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Abstract

We present a new approach to dynamic mesh compression, which combines com-

pression with simplification to achieve improved compression results, a natural support

for incremental transmission and level of detail. The algorithm allows fast progressive

transmission of dynamic 3D content. Our scheme exploits both temporal and spatial

coherency of the input data, and is especially efficient for the case of highly detailed

dynamic meshes. The algorithm can be seen as an ultimate extension of the clustering
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and local coordinate frame (LCF) based approaches, where each vertex is expressed

within its own specific coordinate system. The presented results show that we have

achieved better compression efficiency compared to the state of the art methods.

Keywords: dynamic mesh, compression, simplification, animation, PCA, prediction
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Introduction

Compression of dynamic 3D meshes is one of the research areas of computer graphics which

has received increased attention in the last period. This is mainly due to the fast development

of capture and display hardware which is likely to soon allow quick acquisition and high

quality display of truly three dimensional moving content.

It is important to realize that dynamic mesh processing is not a simple extension of the

static case. On one hand, there are some new problems, which should be addressed, such

as avoiding temporal artifacts, while on the other hand we have new opportunities to be

exploited during the processing, namely the temporal coherency of the input data.

Dynamic mesh is a common term used for a series of static triangular meshes that repre-

sents a development of some surface in time. Usually, two additional assumptions are made

about the dynamic mesh:

• every mesh in the series has the same connectivity, i.e. there is an one-to-one corre-

spondence of vertices from frame to frame of the animation

• the animation represents some physical process, i.e. there are no sudden changes in

the geometry of the subsequent frames of the animation.

The task is to store the dynamic mesh using as few bits as possible, while preserving the

visual properties of the original data.

There are generally two main classes of approaches to this problem. First, there is a

large class of compression schemes. These approaches do not change the original topology
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of the mesh, and achieve size reduction by sophisticated encoding of the geometry of the

mesh. A second class are the simplifications, which reduce the number of primitives in the

data, thus achieving smaller size and faster processing.

Our approach, however, consists of both steps. Our primary goal is size reduction for

incremental transmission of 3D meshes, and therefore we only use simplification as a tool

which allows better compression rates and also adds some nice features to the algorithm. In

our scheme, we use eigentrajectory based Principal Component Analysis (PCA) to describe

the trajectories of vertices. The decoder first receives the full connectivity, and subsequently

decimates it according to decimation order sent from the encoder.

Finally, the encoder incrementally sends the PCA coefficients for the vertices needed by

the decoder to refine the coarse version of the mesh. This allows us to use neighborhood

average predictor to predict the PCA coefficients, and only transmit the residuals of very

low entropy.

The rest of the paper is structured as follows. Section 2 gives a brief overview of the

existing approaches to dynamic mesh compression and simplification. Section 3 specifies

our scheme, section 4 clarifies some details, and section 5 reports about the testing we have

performed to evaluate our approach. Finally, in section 6 we give conclusions and sketch

some concepts for future research in the area.
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Related Work

A first attempt to dynamic mesh compression has been published in the paper by Lengyel [1],

who suggested subdividing the mesh into clusters in which the movement can be described

by a single transformation matrix.

Ibarria and Rossignac [2] later suggested the spatio-temporal prediction schemes ELP

and Replica, which were used to predict the next vertex position during a mesh traversal

using the EdgeBreaker state machine. A similar approach has been used by Stefanoski [3]

in his angle preserving predictor. The position of the new vertex is expressed in a local

coordinate system defined by a neighboring triangle.

A different approach has been proposed by Zhang and Owen [4], who suggested encod-

ing the frame to frame difference vectors using an octree structure, exploiting the fact that

large portions of the mesh are moving in a very similar manner.

The octree based approach has been improved by Mueller et al. [5, 6], who suggested

selecting an appropriate predictor for each cell, choosing from mean replacement, trilinear

interpolation and direct encoding.

Wavelet theory has been used for dynamic mesh compression in the work of Payan[7],

who suggested treating separate vertex trajectories as sampled signal. However, their method

did not use the spatial coherence present in the data.

A different class of approaches has been pioneered by Alexa and Mueller[8], who sug-

gested using PCA in the space of frames, expressing each frame as a linear combination of
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eigenframes. However, this method had problems with rigid movement, which had to be

compensated for in a preprocessing step, where a transformation matrix for each frame has

been found using the least squares approach.

The method has been subsequently improved by Karni and Gotsman[9], who suggested

exploiting the temporal coherence of the PCA coefficients by encoding them using linear

prediction coding (LPC), thus achieving lower entropy of the encoded data. Another im-

provement has been proposed by Sattler et al.[10], who suggested using PCA in the space of

trajectories, and finding clusters of vertices where PCA worked well (Clustered PCA). How-

ever, their randomly initialised iterative clustering method reached very different clusterings

in every run.

Another addition to the PCA based method has been proposed in 2007 by Amjoun[11],

who suggested using trajectory based analysis along with expressing each trajectory in a

local coordinate frame defined for each cluster. Additionally, a bit allocation procedure is

applied, assigning more bits to cluster where more PCA coefficients are needed to achieve

desired precision.

A very efficient compression scheme for dynamic meshes is the Coddyac algorithm by

Vasa and Skala [12]. This approach uses trajectory based PCA to exploit the temporal coher-

ence of the data, however in contrast to the clustering prediction used by Sattler [10], a more

efficient local paralellogram predictor is used to predict the PCA coefficients associated with

each vertex.

Mamou [13] has proposed an approach similar to PCA, called skinning based com-
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pression. The mesh is first segmented to parts that move in an almost rigid fashion. Each

cluster’s movement is expressed by a transformation matrix, and subsequently each vertex is

assigned a vector of weights, that defines how to combine the transforms of the neighboring

clusters to obtain the movement of the vertex.

A resampling approach has been proposed by Briceno [14] in his work on Geometry

Videos. The idea is an extension of the previously proposed Geometry Images [15] concept.

The geometry of the object is unwrapped and projected onto a square, which is regularly

sampled. The resulting image is encoded using some off the shelf algorithm. The extension

to videos solves the problems of finding a single mapping of a moving content onto a square

while minimizing the overall tension. Generally, the method is not easy to implement and

suffers from some artifacts, especially for objects with complex geometry.

A method on the borderline between compression and simplification has been recently

proposed by Stefanoski et al. [16]. The approach utilises a connectivity driven simplifica-

tion step, which uses a local spatio-temporal predictor where for each vertex a complete

neighborhood is available at the decoder. Our method utilises simplification in a similar

manner.

Pure simplification of dynamic meshes has been addressed by only a few papers so far.

Mohr and Gleicher [17] extend the quadric-based simplification static mesh simplification

scheme by Garland [18]. They suggest finding a global quadric for each vertex, and sim-

plifying the global connectivity. Kircher and Graland [19] propose using a multiresolution

representation of the first frame, and then to send connectivity updates (swaps) with each
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following frame. This way, they allow connectivity to change without need to send the

whole connectivity with each frame.

None of the simplification methods so far proposed considered compression as the nec-

essary following step in dynamic 3D mesh processing.

Algorithm Description

Our scheme consists of following steps:

1. compute the PCA of the vertex trajectories

2. decimate the mesh

3. transmit the PCA coefficients for the non-decimated vertices, using parallelogram

predictor

4. transmit the PCA coefficients for decimated vertices, using neighborhood average

predictor

We will now describe each step in detail.

We have chosen the trajectory-based PCA as a core algorithm because it allows efficient

dimensionality reduction. This first step allows us to express each trajectory as a combina-

tion of eigentrajectories, thus utilizing the temporal coherence.

We assume that the number of frames of a typical mesh sequence will not change dra-

matically in the future, because the length of an animation is dictated by film editing rules.
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On the other hand, we do expect the number of vertices to increase, as more detailed meshes

are likely to be transmitted in the future. From this point of view, it is better to perform PCA

in the space of trajectories, where the number of samples available (which is equal to the

number of vertices) is a lot greater than the dimension of the space (which is equal to the

trajectory length). This also implies that the PCA itself will be performed with a relatively

small correlation matrix of size f × f where f stands for the number of frames. Also, it

can be expected that the PCA basis, which needs to be transmitted with the data, will be

considerably smaller than in the case of eigenshapes.

After finding a basis of the space of trajectories, we express each trajectory as a linear

combination of the eigentrajectories found. Usually about 80% of the coefficients can be

neglected without causing any major distortion of the animation. From this point, we treat

the animation as a static mesh, where each vertex has associated a vector of reduced PCA

coefficients.

The key observation for the following step is that the PCA coefficients of neighboring

vertices are likely to be similar. We can use any spatial predictor used for static meshes.

Our suggestion is to use neighborhood average (NA) predictor, which usually provides very

robust estimation. The encoder at this point sorts all the vertices according to the accuracy

of their prediction by the NA predictor. This ordered set is then used as a priority queue for

vertex removal.

The removal of vertices is performed simultaneously at both encoder and decoder. Note

that at this point the decoder has no information about the geometry at all, and therefore
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the retriangulation of the hole must be performed solely according to connectivity criteria.

The only information the decoder receives is the index of the vertex to be removed, however

this leaves some control to the encoder - it knows how the decoder will retriangulate, and

based on this knowledge it can avoid removing such vertices where the retriangulation would

introduce geometrical problems - details on this will be given in section 4.

The strategy of the encoder is the following:

1. set all vertices unlocked, evaluate the decimation costs

2. pick the best predicted vertex v from the head of the priority queue

3. if v is locked, remove v from queue and go to 2

4. simulate the retriangulation after removal of v, if it violates geometrical criteria, then

remove v from the queue and go to 2

5. lock the neighbours of v

6. mark the vertex v to be removed by the decoder at the current level of simplification

7. if there are some vertices left then go to 2

8. if further simplification is required then go to 1

The simplification process is repeated several times in order to create multiple simpli-

fication levels of the mesh. After each step all the vertices are unlocked (step 1), and the
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prediction accuracy (i.e. simplification cost) is reevaluated at each vertex, again allowing all

the vertices to be removed in the following simplification step.

After this process, the encoder and decoder share a simplified connectivity, and every

removed vertex can be predicted from its neighbors (however, the decoder has still no infor-

mation about the geometry of any vertex).

Note that there is some overhead associated with the decimation. However, we don’t

need to send the exact order of vertices to be removed (which would take v.log2v bits, v

being the number of vertices), the only information the decoder needs is at which level of

decimation each vertex should be removed. To transmit this information, we only need

v.log2s bits, where s is the number of simplification levels, or even less than that when

entropy coding is used (simplification levels are not distributed uniformly, most vertices

will be removed at first level, less at second etc.).

At this point, the encoder and decoder share a series of increasingly simplified versions

of the mesh, where each finer one can be obtained by inverse vertex removal, i.e., we know

where each vertex should be placed to reach a finer version of topology. In our experiments,

we have usually driven the algorithm to reduce the number of vertices to less than one fifth

of their original number.

Now we use another spatial predictor to finally pass some geometry information to the

decoder. We traverse the coarsest mesh in EdgeBreaker [20] fashion, however we don’t

need to send the CLERS string at all, as both sides share the connectivity of the coarsest

level. The EdgeBreaker allows us to use the parallelogram predictor to predict the PCA
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coefficients at each vertex - the original version which predicted the spatial coordinates can

be easily extended to predict a general dimension vector cD
i :

Pred(cD
i ) = cB

i + cC
i − cA

i (1)

where cX
i stands for PCA coefficient vectors at vertices X = A,B, C and D, where A, B

and C were already transmitted, and D is a vertex found in a ”new vertex” EdgeBreaker

operation (see Fig. 1).

Both encoder and decoder perform this prediction, and the only information that is being

sent with each vertex is a vector of quantized prediction residuals (except for the initial three

vertices, which need to be fully transmitted). This way, we transmit the complete geometry

of the coarsest version of the animation.

At this point, the decoder can start playing the animation, while it is still receiving

refinement information. The parallelogram predictor is now replaced by the NA predictor,

and the decoder continuously refines the mesh by reversing the previous decimation. It is

guaranteed, that for each vertex the decoder has all the neighbors available, and therefore it

can compute the NA prediction. Again, the encoder only sends the quantized residuals.

Algorithm details

There are two gaps in the scheme that are to be filled - the conditions for selecting the

vertices for decimation, and the criteria for retriangulation performed in the decoder. We

are suggesting simple approaches for both tasks.
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If we were creating only one decimation level, then we generally would not care about

the geometry properties of the created holes, however when multiple simplification levels

are being created it is advisable to preserve a reasonable quality mesh. On the other hand,

the encoder cannot control the way the hole is retriangulated by the decoder, as this would

require additional information to be sent.

The retriangulation process must be driven by connectivity only, as this is the only in-

formation available at the decoder. Although there are more advanced methods for this task,

we have chosen a simple ”ear cutting” algorithm[21] for triangulation of a simple hole. The

decoder however has no information about the convexity/concavity of the hole border, and

therefore it simply considers any vertex to be a candidate ear tip.

The only criterion the decoder uses for selecting an ear tip is the regularity of degrees of

the vertices. It is known that the expected degree of a vertex is six, and good shaped meshes

have very regular distribution of vertex degrees. Cutting an ear does not increase the ear tip

degree, while it increases the degree of the two vertices next to the tip by one. Therefore,

we select the candidate tip where the following expression is maximal:

δ(tip)− δ(tipleft)− δ(tipright) (2)

where δ(x) stands for the degree of vertex x. The tip is cut, and the remaining hole is

again searched for best candidate tip, until it is fully retirangulated. Ambiguous situations

are solved by selecting a candidate tip vertex with lowest index, so that both encoder and

decoder have the same retriangulation.
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There is however no guarantee that the retriangulation is geometrically correct. There-

fore, we perform the retriangulation at the encoder as well and check for geometry correct-

ness. If it is not preserved, then the vertex is not decimated. We only evaluate the criteria

for the first frame, as it is likely that if geometry is not compromised in the first frame then

it will not be changed in the following frames either. Note here that simplification is only a

tool for compression, and we do not aim for perfect simplified version of the model, nor is

geometry preservation of essential importance for us.

First, we check for normal flips. We compute an average normal of the hole by averaging

the normals of all removed triangles. If any of the normals of the new triangles is oriented

opposite to the original normal (we use scalar multiplication), then the decimation is not

performed.

Second, we check for ”sharp” triangles. We check all the corner angles of the new

triangles, and if any angle is lower than some threshold (0.05 rad in our experiments, i.e.

cca 1.4°) then the decimation of the vertex is also cancelled.

Finally, we do not consider decimation of all the vertices. We only use the first 80% of

the priority queue, the rest is considered to be too badly predicted by the NA predictor. The

exact value of this threshold has only low significance, setting it too low results in higher

number of simplification levels, while setting it too high (above 95%) results in higher values

of prediction residuals.
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Evaluation

We have implemented our algorithm and compared it to competing approaches. We have

used several datasets of varying properties and density. We have performed testing with

the chicken sequence, however we note that the nature of this sequence is not ideal for our

approach, as it is a low-poly model (3030 vertices, 400 frames) where the simplification

does not provide so substantial improvement as it does in the case of highly detailed dense

mesh sequences.

We have used high precision data sets which describe human movement. We have used

the dance sequence (7000 vertices, 200 frames), the human jump sequence [22][23](15700

vertices, we have chosen a subset of 200 frames) and a walk sequence (36000 vertices, 187

frames) generated by the animation software SmithMicro Poser (http://graphics.smithmicro.com/go/poser).

For the human motion sequences it can be argued that a skinning approach, where a

bone system is sent with the model in some basic pose, can achieve better compression

ratios. However, aside from the fact that for some of the sequences a bone system is not

known, we have also tested our approach on a sequence of falling cloth (10 000 vertices,

200 frames), where a bone system can be applied only with some difficulties[24], and even

then it produces quite high number of bones, higher than the number of eigentrajectories.

Unfortunately, there is no public implementation of the state of the art methods for dy-

namic mesh compression, and therefore we could only compare our results with the results

that are claimed by the authors of the corresponding papers. This also restricts the choice of
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quality measures to the approaches used in given papers, which are usually based on MSE

computation or per-frame Hausdorff distance evaluation. There are some recent efforts to

create a better human-vision based metric for dynamic mesh processing [25], however the

area is still waiting for some standard metric which would be followed by the researchers.

We have used two different error measures to compare our results with competing al-

gorithms. First, we have used the measure proposed by Karni and Gotsman [9], denoted

KG-error. In this approach an animation is represented by a 3v × f matrix A, where each

column represents one frame of the sequence. The error is expressed as

KGerror = 100 ∗ ‖A− Adecoded‖
‖A− E(A)‖ (3)

where E(A) is a matrix where elements at each column have been replaced by the mean

value of the column. This way the error metric becomes scale invariant. Please note that the

value of this error metric depends on the length of the sequence.

The second metric that we have used is the RMSE used by Mamou [13]. This metric

utilises the Hausdorff metric concept, which computes the distances between two surfaces

instead of computing point to point distances. The approach employed is to work the se-

quence in a frame by frame fashion, and in each frame compute the RMS value (mean

surface to surface distance, for details see [26]). Finally, the RMS values for each frame are

averaged, yielding the RMSE value.

Note that for all the tests we have included all the needed information into a rate mea-

sure. The data therefore consists of PCA basis, level grouping information, parallelogram
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prediction residuals and NA prediction residuals, and the rate is computed as

r =
connectivity + basis + grouping + PP + NA

fv
(4)

where f is the number of frames and v is the number of vertices.

First, we have investigated the influence of the simplification level on the prediction

performance. Figure 4 shows the dependency of residual distribution on the decimation

level of the human jump sequence. It can be seen, that the entropy drops when the mesh is

more decimated, as more residuals become zero. Figure 6 shows the dependency of achieved

rate/distortion ratio on used decimation level. It can be seen that using more NA predicted

vertices leads to better performance. However, for the precise quantizations (right side of

the graph), the parallelogram predictor version provides lower rate with equal distortion.

This is caused by the fact that the parallelogram predictor does not require the grouping

information.

The effect of the simplification step is illustrated by figure 5, where we show the theo-

retical amount of data needed to transmit the sequence for various numbers of simplifica-

tion levels and various bitrates. The height of each column is computed as the number of

residuals encoded multiplied by the entropy of the residuals. Generally, the entropy of the

paralellogram residuals increases, however the number of these is lower, and the entropy of

the NA residuals (whose number increases with the number of levels) is substantialy lower.

The rate/distortion curve for the walk sequence is shown in Figure 7. The rate/distortion

curve for the falling cloth sequence is shown in Figure 8, showing that using the proposed
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system provides improvement of almost 50%.

The rate/distortion curve for the dance sequence is shown in Figure 9 along with values

for the same sequence obtained by competing algorithms. The rate/distortion curve for the

chicken sequence is shown in Figure 10 along with values for the same sequence obtained

by competing algorithms. These figures show that for the low-poly sequence our algorithm

slightly outperforms the competing approaches, however in the case of more detailed mesh

the gain is much bigger.

The table 1 gives details about the ratio of types of transmitted data, running times

and the amount of data that needs to be transmitted before the decoder can start playing

the animation. It can be seen that the compression time, although not real-time, is still

acceptable and compared to some competing methods (Geometry Videos, RD-optimized

BSP trees) can be considered as very fast. Finally, the table 2 gives a summary of the

findings for the data sets used in our experiments.

Conclusions and Future Work

We have shown that it is possible to combine dynamic mesh compression with simplifica-

tion in a natural matter, which allows improved compression ratios, as well as level of de-

tail displaying and incremental transmission. Our scheme only consists of procedures well

known in computer graphics, such as PCA, EdgeBreaker traversal, parallelogram prediction

or neighborhood prediction.
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Our approach can be seen as an ultimate extension of the LCF-based method, which is

based on the fact that vertex coordinates are better compressed when expressed in depen-

dency on some other vertices in the vicinity. Our algorithm expresses most of the vertices

based on their immediate neighborhood, thus achieving better results and removing the need

to create any vertex clustering.

The method is well suited for sequences of highly detailed geometry with hundreds of

frames. It is probably not the best possible choice for low-poly meshes or extremely long

lasting animations, however dividing a long animation into shorter frame series should fix

the problem quite easily.

In the future, the method can be enhanced by replacing some of the trivially solved parts

with more rigorous solutions. Especially the retriangulation of holes can be performed using

other approaches known in the literature.

We would also like to test our approach along with competing algorithms using different

error measures. We see current quality measures as despicably insufficient, and we will

focus our research on finding measures that better model human spatio-temporal perception

of moving 3D content.

Our implementation of the presented algorithm is publicly available at

http:\\herakles.zcu.cz\̃lvasa\compression

in the form of modules for the Modular Visualisation Environment. Any comments or

comparisons with other compression methods are welcome.
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26

The Journal of Computer Animation and Virtual Worlds, Willey Interscience, Vol.20, No.4., pp.447-456, ISSN 1546-4261, 2009 



Compute PCA basis

Encoder

Decimate the mesh

Traverse the mesh
paralellogram

residuals

Send NA residuals

Send connectivity
connectivity

information

Decoder

Receive connectivity

PCA basis

vectors

decimation

levels

NA residuals

Decimate the mesh

Receive coarse geometry

Receive geometry refinements

Receive PCA basis

Figure 3: The data flow between the encoder and the decoder.

27

The Journal of Computer Animation and Virtual Worlds, Willey Interscience, Vol.20, No.4., pp.447-456, ISSN 1546-4261, 2009 



0

50 000

100 000

150 000

200 000

250 000

300 000

350 000

400 000

-4 -3 -2 -1 0 1 2 3 4

Residual value

O
c

c
u

r
e

n
c

e

Parallelogram only 3 levels NA 6 levels NA 9 levels NA

Figure 4: Prediction residual distribution for various decimation levels. Each curve shows

histogram of most common residuals when given number of simplification steps is per-

formed. The occurence of zero increases with the number of simplification levels, while the

occurence of 1 and −1 decreases, which overall leads to a reduction of the entropy.

28

The Journal of Computer Animation and Virtual Worlds, Willey Interscience, Vol.20, No.4., pp.447-456, ISSN 1546-4261, 2009 



0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

3
3

3
3

3
3

6
6

6
6

6
6

9
9

9
9

9
9

7
8

9
1

0
1

1
1

2
7

8
9

1
0

1
1

1
2

7
8

9
1

0
1

1
1

2
7

8
9

1
0

1
1

1
2

entropy*residual count [bit]

S
im

p
lifi

ca
"

o
n

 le
v

e
l co

u
n

t a
n

d
 q

u
a

n
"

za
"

o
n

 co
e

ffi
cie

n
t

T
o

ta
l

P
a

ra
le

llo
g

ra
m

N
e

ig
h

b
o

rh
o

o
d

 a
v

e
ra

g
e

Figure 5: Lengths of encoded residuals for various simplification amounts and quantizations

of the chicken sequence.
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Figure 6: Rate/distortion ratios for various decimation levels of the human jump sequence.

30

The Journal of Computer Animation and Virtual Worlds, Willey Interscience, Vol.20, No.4., pp.447-456, ISSN 1546-4261, 2009 



0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

K
G

 e
rr

o
r 

[%
]

bitrate [bpfv]

Paralellogram only (Coddyac) 3 levels NA 6 levels NA 9 levels NA
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dataset

vertices 15830 7036

frames 200 200

basis vectors 50 33

original length [kb] 24734 10994

basis size [kb] 234.38 20.0% 158.4 26.6%

total residual count 791350 232089

total residual entropy 1.204 1.913

total residual size [kb] 930.62 79.5% 433.47 72.9%

PP residual count 139850 81840

PP residual size [kb] 164.46 14.0% 152.85 25.7%

NA residual count 651500 150249

NA residual size [kb] 766.16 65.4% 280.62 47.2%

vertex grouping size [kb] 5.80 0.5% 2.58 0.4%

total encoded size [kb] 1170.79 100.0% 594.45 100.0%

intital data [kb] 404.63 34.6% 313.83 52.8%

compression time [s] 123 228

human jump dance

Table 1: Size ratios and running times.

sequence method frames ver�ces
basis 

vectors

encoded 

data length 

[B]

bitrate 

[bpfv]

KG error 

[%]

chicken coddyac 350 3030 48 179915 1,357209 0,145279

chicken proposed 350 3030 48 165109 1,245518 0,142822

walk coddyac 187 35626 40 453334 0,544377 0,145839

walk proposed 187 35626 40 331304 0,39784 0,125729

cloth coddyac 200 9987 40 242860 0,972705 1,713824

cloth proposed 200 9987 40 125645 0,503234 1,713795

Table 2: Proposed method compared to Coddyac scheme.
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