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Abstract—The paper presents and compares two non-  This paper presents a parallel approach for the solution of
overlapping domain decomposition methods (DDMs), which aa  two-dimensional eddy current field problems by parallelténi
be used to the parallelization of the finite element method (EM) element method. These problems are benchmarks to show the

with edge element approximation. In this case, the methodsnder - . .
investigation are the Schur complement method and the Lagnage steps of the DDMs with parallel finite element technique.

multiplier based Finite Element Tearing and Interconnecting 1he comparison focused on the time, speedup and memory
(FETI) method, and their solvers. The performance of these efficiency of solvers of methods. Furthermore, the nodal and

methods has been investigated in detail for eddy current fiel edge element based parallel FEM method have also been
problems as case studies. compared
Index Terms—Parallel finite element method, Domain decom- '

position, Eddy current field Il. PARALLEL FINITE ELEMENT METHOD

l. INTRODUCTION The general form of a linear algebraic problem arising from

The finite element method [1] is an important techniquihe discretization of the problem defined on the donfaican
for the solution of a wide range of problems in science arzk written as [1], [2]
engineering. The most time consuming part of finite element o -
computations is the solution of the large sparse system of V(vor, V x 4) = Y*X To
equations. Therefore, the solution of a large system of equa v x (1, V x A*) —g¢ — Ka=b, (1)
tions must be parallelized in order to speedup the numerical Appropriate boundary conditi
computations.

The reason for employing the domain decomposition tecWherevy, v, are the reluctivity of vacuum and the relative
nigue was the small memory of computers. To solve large scAfductivity, A, A* are the magnetic vector potential in the
problems, a domain has been divided into sub-domains thag@nducting par€2. and in the nonconducting paft,,, 7 is
into the computer memory. However, the computer memo@e impressed current vector potentiais the conductivityK
grow, the demand for solution of large real life problemi$ the symmetric positive definite matrik,on the right hand
is always ahead of computer capabilities. The large scalge of the equations represents the excitation,andntains
computations and simulations performed with finite elemeHte unknown potentials. The, is known quantity, i.e. it is
method (FEM) often require very long computation timecalculated before the numerical simulation, also in patall
While limited progress can be reached with improvement The application of domain decomposition methods to dis-
of numerical algorithms, a radical time reduction can be'etised problems is based on the split of FEM mesh into
made with multiprocessor computation. In order to perfor§everal groups while additional conditions assuring cusity
finite element analysis a computer with parallel processo@d€ introduced.
computations should be distributed across processors.

Thpe Schur complement method [3], [4],pas sequential aﬁ‘ Schur Complement Method
gorithm was started to use many decades ago, when comAfter the problem is partitioned into a set dfs discon-
puter RAM was extremely small. Nevertheless, nowaday’gcted sub-domains, (1) has been split iff@ particular
this method is a very popular parallel domain decompositidriocks [3], [4]
technique among engineers_[4]. _ K, K a; b;

In the last decade, the Finite Element Tearing and Inter- [Kr Krrj] [arl = |:b1“.:|
connecting (FETI) method [2], [3], [5] has seemed as one of 7 Y ! !
the most powerful and one of the most popular solvers farherej=1, ...,Ng, K;; is the symmetric positive definite sub-
numerical computation. The FETI requires fewer interpsscematrix of thej™ sub-domaina; is the vector of the right hand
communication, than the Schur complement method, whilesgle defined inside the sub-domain. The sub-mdix, =
still offers the same amount of parallelism [3]. K}jj contains the value of™" sub-domain, which connect to

)
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the interface boundary unknowns of that region. g, r,
andar; expresses the coupling of the interface unknowns.
The assembly of the sub-matrices can be performed parallel
by independent processors. However, for the solutioarQf
use the sub-matrices from the independent processors: Afte
obtaining the unknowns of interface boundary, it must be
sent back to the independent processors to calculate the sub
solutions.

B. Finite Element Tearing and Interconnecting Method

After mesh partitioning, the FETI method consists in trans-,

forming the original problem (1) with the equivalent systerfi’duré 1: The magnetic flux density distribution of induetio
of sub-domain equations [2], [3], [5] motor and the magnetic vector potential and equipoteritias|

of transformer.

(a) Induction motor. (b) Transformer.

Kjaj = fj — B;I-A, (3)

with the compatibility of the magnetic vector potentialsfae 1
sub-domain interface [2], [3], [5] g

—+— Schur
—e— FETI-Direct
—o—FETI-PCG

Ns glso

> Bja; =0, (4) Fl

j=1 5
wherej=1, ..., Ng, the number of sub-domaink,; ,b; and & 100

a; are respectively the system matrix, the representation of
the excitation and the unknown potentialsjBfsub-domain.
The vector of Lagrange multipliets introduced for enforcing 50 5 6 7 8
the constraints (4) on the sub-domain interface, Bads a Number of Processors
signed () Boolean mapping matrix, which is used to express () Motor problem.
the compatibility condition at th@" sub-domain interface.
Usually, the partitioned problem may contay < Ng
floating sub-domains, where matricks being singular [5].
Because of the floating sub-domain, a robust direct solver 300
or a preconditioned iterative solver, here the preconaib
conjugate gradient (PCG) is needed to handle the singular
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matrices. —e— FETI-Direct
—o—FETI-PCG
[1l. COMPARISON 100«\‘\‘\
Two problems have been used for comparison, the induction
motor problem (Fig. (1a)) and the quarter of the transformer % eb prod 8
(Fig. (1b)), because in this case the problem contains figati Number of Processors
sub-domain. (b) Transformer problem.

Fig. 2 shows the time of the function of the number ofigure 2: The time of the nodal element based finite element
the applied processors. The number of processors is ecuialiethod.
number of sub-domains at all simulations. The Schur sobver i
little bit slower (Fig. (2a)) or much faster (Fig. (2b)), théhe
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