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Abstract—The paper presents and compares two non-
overlapping domain decomposition methods (DDMs), which can
be used to the parallelization of the finite element method (FEM)
with edge element approximation. In this case, the methods under
investigation are the Schur complement method and the Lagrange
multiplier based Finite Element Tearing and Interconnecting
(FETI) method, and their solvers. The performance of these
methods has been investigated in detail for eddy current field
problems as case studies.

Index Terms—Parallel finite element method, Domain decom-
position, Eddy current field

I. I NTRODUCTION

The finite element method [1] is an important technique
for the solution of a wide range of problems in science and
engineering. The most time consuming part of finite element
computations is the solution of the large sparse system of
equations. Therefore, the solution of a large system of equa-
tions must be parallelized in order to speedup the numerical
computations.

The reason for employing the domain decomposition tech-
nique was the small memory of computers. To solve large scale
problems, a domain has been divided into sub-domains that fit
into the computer memory. However, the computer memory
grow, the demand for solution of large real life problems
is always ahead of computer capabilities. The large scale
computations and simulations performed with finite element
method (FEM) often require very long computation time.
While limited progress can be reached with improvement
of numerical algorithms, a radical time reduction can be
made with multiprocessor computation. In order to perform
finite element analysis a computer with parallel processors,
computations should be distributed across processors.

The Schur complement method [3], [4], as sequential al-
gorithm was started to use many decades ago, when com-
puter RAM was extremely small. Nevertheless, nowadays,
this method is a very popular parallel domain decomposition
technique among engineers [4].

In the last decade, the Finite Element Tearing and Inter-
connecting (FETI) method [2], [3], [5] has seemed as one of
the most powerful and one of the most popular solvers for
numerical computation. The FETI requires fewer interprocess
communication, than the Schur complement method, while is
still offers the same amount of parallelism [3].

This paper presents a parallel approach for the solution of
two-dimensional eddy current field problems by parallel finite
element method. These problems are benchmarks to show the
steps of the DDMs with parallel finite element technique.
The comparison focused on the time, speedup and memory
efficiency of solvers of methods. Furthermore, the nodal and
edge element based parallel FEM method have also been
compared.

II. PARALLEL FINITE ELEMENT METHOD

The general form of a linear algebraic problem arising from
the discretization of the problem defined on the domainΩ can
be written as [1], [2]

∇(ν0νr∇× ~A) = ∇× ~T0

∇× (ν0∇× ~A∗) + σ
∂ ~A∗

∂ t
= ~0

Appropriate boundary condition
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

→ Ka = b, (1)

where ν0, νr are the reluctivity of vacuum and the relative
reluctivity, ~A, ~A∗ are the magnetic vector potential in the
conducting partΩc and in the nonconducting partΩn, ~T0 is
the impressed current vector potential,σ is the conductivity,K
is the symmetric positive definite matrix,b on the right hand
side of the equations represents the excitation, anda contains
the unknown potentials. The~T0 is known quantity, i.e. it is
calculated before the numerical simulation, also in parallel.

The application of domain decomposition methods to dis-
cretised problems is based on the split of FEM mesh into
several groups while additional conditions assuring continuity
are introduced.

A. Schur Complement Method

After the problem is partitioned into a set ofNS discon-
nected sub-domains, (1) has been split intoNS particular
blocks [3], [4]
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(2)

wherej=1, . . . ,NS, Kjj is the symmetric positive definite sub-
matrix of thejth sub-domain,aj is the vector of the right hand
side defined inside the sub-domain. The sub-matrixKjΓj

=
K

T
Γjj

contains the value ofj th sub-domain, which connect to
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the interface boundary unknowns of that region. TheKΓjΓj

andaΓj
expresses the coupling of the interface unknowns.

The assembly of the sub-matrices can be performed parallel
by independent processors. However, for the solution ofaΓi

use the sub-matrices from the independent processors. After
obtaining the unknowns of interface boundary, it must be
sent back to the independent processors to calculate the sub-
solutions.

B. Finite Element Tearing and Interconnecting Method

After mesh partitioning, the FETI method consists in trans-
forming the original problem (1) with the equivalent system
of sub-domain equations [2], [3], [5]

Kjaj = fj −B
T
jΛ, (3)

with the compatibility of the magnetic vector potentials atthe
sub-domain interface [2], [3], [5]

NS
∑

j=1

Bjaj = 0, (4)

wherej=1, . . . ,NS, the number of sub-domains,K j ,bj and
aj are respectively the system matrix, the representation of
the excitation and the unknown potentials ofjth sub-domain.
The vector of Lagrange multipliersΛ introduced for enforcing
the constraints (4) on the sub-domain interface, andBj is a
signed (±) Boolean mapping matrix, which is used to express
the compatibility condition at thejth sub-domain interface.

Usually, the partitioned problem may containNf ≤ NS

floating sub-domains, where matricesK j being singular [5].
Because of the floating sub-domain, a robust direct solver
or a preconditioned iterative solver, here the preconditioned
conjugate gradient (PCG) is needed to handle the singular
matrices.

III. C OMPARISON

Two problems have been used for comparison, the induction
motor problem (Fig. (1a)) and the quarter of the transformer
(Fig. (1b)), because in this case the problem contains floating
sub-domain.

Fig. 2 shows the time of the function of the number of
the applied processors. The number of processors is equal the
number of sub-domains at all simulations. The Schur solver is
little bit slower (Fig. (2a)) or much faster (Fig. (2b)), than the
FETI method. It seems to be, the Schur complement method
is the faster at nodal finite elements, but it depends on the
problem.

IV. CONCLUSIONS

It can be concluded that the Schur complement method is
faster than the FETI solvers, but the memory efficiency of the
FETI solvers, mostly the iterative solver are better in the case
of nodal element based finite element method.

The full paper will present the solvers of domain decompo-
sition methods, and the comparison of the edge element and
the nodal element based parallel finite element method through
the two benchmark problem.

(a) Induction motor. (b) Transformer.

Figure 1: The magnetic flux density distribution of induction
motor and the magnetic vector potential and equipotential lines
of transformer.
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(a) Motor problem.
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(b) Transformer problem.

Figure 2: The time of the nodal element based finite element
method.
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