Using Vision for Animating Virtual Humans
loannis Kakadiaris
Visual Computing Lab

Department of Computer Science
University of Houston

Visual Computing
|

e The field of Visual Computing is concerned
with the analysis, numerical manipulation,
querying, display, storage, and transmission

| of data.

e Human Motion Analysis

| o Biomedical Data Analysis

l e Seismic Data Analysis

Overview

v Motivation

Theoretical Framework

- Distributed Approximating Functionals
- Physics-Based Modeling

Human Motion Analysis

e Biomedical Data Analysis

e Conclusion

Physics-Based Models: Computer Vision

e Objective
- Represent nonrigid shapes

- Reconstruct nonrigid shapes from noisy
data

- Estimate the motion of nonrigid objects

e Solution

- Use the principles of physics to
approximate the shape of objects and
their behavior

Physics-Based Models: Computer Graphics

e Objective
- Model nonrigid objects and their interaction
with the physical world

- Realistically simulate and animate the motion of
articulated objects with deformable parts

e Previous Attempts

- Geometric modeling techniques have had limited
success

e Solution

- A mathematical representation of an object (or
its behavior) which incorporates physical
characteristics such as forces, torques and
energies into the model allowing numerical 6
simulation of its behavior
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Geometry of Rigid/Deformable Models

modal with
plobal
*, dutsrmatians

Geometry: Global Deformations

|
e Geometric primitive: e(u;al,az,...)

e Parameterized deformations:

‘ T(eh b,,..)

e Global deformation parameter vector

s=Te(:a,a,.. )b .b,..)
g, = (al, az,...,b1,b2,...)T

Geometry: Global Deformations (cont.)

e Example: Superquadric

Geometry: Global Deformations (cont.)

e Example: Superquadric with deformation

Geometry: Local Deformations

I
e Finite elements

- Local deformation: d
- Linear combination of nodal displacements:

d=$q,

‘ S: Matrix of local finite element shape functions
Implementation: Linear triangular elements

4,

Finite Ele

Kinematics

|
e Generalized coordinate vector

translation rotation global-def local-def

e Velocity of points on the model

x=[I BRI RS]q =Lq

e Jacobian L maps from g-space to 3-space:
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Dynamics

e Lagrange equations of motion
Vision-Shape: (+Kqg=fq

Vision-Motion: ¢ +q =fq

Graphics: Mg+Dqg+Kq=fq+ga

M block symmetric mass matrix

D: Raleigh damping matrix, D =aM +bK
K: stiffness matrix

f(u,t): generalized external forces
gq(u,t): generalized inertial forces

I m

Dynamics: Generalized Forces

‘ e Generalized external forces

:
_ e T T T TN
J oo
|

translation- rotation-f global-f local-f

Dynamics: Generalized Forces (cont.)

e Generalized inertial forces

g, =- OML" L gdu
where

Lg=w” (W" Rp)+2w” Rp
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B Numerical Simulation of Motion Equations

e Second order system

Mg +Dg+Kq=gq+fq+fe

e Numerically integrate through time

|
|
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B Overview
| v Motivation
v Theoretical Framework
e Human Motion Analysis
| - Inferring Structure in 2D
- Human Body Model Acquisition
I - Human Body Tracking
- Estimating Anthropometry and Pose from a
Single Camera
\ o Biomedical Data Analysis
e Conclusion
|
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| Motion-Based Part Segmentation
|
e Given an image sequence of a multi-part
object whose parts move relative to one
| another ...
Recover a structured description
in terms of moving parts, without
I a priori knowledge of the object
or the object domain.
‘ Accurately estimate the parts’
| shape and motion parameters.
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Part Segmentation Algorithm (PSA)

19

Motion-Based Part Segmentation

|
Advantages

e Integrates the processes of part segmentation
and fitting

| o Allows reliable shape description of the parts

e Estimates the location of the joints between the
parts (if any)

= o Detects multiple joints

| e Does not require an a priori model of the multi;
part object or of the shape of the parts

Contribution

e New framework for the two-dimensional
part segmentation shape and motion
estimation of multi -part objects.
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Overview

v Motivation

v Theoretical Framework

e Human Motion Analysis
- Inferring Structure in 2D
- Human Body Model Acquisition
- Human Body Tracking

- Estimating Anthropometry and Pose from a
Single Camera

e Biomedical Data Analysis
e Conclusion

Human Model Acquisition

Given image sequences (from multiple

views) of a moving human ..
Automatically segment the apparent
contour and estimate the 2D shape
of the subject’s body parts (without
a prior model for the human body or
for the shape of the parts).

Automatically acquire a three-
dimensional model of the subject’s
body parts.

Experimental Setup

® Sagittal Plane Coronal Plane Transverse plane
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Human Body Model Acquisition

Protocol of movements: MovA

1. Head Motion
|

‘ 2. Left upper body extremities motions
3. Right upper body extremities motions

HEEE

Human Body Model Acquisition

|

Protocol of movements: MovA (cont.)

4. Left lower body extremities motions
' 5. Right lower body extremities motions
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Results

e Human head and left arm

27

Results - Human leg

Results

|
e 3D models for the arm and the leg

..-- --ﬂ-ﬂ
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Validation and Performance Analysis

e 3D Shape Estimation of a subject's body parts

5



‘ Validation and Performance Analysis

3D Shape Estimation of a subject's body parts
= a b
min error :0.001mm
max error :3.736 mm

mean :1.459mm
stddev  :1.170 mm

31

i

Overview

Motivation
Theoretical Framework
e Human Motion Analysis
- Inferring Structure in 2D
- Human Body Model Acquisition
- Human Body Tracking

- Estimating Anthropometry and Pose from a
Single Camera

e Biomedical Data Analysis
e Conclusion
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Human Motion Capture

Given image sequences of a moving human...
Estimate over time the 3D position and
orientation of a subject’s body parts.

- e
v L
{1 &
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M Challenges

e Humans perform complex 3D non-rigid
motions

| e Body parts may not be visible from certain
viewpoints

B 3D Model -based tracking

Input

- Image sequences of the moving human
I from three views, and

- The 3D models of the subject’s body
parts (as obtained with our method)

Output

‘ - The 3D position and orientation over
- time of each of the subject’s body parts

Human Motion Capture

Advantages of our approach
- Obviates the need for markers or

| special equipment

- Model obtained from observations

- Mitigates difficulties arising due to
‘ occlusion among body parts

| - Selects a subset of the cameras in an
active and time varying fashion
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Model -Based Tracking: Steps

Steps
- Predict
- Select
- Match
- Update
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Model -Based Tracking: Select

38

Model -Based Tracking: Select

Predicted occluding contour

Observability Index (1) = § area(c; ,C,,,P.,P)

Model -Based Tracking: Select

e Observability Index

[ |

Model -Based Tracking: Update

Lagrange equations of motion

q+q = fq
where
g(t) : the generalized coordinate vector

f,(t) : generalized external forces

Model -Based Tracking: Predict

Extended Kalman Filter

| ql 6.1 o
ehu = o7 edam + wy
& [
087 81 ol
®eé U
) = hgedam I+ v
H & €aq d

z(t): vector of observations

h(t): nonlinear function which relates the input data to
the model's state

w(t): modeling error

0
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' Human Body Model Acquisition

Frame Cameral Camera2 Camera3

'Human Motion Capture

Validation and Performance Analysis
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Validation and Performance Analysis

3D Model-Based Tracking

i {_ b
. p— 1
oo b i -
f— ro—
Error(mm) XY Plane Z (height)
MinError 0.38 1.01
1 MaxError 9.47 5.80
1] Mean 4.31 3.67
J StdDev. 172 1.03
RMS 1.67 0.54
g —

Video Presentation

Tracking Using Monocular Images

|
e There are several applications for which

the video recordings from only one view are
available
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Motivation

e Performance measurement for human
factors engineering
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Motivation (Cont.)

|

e Posture and gait analysis for training
athletes and physically challenged
individuals

http:/ /s motionanalysis com
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Motivation (Cont.)

|
e Human body, hands and face animation

http://ligwww.epfl.ch/

Motivation (Cont.)

e Automatic annotation of human activities in
video databases

Problem Statement

Given a set of points in an image that correspond
to the projection of landmark points of a human
subject ...
estimate both the anthropometric
measurements (up to a scale) of the subject
and his/her pose that best match the
observed image

§ =y <—3D Human Model

Image  » | = (up to scale)
" ;
Our Approach
Novelty

v Using anthropometric statistics to constrain
the estimation process

Advantages
v Estimation of both anthropometry and pose
simultaneously
v Able to estimate anthropometry and pose from
a single image
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Overview

Novelty: Using anthropometric statistics to
constrain the estimation process

| 8 i
- < TP L | )
=g AsN it .}
Stepl  Step2 Steps 3,4 - Outbuf
Selection of Initial Anthropometric
© ?c fon 0 Estimates uman
projected model
| landmarks = Initial Pose Estimates

| on the image = Iterative Minimization
over lengths and angles 55

Human Body Model

From| To _DOF R

T atlanto occipital | NK_| HD __Tz*Rz*Ry*Rx | 3

=T solar plexus UT | NK__ Tz*Ry*Rz*x 2

o left ankle L [LF TxeReReRy | 4

- left clavicle uT e TrReR 3

- o - left elbow LUA |LLA _ Tz*Ry 5

1 S T left hip LT JLuL TzReRxeRy | 2

left knee Lo e TzrRy 3

ok N left shoulder | LC | LUA Tz*Rz*Rx*Ry | 4

‘ H - - | lw__left wrist LA LHD  Tz*Ry*Rx*Rz | 6

1 a ra__right ankle RLL | RF Tx*Rz*RoRy| 4

- right clavicle | UT | RC _ Tz*R-xcRy 3

right elbow RUA [ RLA TRy 5

T i LT | RUL Tz*R-z"Rx*Ry| 2

right knee RUL[RLL  Tz*Ry 3

rs right shoulder |RC |RUA Tz*R-z*R-x*Ry| 4

| . rw  right wrist RLA | RHD Tz*Ry*R-x*R-z | 6

‘ ’ Wt waist LT |uT  Tz*Ry*Rz*Rx | 1
©22 segments, 17 joints and 64 DoF s

Family of Human Body Models

|
e 2187 human body models based on
anthropometric statistics

- Il

e The cadre family is a representation of the
population distribution which spans the space
to capture a significant amount of the variance

I 57

Step 1: Selection of projected landmarks

Through a simple interface, the user:
= Selects the projection of visible
landmarks of the subject’s body
= Marks
=segments whose orientation is
almost parallel to the image plane

=pairs of segments that have similar
orientation rﬂ
A

Ll
n l 58

Output

e Image coordinates of the selected
projected landmarks

e aset of ratios (of projected lengths) using
the segments selected by the user

Step 2: Initial Anthropometric Estimates

Input: a set of ratios using the segments
selected by the user

Output: the initial human model ¢ from our
cadre family of 2187 human models.

q :arﬁé (ruq- pu)z

q=L,..139 @il !

LA -
where =|'—q,| <] are the ratios of the

segments of each cadre family member
that correspond to the segments selected «
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Steps 3 and 4:
Estimates for pose and anthropometry

Goal
v Minimize the discrepancy between the
synthesized appearance of the Stick
Model (for that pose) and the image
data of the subject in the given image
minf(x)
L Ex £U,,j=1..K

where X. can be an angle or a length or a ratio, and
L and u,are its lower and upper values.
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Camera’s center ™= | j %
l of projection \
62

The Objective Function

e The sum of squared distances between the
Stick model's site and the closest point from
the line formed by the camera’s center of
projection and its corresponding landmark

Image ™~—~__
24 3D Model

ﬁ' "

Minimization process

To guide the minimization process to a solution for
a pose that is anthropometrically plausible, we

| apply:
|

v a geometric method for the initial pose estimation
v a hierarchical solver

v various constraints

I m

Initial Pose Estimates

We use a geometric method for providing
two initial guesses for the pose of some
segments as follows:

-

lo+1d; - jf| =
Solutions o+ld
AT T o
| 24 i- o) ffdAi- o -po- if 17 4l

Camera’s center
of projection 6

Hierarchical Solver

We assign a priority to each joint and site,
and we schedule the optimization process

i} + i < |~

Input data pSteps 3, 4 p Virtual human model

Constraints

Three classes of constraints are applied:

o Constraints derived from the joint limit
information associated with the range
of motion of each joint,

e Constraints that enforce the symmetry
between the left and right sides of the
subject, and

e Constraints that enforce proportions.
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'Results Bl Results

Synthetic Experiment

Accuracy

LC uA [ e | 1 | LE ‘
UTHLT LUA LUA LUL LUL

Actual 0.6553 | 0.9829 | 0.5700 | 0.6397 | 0.6341

Estimated | 0.6517 | 0.9781 | 0.5713 | 0.6377 | 0.6329

PE % 0.5494 | 0.4810 | 0.2281 | 0.3090 | 0.1876 H
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Results |
| |

Subject: Vannesa

; Hﬂ. '!'|
| E g

Accuracy

‘ —+— | t— |t | T— ‘

UT+LT LUA LUA LUL LUL

Actual [ 06279 [ 08625 | 0.6949 | 0.5517 0.4778

Estimated | 0.6266 | 0.8516 [ 06925 [ 05468 04767

PE% | 01958 | 1.2638 [ 0.3180 | 0.8957 0.2302 I
68

Results
|

e Tennis Player

69
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Research Thrusts

o Intelligent Systems

e Computational Biomedicine

o Biomedical Robotic Systems

e Geophysical Data Analysis and Visualization

Analysis,Modeling, Simulation, Visualization
Multimodal Human Computer Interaction
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Conclusions

|
“We live in interesting times”
Abundance of sensors

Large volumes of information rich data

New efficient and robust methods for
analyzing, querying, visualizing and storing
data
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