
I-39

Iterative Solution of Multiphysics Problems with

Software Agents Designed as Physics Experts
1)M. Jüttner, 1)A. Buchau, 2)M. Rauscher, 1)W. M. Rucker, and 2)P. Göhner

1)
Institute for Theory of Electrical Engineering, Pfaffenwaldring 47, D-70569 Stuttgart, Germany

2)
Institute of Industrial Automation and Software Engineering, Pfaffenwaldring 47, D-70569 Stuttgart, Germany

E-mail: matthias.juettner@ite.uni-stuttgart.de
Abstract—An iterative approach for the solution of

multiphysics problems based on software agents is presented.

The usage of optimized numerical methods for each physical

problem as well as the handling of physics-optimized meshes is

enabled. To realize the coupling of physics, a boundary

condition mapping algorithm is described including remarks on

implementation. Finally, the realization of the software agent

system is demonstrated for a heat transfer problem that is

strongly coupled to an electric current flow field problem.

Keywords— boundary conditions mapping; iterative solver;

multiphysics simulations; software agents;

I. INTRODUCTION

Due to the increasing performance of modern computer
systems, a growing number of unknowns can be calculated
within also growing equation systems. Therefore,
parallelisation and optimisation has been a topic for
researchers for the last decades. As results, a large number of
numerical solvers and methods were introduced. These
methods where deeply analysed and offer solutions for lots of
problems. Nowadays a combination of different problems
called multiphysics problem is getting more interesting for
practical applications. This leads to the question of
automatically finding a flexible and well performing
combination of existing methods to solve these problems.

An iterative strategy for solving multiphysics problems
has been introduced in [1]. A theoretical approach for a
flexible combination of different methods was given in [2].
The necessary flexibility for independent calculation units is
reached by software agents. A combination of both
approaches to an operational software is new and the main
topic of this paper. This enables the calculation of
multiphysics simulations with physics optimized meshes and
physics optimized numerical methods. In addition, more
accurate results and further parallelization for multiphysics
simulations gets possible.

As an example, the iterative solution of a coupled heat
transfer problem and electromagnetic field problem is
considered. Therefore, two software agents are used based on
a single implementation.

II. AGENT DESIGN

A. Behaviours

Agents work and interwork according to predefined tasks

[3]. Each task of an agent is called behaviour. The sequence

of behaviours an agent does process depends on the received

input or the system states the agent is currently in. As

example, one implemented behaviour cares about the

communication between the agents working on a problem.

The solution for a problem connected to multiple agents is

built dynamically. It can be easily and well adapted to new

information [3]. To avoid the implementation of error

correction, character sets or ontology problems for

communication [4] the Java Agent Development Framework

(JADE) [5] is used.

Another important behaviour coordinates the local
numerical method. It can be chosen dynamically and
independently. So an adaption to a single physics problem
and the specific partial problem, handed over to the agent,
gets possible. Due to the concept of agents, agents can be
distributed over a computer network. This creates an
environment where expensive simulation time, resources, or
licences are only used when they are needed. Smaller
problems can easily be handed over to systems or further
specialized software for the different partial problem. As
drawback, additional overhead for communication and data
matching has to be accepted.

B. Solving Strategy

Initially the multiphysics problem is split into multiple
single physics problems. Here, different meshes depending
on physics-based challenges can be used for the partial
problems as well as different methods like finite element
method (FEM) or boundary element method (BEM). In a
second step, the coupling has to be realized. Therefore,
coupling sources are integrated as boundary conditions in the
corresponding physics. Their values will be evaluated as
request for results from the software agent. In the next step,
the initial values for an initial partial problem are specified.
This initial problem is solved by the behaviour controlling a
physics expert method within an agent (agent a). To do so, an
interface to a problem specific method is realized. Here, the
agent does not care about the actual implementation of the
method; it just needs to know how to handle the interface.
The agent hands over the problem to the expert method,
defined in the problem description. Then a solution is
calculated. The solution is kept locally within the solver. If
any access to the solution gets necessary it is realised via the
solver interface. The agent (agent a) finally informs the
iteratively coupled agent (agent b) about the available result.

Agent b checks whether the calculated results can be
integrated. This information can be considered as constant for
every possible simulation software and needs to be evaluated
before the agent connects itself to the solver. In the case of a
non-understanding of the previous results, the results has to
be considered as independent and the next partial problem
can be calculated. In the case of a possible integration,
agent b requests the solutions from agent a and integrates
them as new boundary conditions. Due to different meshes, a
mapping algorithm of values is needed. This algorithm is
explained in detail in section II.C. Evaluating values in a
BEM area for a FEM mesh gets possible via post-processing
explained in [6]. At this point, a counter is implemented to
represent the maximum number of loops for the iterative

I-40

calculation cycle. It is incremented if results of other agents
are integrated and the deviation of the integrated values
differs in sum from a constant. The counter is decremented
after every successful calculation cycle. The calculation
finishes if this counter is zero. Note the overall sum does not
lead to conceptional errors because of the possibility of
different meshes for the partial problems. Now the
calculation of the next partial problem can be started.

To handle and prioritise all agents’ behaviours necessary
for solving a problem, a schedule is implemented within each
agent. The behaviours representing the interface to the
simulation software can be managed by the agents graphical
user interface (GUI).

C. Mapping Algorithm

For exchanging results between different agents, the
following algorithm is designed. A goal is to guarantee as
much flexibility as possible for the integration of results as
new boundary conditions in different calculation software.
Hence, the values are integrated as three-dimensional and
location depending source. This allows the agent to modify
the simulation without the need of a direct access to the (in
most simulation programs hidden) equation system. So only
public interfaces are used. Due to different meshes that can
be used for the same model and their relation to the same
model a global coordination system for all agents is used. To
set up a three-dimensional boundary condition, every node
needs its corresponding values from the previously calculated
result that has to be validated. To preserve the specification
of physics based expert agents, the agent integrating the
results (agent a) has to send a request for each value of
interest to the agent offering the results (agent b) including
the coordinates of the points. To find the corresponding value
of all nodes, agent b needs to know the complete mesh of
agent a. In case of an identic mesh for agent a and agent b a
modified request is sent. It is recommended to store a local
copy of the received mesh to avoid multiple transmissions of
the mesh form agent a to agent b. Data compression also
saves transmission time. Now the requested values will be
evaluated. This is done by the expert agent by interpolation
or a recalculation of a tiny area of the mesh. The answer to
the request contains all evaluated values for the requested
points. Here compression can also be useful for larger data
transmissions.

To map the values at agent a to the three-dimensional
boundary condition, a geometric minimal distance mapping
function is created. Input parameters are the coordinates of
the vertexes (𝒕𝒑) to be evaluated and the list of all transmitted
nodes (𝒏𝒑) including the evaluated values for the boundary
conditions. Now vertex with the minimal distance to the
evaluation point needs to be found. If this is known at agent a,
the corresponding boundary condition can be mapped.
Therefore a distance vector 𝒅 is defined according to (1).

𝒅 = 𝒕𝒑 − 𝒏𝒑 (1)

For a parallel evaluation of all possible test points 𝑛 for a
model with 𝑖 dimensions a matrix is build (2).

 Here, 𝑶 represents a vector filled with 𝑛 ones. Within the
matrix the index of the value with the smallest distance is
searched. Therefore we define the search radius 𝑟 and search
the minimum of eq. (3)

The radius 𝑟 needs to be smaller then the minimal distance
between two evaluation points to find a valid mapping.
Because only one node is inside the sphere, the value is
mapped to its correct destination. Due to the mesh exchange,
it can be chosen close to zero to consider numerical
processing tolerances. The boundary condition of value is
then chosen as shown in eq. (4) and returned.

𝑞𝑝 < 0 ∀ 𝑝 = 1 … 𝑛 (4)

For a fast computation, this algorithm can be highly
parallelised [7].

III. NUMERICAL RESULTS

Here, a field effect transistor (FET) mounted on a circuit
board is simulated. Boundary conditions are the convective
cooling at the surface of the model and the conductive heat
transfer of the FET within the solids as well as
electromagnetic losses. The necessary number of iterations
for the given problem as well as a detailed signaling diagram
and the processing time of the matching algorithm will be
shown in the full paper. Additional results will be the solution
for each step of the iterative solution process including the
overall result. A successful run of the iterative calculation of
the described model is shown in Fig.1. To do so, an
electromagnetic agent (agent a) and a heat transfer agent
(agent b) were used.

Fig. 1: Locally (left) and iteratively (right) computed results

REFERENCES

[1] H. Liu and J. Rao, “Coupled Modeling of Electromagnetic-Thermal
Problem in Induction Heating Process Considering Material Properties,”

International Conference on Information Engineering and Computer

Science, pp. 1-4, 2009.

[2] M. Jüttner, A. Buchau, M. Rauscher, W. M. Rucker and P. Göhner,

“Software Agent Based Domain Decomposition Method,” Proceedings
IGTE’12, pp. 89-94, 2012.

[3] N. R. Jennings, “On Agent-Based Software Engineering,” Artificial
Intelligence, vol. 117, no. 2, pp. 277-296, 2000.

[4] “FIPA ACL Message Structure Specification,” Foundation for Intelligent
Physical Agents, 2002.

[5] F. L. Bellifemine, G. Caire and D. Greenwood, “Developing Multi-Agent
Systems with JADE,” John Wiley & Sons, UK, 2007.

[6] A. Buchau, M. Jüttner and W. Rucker, “Automatic domain detection for
a meshfree post-processing in boundary element methods,” Proceedings

IGTE’12, pp. 386-391, 2012.

[7] P. Pratt-Szeliga, J. Fawcett and R. Welch, “Rootbeer: Seamlessly using

GPUs from Java,” IEEE 14th International Conference on High

Performance Computing and Communication, pp. 375-380, 2012.

[|𝑑1|2, |𝑑2|2, … , |𝑑𝑛|2] = |𝒕𝒑𝒊 ∙ 𝑶𝒏
𝑻 − 𝒏𝒑𝒊|

𝟐 (2)

[q1, q2, … , qn] = [|𝑑1|2, |𝑑2|2, … , |𝑑𝑛|2] − 𝑶1,𝑛 ∙ 𝑟 (3)

electromagnetic

agent

heat transfer

agent

