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Abstract—Boundary value problems for Poisson equation often
appear in electrical engineering applications, such as magnetic
and electric field modeling and so on. In such context, effective
techniques of solving such equations are subject of continuous
development. This article reports an exact formula for domain
integral in boundary-integral form of 2D Poisson Equation. This
formula is derived for rectangle domain element.

I. INTRODUCTION

Boundary element approach is known as an effective way to
solve linear partial differential equations, particularly Poisson
equation, which often used in electrical engineering problems,
such as magnetic and electric field computation [1], some
simplified hydrodynamic models [2] and many others. In such
problems the source term of boundary integral equation is
computed numerically, especially in the cases, when it cannot
be reduced to boundary integral. This is common practice,
when source term is not differentiable [3]. But in some cases,
such as inverse problems, control problems and so on it is
preferably to have exact formulas for source-term domain
integral. In this work, integration formula is given for rectangle
domain element with constant value.

II. PROBLEM STATEMENT

Consider Poisson equation

∆ϑ = b , (1)

where ϑ and f are functions of two variables, defined in region
Ω ⊂ R2 with boundary S. Let boundary be divided in two part:
S = S1∪S2. On first one S1 Dirichlet boundary conditions are
prescribed: ϑ = ϑ∗. On boundary part S2 Neumann boundary
condition is precribed: q = q∗, qi = ϑ,ini, where ni is outer
normal. Then integral representation of (1) is:

ϑ(ξ) =
∫

S1

[
q(x) · u∗(ξ, x)− ϑ∗(x) · f∗(ξ, x)

]
dS(x)+

+
∫

S1

[
q(x)∗ · u∗(ξ, x)− ϑ(x) · f∗(ξ, x)

]
dS(x)−

−
∫

Ω

b(x) ∗G(ξ, x)dΩ ,

(2)

where x ∈ S is boundary point and xi is inner point of Ω;
u∗(ξ, x) and f∗(ξ, x) are influence functions; and G(ξ, x) is
Green’s function. With fundamental solution

G = (−1/2π)ln(~r) (3)

influence functions are:

u∗(ξ, x) = − 1
2π
ln(~r),

f∗(ξ, x) = − 1
2πr2

rini .
(4)

It is assumed in this work, that collocation approach is used,
with constant value interpolation along boundary element. The
main subject of this work is evaluation of domain integral

Is =
∫

Ω

f(x)·G(ξ, x)dΩ , (5)

which defines influence of source terms on potential ϑ at inner
point ξ.

III. RESULTS

An approach, proposed in [4] for analytical evaluation of
boundary integrals in 2D potential problem is used here. Let
source b is defined as the set of rectangle subdomains (which
are later called domain elements) with constant value source
term approximation and zero value on other inner points of Ω.
This situation is typical for electrical engineering applications,
where rectangle elements can represent conducting parts.

Consider domain element D of rectangle form sides L1

and L2 with constant source value b on D. Let x̃ = Kx be
coordinate transformation with following properties:

1) all the points of rectangle are in positive quadrant;
2) one of corners of rectangle is x̃ = (0, 0), i.e. rectangle

sides coincide with coordinate axes and lower left corner
lies in (0, 0)

3) inner point ξ̃ = (ξ̃1, ξ̃2) lies in positive quadrant.



I-30

With this coordinate transformantion defined, integral (4) is
reduced to summ of integrals over domain elements of type:

I = − b

4π

∫ L1

0

∫ L2

0

ln
∣∣∣∣x̃− ξ̃∣∣∣∣2dx̃1dx̃2

= − b

4π

[
I1 − I2 + I3 + I4 + I5

]
,

(6)

where

I1 =J2
1atan

(J2
J1

)
+ J2J1 − J2

2atan
(J1
J2

)
+

+ ξ̃2
1atan

(J2
ξ̃1

)
+ J2ξ̃1 − J2

2atan
( ξ̃1
J2

)
;

(7)

I2 =− J2
1atan

( ξ̃2
J1

)
− ξ̃2L1 − ξ̃2

2 ∗ atan
(J1

ξ̃2

)
+

+ ξ̃2
1 ∗ atan

( ξ̃2
ξ̃1

)
+ξ̃2

2atan
( ξ̃1
ξ̃2

)
;

(8)

I3 = −J2

[
J1 ∗ ln

(
J2

1 + J2
2

)
+ ξ̃1ln

(
ξ̃2
1 + J2

2

)
+

+ 2J2atan
(J1

J2

)
+ 2J2atan

( ξ̃1
J2

)
− 2L1

]
;

(9)

I4 = ξ̃2 ·
[
J1ln

(
J2

1 + ξ̃2
2

)
− 2J1 + 2ξ̃2atan

(J1

ξ̃2

)
+

+ ξ̃1ln
(
ξ̃2
1 + ξ̃2

2

)
− 2ξ̃1 + 2ξ̃2atan

( ξ̃1
ξ̃2

)]
;

(10)

I5 = −2L1

(
J2 + ξ̃2

)
; (11)

and

J1 = L1 − ξ̃1 ;

J2 = L2 − ξ̃2 .
(12)

This formulas can be used in assembling procedure of linear
equation system. In postprocessing its usage is limited to
the points, which does not placed on the border of domain
elements. The reason is that, the limit for atan(x/y) with
x→ 0, y → 0 does not exist. Thus coordinate transformation
K has to meet some additional requirements. Let V be set of
vertexes of domain element and B is a boundary of domain
element. Then, additional requirements are:

1) if ξ ∈ V then ξ̃ = (0, 0);
2) if ξ ∈ B/V then ξ̃1 = 0, or, optionally, ξ̃2 = 0.

In first case, when ξ̃ = (0, 0), integral (6) reduces to

I = − b

24π

∫ L1

−L1

∫ L2

−L2

ln
(
x̃2

1 + x̃2
2

)
dx̃1dx̃2 =

= − b

8π

[
L1L2·ln

(
L2

1 + L2
2

)
+ L2

1atan
(L2

L1

)
+

+ L2
2atan

(L1

L2

)
− 3L1L2

]
.

(13)

It should be noted, that integral (13) does not depend on coor-
dinates of point ξ. This means, that no coordinate transforma-
tion is needed, when ξ coincides with corner of some rectangle

domain element. In second case, when ξ ∈ B/V , integration
can be carried around extended domain D̃ = D ∪D1, where
D1 is domain element D, rotated around point ξ̃ on angle ±π.
Thus point ξ̃ is not on D̃ domain element boundary. Because
of simmetricity of Green function, integral (3) becomes

I =
1
2
Ĩ ,

Ĩ =
∫

D̃

G(ξ, x)dΩ ,
(14)

where Ĩ can be evaluated using transformation K and formulas
(6)-(12) repeatedly.

IV. CONCLUSION

In present work some technique for domain element in-
tegration is proposed. The technique proposed can be used
in boundary element method for two-dimensional potential
problems. Rectangle domain element with constant value is
considered. Approach of work [4] was used. Some additional
requirements were formulated for coordinate transform, pro-
posed in [4]. It is shown also, that in some particular cases
no coordinate transformation needed. An implementation of
coordinate transform is subject for future work.
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