
Hash Function for Triangular Mesh Reconstruction
Václav Skala, Jan Hrádek, Martin Kuchař

Department of Computer Science and Engineering, University of West Bohemia
Univerzitní 8, Box 314, CZ 306 14 Plzeň, Czech Republic

http://Graphics.zcu.cz

Abstract: - Some applications use data formats (for example STL file format), where a set of triangles is
used to represent a surface of an object and it is necessary to reconstruct the regular triangular mesh from
such a data format for many applications. It is a lengthy process for large data sets as the time complexity
of this process is O(N2) or O(N lgN), where N is a number of triangles. Hash data structures are widely
used all over the fields of computer science. The hash table can be used to speed up the process of
triangular mesh reconstruction but the speed strongly depends on hash function properties. Nevertheless
the design or selection of the hash function for data sets with unknown properties is a problem. This paper
describes a new hash function and presents properties obtained from large data sets.

Key-words: computer graphics, triangular mesh reconstruction, hash function

1. Introduction
There are several problems related to properties of
the triangular mesh representation that describes a
surface of the object. Sometimes, the surface is
represented just as a set of triangles without other
information and the STL file format which is used
for data exchanges is a typical example of this
case. The STL format is very simple and all
objects are represented as a polyhedra. More
precisely, polygonal facets represent the surface
and in the vast majority the surface is represented
as a set of triangles [1]. It contains information on
the face's normal and co-ordinates of all vertices.

A drawback of the STL file format is that it
does not contain any information on structure,
topology, etc. This is needed if the triangular
mesh is required, e.g. neighbours of a triangle or
triangles, which share the given vertex, are
needed, etc. Also vertex co-ordinates are stored
several times.

One possibility is to reconstruct the triangular
mesh from the given set of triangles. It enables us
to compute normal vectors in for Gouraud
vertices and Phong shading efficiently, etc. The
main problem is to find all triangles that share the
same vertex of the triangular mesh. This must be
made for all the vertices of the triangular mesh.
The reconstruction of the triangular mesh from
the given set of triangles is a critical operation
because of its complexity, especially for large
data sets. To be able to reconstruct the triangular
mesh, it is necessary to read all vertices, sort them

according to the one co-ordinate, remove
duplicities (the same vertex is stored several times
if it is shared by more triangles) and create
triangular mesh with information on neighbour
triangles etc. In the triangular mesh a vertex is
shared by triangles and co-ordinates are stored
only once. This is a process of O(N2) - for brute
force - or O(N⋅lgN), if sort is used, complexities
generally (where N is a number of triangles) and it
is highly time consuming process if the
considered objects are represented by 106 - 107
triangles. Typical data sets to be processed are
presented at Figure 1 and Figure 2.

There have been several attempts to subdivide
a space into subspaces, but the obtained results
heavily depended on data sets, especially on how
the vertices were scattered in space. Some
approaches how to overcome the complexity
using the hash function have been published
recently and resulted to an expected O(N⋅p)
algorithm complexity, in general [2,4] (p is an
average cluster length). The hash function
transforms a value (or a key value) into an index
(or an address) that points to a table (or a file)
where this value is stored. The fundamental
requirements on the hash function are simplicity
and collision elimination, when the index is the
same for different values, as much as possible. It
is impossible to avoid collisions in general and
therefore different values with the equal index to
the hash table are stored in clusters (or buckets).
Number of collisions depends also on the load
factor α. The load factor α is a ratio of the

13th International Conference on COMPUTERS, WSEAS, pp. 233-238, ISBN: 978-960-474-099-4, 2009

number of values stored and the total length of the
table. The basic idea of this approach is to obtain
O(1) expected complexity for a query "find all
triangles having the given vertex co-ordinates
equal to ….". This type of the query is to be
answered for all vertices of the given set of
triangles. It can be seen that the efficient solution
is very critical for the large triangular mesh sizes.

2. Hash function properties

2.1 Recent solution
It is known that the hash function has to have
some properties and the most important are:
• to use all cells of the hash table,
• a maximal and an average cluster length

should be as low as possible (cluster is
usually implemented as a list of primitives
if the hash function gives the same index
for different values),

• the hash function must be as simple as
possible in order to have very fast
evaluation.

The hash function was introduced for triangular
mesh reconstruction [2] recently as
Index = ((int) ((α * ((int) (abs(X) * Q)) / Q
 + β * ((int) (abs(Y)*Q)) / Q
 + γ * ((int) (abs(Z) *Q)) / Q) * SIZE)) % SIZE
(int) is the conversion to integer - the fractional

part of the float is removed (in current
implementation DWORD is used),

α,β,γ are coefficients of hash function (originally
used 3, 5 and 7),

% represents modulo operation,
Q defines sensitivity (numerical error

elimination) - for 3 decimal digits set
Q = 1000.0,

SIZE - hash table size - generally it is
implemented as 2k for a fast evaluation of the
modulo operation,

The hash function shown above uses a very
simple formula that can be recommended for
small or medium data sets only (according to our
experiments), see Table 1. The experiments
proved that Q = 103 (used by Glassner [2]) is
unsatisfactory because long clusters were
generated. Better results were obtained for
Q = 107, but these results strongly depended on
the fractional part of vertices’ co-ordinates, see
Figures 3 - 7.

2.2 Proposed solution
Data analysis proved that
• it is not reasonable to remove the fractional

part from co-ordinate value, it helps us to
distinguish co-ordinates better,

• it is necessary to remove all coefficients or
parameters that depend on the data set
somehow, or should be given by a user

• to use all available memory as much as
possible to get a longer hash table,

• the hash function should not be a static one - it
should be dynamic according to the currently
available memory, but generally the size of the
hash table can be fixed by some rules.

When considering required properties of the hash
function and data set processed, several functions
have been derived after many experiments
 Index = (DWORD) ((α * X' + β * Y'
 + γ * Z') * C + 0.5) & T
 X', Y', Z' are vertex co-ordinates (see next),
α, β, γ are coefficients of the hash function,
C is a scaling coefficient set so that the full range

of DWORD type (4 Bytes unsigned) is used,
i.e. range of the interval <0, 232-1> is used,

T+1 is the table size (T = 2k-1),
& represents a modulo that is realized as a logical

operation and with the DWORD type
For simplicity we will assume that all co-ordinates
x are from the < 0 , Xmax > interval, similarly for
others. Then we can compute maximal value ξmax
that can be obtained from the formula as

ξmax = α * Xmax + β * Ymax + γ * Zmax
The C coefficient must be determined as:

C = min { C1 , C2 }
where: C1 * ξmax <= 232 – 1 C2 = 232 - 2k
because the overflow operation must be avoided
and we want to use the whole size of the table as
well. The reason for that is that we want to use the
whole interval <0, 232-1> before applying modulo
operator. While testing the hash function we
experimented with some adjustments of vertex
co-ordinates X, Y, Z:

A. co-cordinates are not changed
ZZYYXX === ',','

B. each co-ordinate is converted to range
<0,1> using this formula

2
1*1' ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+=

KX
XX , similarly for Y', Z',

C. each co-ordinate is converted to <0,1>

13th International Conference on COMPUTERS, WSEAS, pp. 233-238, ISBN: 978-960-474-099-4, 2009

using this formula
minmax

min'
XX

XXX
−

−
=

,similarly for Y', Z'.
Although all the methods are almost the same we
obtained the best results with method II, where
max. cluster lengths were less than 10, see Sec. 3.

2.3 The table size determination
The length of the hash table must depend on the
size of data that we want to process and it is
necessary to point out that there are three times
more vertices than triangles in the STL format.

It is well known that the length of the table and
the estimated length of a cluster is in an empirical
relation with the load factor α. If we consider the
load factor α = 0,5 we can expect the cluster
length about 2,5.

The length T of the hash table can be expressed

as T
avg

v N
q
N

T =≥
α
1. as Tv NN 3=

where: NT is the number of triangles in STL file,
Nv is the number of vertices in STL file,
qavg is an average number of triangles
sharing the same vertex (approx. 6)
load factor - α = 0,5 used*; the lower
value used the better spread out.

In practice the value T is chosen as 2k in order to
be able to use the logical and operator instead of
modulo as this solution is much faster.

2.4 The evaluation for comparison
The tests involved several types of hash functions
so we needed to have a simple method for their
comparison. Our criteria for the quality of the
hash function were:
• maximal cluster length,
• average cluster length,
• the number of checked items in clusters while

processing all the vertices in the data.
The hash function with better quality is that one
which provides smaller number of checked items
in clusters. The proposed hash function B (see
Section 2.2) uses the advantage of large memory
available today as well as properties of the
proposed hash construction. The hash function
has been tested on many data sets and proved
similar properties for all data sets. The sizes of the

* α ∈ (0,25 ; 0,5> due to rounding to power of 2.

tested files varied from 105 to 2.107 of vertices
and the proposed hash function proved its
stability. Table 1-2 present the differences
between the recent and proposed hash functions.

Let us introduce the coefficient ν as

proposed

recent
lengthcluster Average
lengthcluster Average

=ν

It presents the expected speed-up (in average) for
answering the query (it gives a pointer to the list
of triangles actually): Which triangles share the
given vertex ?

Let us define the coefficient η as

proposed

recent
lengthcluster Max.

 lengthcluster Max.
=η

It presents the ratio of the maximal cluster
lengths of both functions.

The third criterion is based on the following
idea: If the cluster length is i then we access this
cluster i-times. Because the number of these
clusters (with length i) is Ni, the whole number of
accesses to these clusters is i⋅Ni. There are three
cases of the number of checked items Nc while
accessing a cluster of the length i:

a) the cluster is empty- nothing to check; Nc = 0
b) the cluster is not empty, but the vertex has not

stored there yet
- we check all the items in the cluster; Nc =i

c) the cluster is not empty and the vertex has
already stored there
- the number of checked items is from 1 up to
i, but in average it is i/2, i.e. Nc = i/2

Therefore the quality R of the hash function can
be evaluated by the formula

∑
=

⋅⋅
⋅

=
max

1

2
2

3 i

i
iNi

DV
R

imax is the maximal cluster length,
 i is the cluster length,
 Ni is the number of clusters with length i,
 DV is the number of different vertices in data.

Value of this quality function is better for
comparing hash functions on all the data sets, than
just the average and maximal cluster length.

The comparison is made by dividing criterion
and the results of the comparison of the recent and
proposed function are at Figure 15.

3. Experimental results
The proposed hash function has been tested on
about 150 different non-trivial data sets. The
coefficient K was chosen K = 10 according to the

13th International Conference on COMPUTERS, WSEAS, pp. 233-238, ISBN: 978-960-474-099-4, 2009

experiments. Table 2 presents the typical
behaviour on some selected data sets. The relation
of the cluster length and number of triangles is
presented on Figures 8-9. It can be seen that the
maximal cluster length is limited by the order of
10, which is a very good result if compared with

the recent solution, see Table 1. Also the number
of clusters decreases with the cluster length and
this is a very good property of the proposed hash
function as well, during all tests each (recent and
proposed) hash function use the same length of
the table for each data set.

Figure 1: Part of an auto chassis

Data set: A4_unter.stl, courtesy of Skoda-Auto

Figure 2: Earth’s surface, Data set: Central Europe.stl

Figures 1 – 2 present some of the typical data sets used for testing and evaluation of the recent and the
proposed method. The size of the data sets varied from 3⋅106 to 1,9⋅107 vertices.

Cluster length distribution for the recent hash function

File No.triangles No. vertices No.vertices α β γ Q Avg. length Max. length

A4_unter 1 000 790 3 002 370 618 865
3 5 7 3 202.3 12 093
3 5 7 7 1.8 208
π e √2 7 1.6 9

Central
Europe 1 605 608 4 816 824 804 601 3 5 7 7 152.2 5 116

π e √2 7 1.2 7
Table 1: Typical characteristics of the recent hash function for selected STL data

File No.triangles No. vertices No. vertices α β γ Q Avg. length Max. length

A4_unter 1 000 790 3 002 370 618 865 3 5 7 10 1.3 7
π e √2 10 1.3 7

Central
Europe 1 605 608 4 816 824 804 601 3 5 7 10 1.2 6

π e √2 10 1.2 7
Table 2: Typical characteristics of the proposed hash function for selected STL data

File

Average cluster length
ν Maximal cluster length

η Recent Proposed Recent Proposed

1 A4_unter 1.8 1.3 1.4 208 7 29.7
Central Europe 152.3 1.2 26.5 5 116 6 852.7

2 A4_unter 1.6 1.3 1.2 10 7 1.4
Central Europe 1.2 1.2 1.0 6 7 0.9

Table 3: Comparison of cluster lengths of the recent and the proposed hash functions+
Coefficients used: (1) α = 3, β = 5, γ = 7, Q = 107, K = 10, (2) α = π, β = e, γ = √2, Q = 107, K = 10

+ It is necessary to point out, that the Central Europe.stl file was generated from the Digital Terrain System (GTOPO30), while
the A4_unterbau1.stl file was “real life” data from the automobile industry.

13th International Conference on COMPUTERS, WSEAS, pp. 233-238, ISBN: 978-960-474-099-4, 2009

1

10

100

1 201 401 601 801 1001 1201

Cluster length

N
um

be
r o

f c
lu

st
er

s
Figures 3 - 5 demonstrate the recent hash function
behavior according to different parameters and for
typical data sets. From the Table one it can be seen
that the maximal and average cluster lengths are
not acceptable for practical use of this function,
because it causes high overhead during search
operation.
Figure 3: data set: A4_unter.stl, Q = 103, α = 3,
β = 5, γ = 7

173878

1

10

100

1000

10000

100000

1000000

1 51 101 151 201

Cluster length

N
um

be
r o

f c
lu

st
er

s

Figure 4: data set: A4_unter.stl, Q = 107, α = 3,

β = 5, γ = 7

204894

1

10

100

1000

10000

100000

1000000

1 3 5 7 9

Cluster length
N

um
be

r o
f c

lu
st

er
s

Figure 5: data set: A4_unter.stl,Q = 107, α = π,

β = e, γ = √2

Cluster length distribution for the proposed hash function
Table 2 and Figures 6-7 present behaviour of the proposed hash function for the same data sets.

343566

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8

Cluster length

N
um

be
r o

f c
lu

st
er

s

Figure 6: data set: A4_unterbau1.stl,

K = 10, α = π, β = e, γ = √2

548590

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8

Cluster length

N
um

be
r o

f c
lu

st
er

s

Figure 7: data set: Central Europe.stl,

K = 10, α = π, β = e, γ = √2

Results for representative data sets

0

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0

7 252 558
1,010

1,524
2,522

4,080
6,442

16,646
31,185

68,907
332,036

994,436

N u m b e r o f t r i a n g l e s

η

Figure 8: The proposed hash functions – Max.cluster length: α = 3, β = 5, γ = 7, Q = 107, K = 10

13th International Conference on COMPUTERS, WSEAS, pp. 233-238, ISBN: 978-960-474-099-4, 2009

9 . 2

0

1

1

2

2

3

7 252 470 864
1 280

2 128
3 212

4 446
11 396

18 363
39 988

89 526
332 036

868 256

N u m b e r o f t r i a n g l e s

η

Figure 9: The proposed hash functions – Max.cluster length: α = π, β = e, γ = √2, Q = 107, K = 10

Table 3 shows the ratio for maximal and

average cluster sizes for recent and proposed hash
function for two typical data sets. Figure 8
presents the experimental results for maximal and
average cluster sizes of the recent and proposed
hash functions for representative data sets.
Figure 9 presents results for the same functions but
with different parameters. The proposed hash
function is better nearly in all cases. When the
proper data structure representing a triangular
mesh is created it is necessary to make final steps
in triangular mesh reconstruction and check the
validity of the model surface. The validity
checking and the proposed hash functions have
been used in a special module for triangular mesh
reconstruction in the MVE (Modular Visualization
Environment) [4,6] system.

4. Conclusion

The proposed hash function has the following
advantages:
• a stable behaviour,
• a short maximal cluster length,
• the number of clusters decreases with the

cluster length monotonically, it does not
significantly depend on parameters defined by
user (Q), on actual co-ordinate values,

• it is flexible according to the number of
vertices processed and co-ordinate values,

• we can obtain very high speed-up for a simple
query - coefficient η in Table 3,

• it gives us faster solution for triangular mesh
reconstruction - coefficient ν in Table 3.

The shown experiments proved that there is a high
potential for a hash function use and improvement.
Experiments have proved that the proposed

measurement of hash function quality gives
exactly the same results as measurement proposed
in [5] if empty cells in the hash table are not
considered.

Acknowledgement
The authors would like to thank to all who
contributed to this work, especially to colleagues,
MSc. and PhD. students at the University of West
Bohemia in Plzen. We would like to thanks also to
Auto-Skoda VWgroup for provided data sets,
Cyberware.com model gallery and Georgia
Institute of Technology data repository.
project supported by MSMR CR No.2C06002.

References
[1] Foley,J.D., van Dam,A., Feiner,S.K.,

Huges,J.F.: Computer Graphics, Principle and
Practice. Addison-Wesley, 1997.

[2] Glassner, A.: Building Vertex Normals from an
Unstructured Polygon List, Graphic Gems IV,
60 – 73. Academic Press, Inc., 1994.

[3] Kuchar,M., (supervisor Skala,V.): Construction
of the triangular meshes from STL Data
Format and Stereoscopic visualization,
MSc. thesis. UWB, Plzen, Czech Republic,
2000.

[4] Franc,M., Skala,V.: Triangular Mesh
Decimation in Parallel Environment,
EUROGRAPHICS Workshop on Parallel
Graphics and Visualization, Girona, Spain,
pp.39-52, 2000.

[5] Jenkins,B.: Hash Function FAQ,,
http://burtleburtle.net/bob/hash/hashfaq.html

[6] MVE - Final Report. UWB, Plzen, Czech
Republic, 2001, http://Graphics.zcu.cz

13th International Conference on COMPUTERS, WSEAS, pp. 233-238, ISBN: 978-960-474-099-4, 2009

