x y ε+ −∃ ∈ + >

where [ ]0,1ε ∈  defines the algorithm tolerance.

A 3D object has rotational symmetry of
order n if it is invariant under rotation of 2 nπ
radians about an axis passing through the object’s
centre of mass. Rotational symmetry of order n can
be detected using n depth buffers (Fig. 8), placed
perpendicular to the candidate symmetry axis (l).
Subsequent buffers form a 2 nπ  radians angle. In

this case, instead of comparing positive and negative
depth values in a single buffer, only positive values
are required; positive depth values for each point

( ),x y  are compared between two subsequent z-

buffers. Once a symmetry error is determined for all
n pairs of buffers, its average value defines the
overall symmetry error.

The symmetry measures described in this
section can be used to as error functions in a global
optimisation scheme, to locate the actual planes/axes
of symmetry.

A similar approach can be adopted for
congruity detection, where depth buffers of two
different objects are compared. In both cases of
symmetry and congruity detection, a “traditional”
depth buffer can be used, if the objects under
examination are convex.

9. CONCLUSION

The Z-buffer has turned out to be a much more
powerful tool than it was originally intended. We
have presented a survey of important and recent
applications. No doubt this list will continue to grow.

Reflectional symmetry detection.
Figure 7

Rotational symmetry detection.
Figure 8
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