
 

 

 
Abstract—Radial Basis Functions (RBF) interpolation is 

primarily used for interpolation of scattered data in higher 
dimensions. The RBF interpolation is a non-separable interpolation 
which offers a smooth interpolation, generally in n-dimensional 
space. 

We present a new method for RBF computation using an 
incremental approach. The proposed method is especially convenient 
in cases when larger data sets are randomly updated as the proposed 
method is of O(N2) computational complexity instead of O(N3) for 
insert / remove operations only and therefore it is much faster than 
the standard approach. If t-varying data or vector data are to be 
interpolated, the proposed method offers a significant speed-up as 
well. 

Keywords—Interpolation, computer graphics, Radial basis 
interpolation, incremental inverse matrix computation 

I. INTRODUCTION 
ADIAL basis functions (RBF) are widely used across of 
many fields solving technical and non-technical 

problems. RBF applications can be found in neural networks, 
fuzzy systems, pattern recognition, solvers of partial 
differential equations, computer graphics, data visualization, 
medical applications, reconstruction of corrupted images etc.  

RBF interpolation is mostly used for interpolation of static 
scalar values, e.g. interpolation of potential fields. 
Nevertheless there are many applications where t-varying data 
or vector data are to be interpolated. 

Interpolation using radial basis functions was introduced by 
Hardy [5]. As the interpolation is based on distances of 
unordered points generally in n-dimensional space, the RBF 
interpolation is not separable. This causes a higher 
computational complexity on one hand, but on the other hand 
data are considered as scattered across the given interval in the 
given n-dimensional space. 

Typical example of data is a data set {xi, hi}, where xi is 
a point n-dimensional space and hi is an associated vector of 
values (temperature, humidity, speed, acceleration etc.). We 
want to compute a value h in the given point x and the 
interpolation is to be smooth. 

Such requirements driven by different applications lead to 

large inverse matrix computation of O(N3) complexity. 
The proposed approach is based on incremental 

computation of RBF, which is very effective especially for 
data insertion and removal operation over the given data set. 
The efficiency of the proposed approach is given by decreased 
computational complexity from O(N3) to O(N2). 

II. RADIAL BASIS FUNCTIONS 
Radial basis functions interpolation was originally introduced 
by Hardy [5] by introduction of multiquadric method, which 
he called Radial Basis Function (RBF) method, which is based 
on interpolation formula 

 

where:  and   is generally 
n-dimensional vector and  are weights. Since then many 
different RFBF interpolation schemes have been developed 
with some specific properties, e.g. Duchon [4] use 

  s, which is called Thin-Plate Spline (TPS), a function 
 was proposed by Shagen [9] and Wetland [12] 

introduced Compactly Supported RBF (CSRBF) as  
1  , 0 1

 0, 1   , 

where:   is a polynomial function and q is a parameter.  
Theoretical problems with stability and solvability were 

solved by Micchelli [6] and Wright [13] and he has extended 
the RBF by adding a polynomial function  of degree k to 
the RBF that resulted to:  

 

and additional conditions were introduced: 
∑ 0                         ∑  

Usually a linear polynomial is used, i.e. the polynomial  
is taken as  

  
As the values  at points   are known, the equations 
above form a system of linear equations that has to be solved 
in order to determine coefficients   and ,  , i.e.  

,  

1, … ,  

It can be seen that for n-dimensional case and N points given 
a system of 1  has to be solved, where N is a 
number of points in the dataset and n is dimensionality of data. 
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For n=2 vectors xi and a are given as ,  and 
, . 

Using the matrix notation we can write for 2-dimensions:  

, . . , 1
: : : : :

, . . , 1
. . 0 0 0
. . 0 0 0

1 . . 1 0 0 0

: :

0
0
0

 

    

      

It can be seen that for 2-dimensional case and N points given 
a system of 3  linear equations has to be solved. If 
“global” functions, e.g. TPS (   ), are used the 
matrix B is “full”, if CSRBF functions are used, the matrix B 
can be sparse.  

 
Figure 1: Surface reconstruction (438 000 points)  

Carr et al. [3] 

  
Original image 

Bertalmio et al. [2] 
Reconstructed image 

Uhlir et al. [10] 
Figure 2: Reconstruction of inpainting 

 

 
Figure 3a: Original image with 60% of damaged pixels 

 
Figure 3b: Reconstructed image 

Some interesting problems can be solved using RBF 
interpolation quite effectively, e.g. surface reconstruction from 
scattered data Carr et al. [3], Ohtake et al. [7], reconstruction 
of damaged images Uhlir et al. [10], Zapletal et al. [14], 
inpainting removal Bertalmio et al. [2], Wang et al. [11] etc. 

All those applications of RBFs based interpolation have one 
significant disadvantage – the cost of computation. This is 
especially severe in applications where data are not static. 
There are actually two cases: 

1. Position of points is fixed, but the value associated with a 
point is changed. In this case iterative methods are usually 
faster than explicit computation of an inverse matrix. 

2. Position of points is changed. It means that the whole system 
of linear equations has to be form and recomputed which leads 
generally to O(N3) computational complexity and 
unacceptable time consuming computation. 

In some applications a “sliding window” on data is required, 
especially in time related applications, when old data should 
not be used in the interpolation and new data should be 
included. This is typical situation in signal processing 
applications. 

Considering facts above there is a question how to compute 
RBF incrementally with a lower computational complexity? 
This question will be answered in the following section.  

III. INCREMENTAL RBF COMPUTATION 

As the insert / remove operation is to be implemented as 
efficient as possible, we have to answer a question how to 
compute RBFs if a new data (point and value) is to be inserted 
into the given data set. As we are considering t-varying vector 
data the inverse matrix has to be computed. It means that we 
know A-1 matrix for interpolation of n values and we need to 
determine a matrix M-1 for n+1 values, original data plus 
inserted data. 

The main question to be answered is: 

Is it possible to use already computed RFB interpolation  
if a new point is included to the data set? 

If the answer is positive it should lead to significant decrease 
of computational complexity. In the following we will present 
how a new point can be inserted, a selected point can be 
removed and also how to select the best candidate for a 
removal according to an error caused by this point removal. 

Let us consider some operations with block matrices (we 
will assume that all operations are correct and matrices are 
non-singular in general etc.). 
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Let us consider a matrix M of (n+1) × (n+1) and a matrix A 
of n × n in the following block form: 

 
Then the inverse of the matrix   applying the rule above can 
be written as: 

1 1

1 1
 

 

 

1 1

1 1  

where:  
We can easily simplify this equation if the matrix A is 
symmetrical as: 

  

 
1

1
 

where:  means the tensor multiplication. It can be seen 
that all computations needed are of O(N2) computational 
complexity. 

It means that we can compute an inverse matrix 
incrementally with O(N2) complexity instead of O(N3) 
complexity required originally in this specific case. It can be 
seen that the structure of the matrix M is “similar to the matrix 
of the RBF specification. 

Now, there is a question how the incremental computation 
of an inverse matrix can be used for RBF interpolation? 

We know that the matrix A in the equation  is 
symmetrical and non-singular if appropriate rules for RBFs 
are kept. 

A. Point Insertion 

Let us consider RBF interpolation for N+1 points and the 
following system of equations is obtained:  

, . . , , 1
: . . : : : 1

, : , , 1
, , , 1

. . 0 0 0

. . 0 0 0
1 . . 1 1 0 0 0

:

:

0
0
0

               where:  , ,  

Let us imagine a simple situation. We have already computed 
the interpolation for N points and we need to include a new 
point into the given data set. A brute force approach of full 
RBF computation on the new data set can be used with O(N3) 
complexity computation. 

Reordering the equations above we get: 

0 0 0 . .
0 0 0 . .
0 0 0 1 . . 1 1

1 , . . , ,

: : : : : :
1 , . . , ,
1 , . . , ,

:

0
0
0

:
 

We can see that last row and last column is “inserted”. As 
RBF functions are symmetrical the recently derived formula 
for iterative computation of the inverse function can be used. 
So the RBF interpolation is given by the matrix M as  

 
where the matrix A is the RBF matrix (N+3) × (N+3)  and the 
vector b (N+3) and scalar value c are defined as: 

1 , . . ,  

,  

It means that we know how to compute the matrix  if the 
matrix  is known.  

That is exactly what we wanted! 

Recently we have proved that iterative computation of inverse 
function is of O(N2)complexity, that offers a significant 
performance improvement for points insertion. It should be 
noted that some operations can be implemented more 
effectively, especially  as the matrix   
is symmetrical etc. 

B. Point Removal 

In some cases it is necessary to remove a point from the given 
data set. It is actually an inverse operation to the insertion 
operation described above. Let us consider a matrix M of the 
size (N+1) × (N+1) as  

 

Now, the inverse matrix M -1 is known and we want to 
compute matrix A-1, which is of the size N × N. 
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Recently we derived opposite rule: 

 
  

 

1 1

1 1  

It can be seen that 
1

 

and therefore 

 
1

 

Now we have both operations, i.e. insertion and removal, with 
effective computation of O(N2) computational complexity 
instead of O(N3). It should be noted that vectors related to the 
point assigned for a removal must be in the last row and last 
column of the matrix M -1. 

C. Point selection 

As the number of points within the given data set could be 
high, the point removal might be driven by a requirement of 
removing a point which causes a minimal error of the 
interpolation. This is a tricky requirement as there is probably 
no general answer. The requirement should include additional 
information which interval of x is to be considered. 

Generally we have a function  

 

and we want to remove a point xj which causes a minimal 
error  of interpolation, i.e.  

,

 

and we want to minimize  

 
Ω

 

where  is the interval on which the interpolation is to be 
made. It means that if the point xj is removed the error εj is 
determined as: 

Ω
 

As we know the interval  on which the interpolation is to be 
used, we can compute or estimate the error  for each point xj 
in the given data set and select the best one. For many 
functions  the error  can be computed or estimated 
analytically as the evaluation of  is simple for many 
functions, e.g. 

ln
ln

1
1

1  

It means that for TPS function ln   the error  is easy to 
evaluate. In the case of CSRBF the estimation is even simpler 
as they have a limited influence, so generally  determines 
the error . 

It should be noted, that a selection of a point with the lowest 
influence to the interpolation precision in the given interval  
is of O(N) complexity only. 

We have shown a novel approach to RBF computation 
which is convenient for larger data sets. It is especially 
convenient for t-varying data and for applications, where a 
“sliding window” is used. Basic operations – point insertion 
and point removal – have been introduced. These operations 
have O(N2) computational complexity only, which makes a 
significant difference from the original approach used for 
RBFs computation.  

IV. EXPERIMENTAL RESULTS 

The proposed method for incremental RBF computation was 
tested especially as far as the speed-up is concerned. The tests 
carried out proved the theoretical expectations. 

 

 
Figure 4: Computational time - comparison 

 

 
Figure 5: Speed-up 
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It can be seen that the speed-up grows significantly with the 
number of interpolated data. This is due to the change of 
computational complexity from O(n3) to O(n2). Figure 4 and 
Figure  5 presents computational time and speed-up for small 
number of points (data set size) just to show that even for 
small data sets the speed-up is significant and growing 
significantly with number of points interpolated. 

V. CONCLUSION 

The proposed Incremental approach to RBF computation has 
advantages over the standard techniques based RBF 
interpolation due to possibility to insert / remove points with 
decreased computational complexity from O(N3) to O(N2). 
This enables to apply this approach in applications when 
interpolation or rendering of data in a “sliding window” 
and / or t-varying interpolation data are required; in 
applications when some data are becoming invalid and new 
data are acquired and need to be included into the interpolated 
data set. Due to lower computational complexity it is also 
possible to handle data sets in which scalar values associated 
with t-varying points, i.e. it is possible to handle non-static 
data as well.  

It is expected that the presented approach can lead to 
development of new algorithms especially in surface 
reconstruction of 3D objects. As the proposed Progressive 
RBF Interpolation uses vector / matrix operations exclusively 
it is suitable for GPU / Larabee architectures as well.  

Future work will be devoted to development of methods 
minimizing the error of interpolation with maximization of 
number of points removed from the dataset. This should lead 
to data compression techniques based on RBF representation. 
Also special data structures should increase additional 
speed-up due to better memory management. 
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