
1

Two New Algorithms for Line Clipping in E2 and Their
Comparison

Václav Skala1 and Duc Huy Bui

Department of Informatics and Computer Science2
The University of West Bohemia

Univerzitni 22, Box 314, 306 14 Plzeň
Czech Republic

 {skala | bui} @kiv.zcu.cz http://iason.zcu.cz/{~skala | ~bui}

Abstract

New efficient algorithms for the line clipping by the given rectangle in E2 are presented. The first
algorithm is based on the line direction evaluation, the second one is based on a new coding
technique of clipping rectangle’s vertices. It allows solving all cases more effectively.
A comparison of the proposed algorithms with the Liang-Barsky algorithm and some
experimental results are presented, too.
Keywords: Line Clipping, Computer Graphics, Algorithm Complexity, Geometric Algorithms,
Algorithm Complexity Analysis.

1 Affiliated with the Multimedia Technology Research Centre, University of Bath, U.K.
2 This work was supported by The Ministry of Education of the Czech Republic: project VS 97155 and project GA AV A2030801.

1. Introduction

Many algorithms for clipping a line by a rectangular
area or a convex polygon in E2 or by a non-convex
or convex polyhedron in E3 have been published so
far, see [4], [5], [6], [7], [8] for main references. The
line segment clipping by rectangular window in E2 is
often restricted to the use of the Cohen-Sutherland
(CS) algorithm [1] or its modifications based on
some presumptions like small clipping window or
more sophisticated coding technique [9], etc. The
line clipping problem solution is a bottleneck of
many packages and applications and, therefore, it
would be desirable to use the fastest algorithm even
though it is more complex.

In many applications it is necessary to clip lines

instead of line segments. It can be shown that the CS
algorithm is faster than the Liang-Barsky (LB)
algorithm [1] for the line segment clipping, but for
the line clipping the LB algorithm is more
convenient and faster.

2. LB Algorithm

The LB algorithm is based on clipping of the given
line by each boundary line on which the rectangle
edge lies. Let us assume that we have a line p
defined by two points A(xA, yA) and B(xB, yB). In the
LB algorithm, the given line is parametrically

represented. At the beginning of computation, the
parameter t is unlimited i.e. t ∈ (−∞,+∞) and then
this interval is subsequently curtailed by all the
intersection points with each boundary line of the
clipping rectangle, see [2], [3].

A weakness of the LB algorithm is the need to
compute the parameter t of those intersection points,
which are not part of the result. For example, see the
line p in Figure 1, all four values t, representing
intersection points with each boundary line, are
computed but only two are valid. Some
considerations how to improve the efficiency of the
LB algorithm resulted into the new LSA and SF
algorithms for the line clipping.

Machine Graphics & Vision, Vol. 9, no. 1/2, pp. 297-306, 2000

2

Figure 1: Line clipping against a rectangular

window

3. Proposed methods

3.1. LSA Algorithm

The LSA algorithm for the line clipping is
a straightforward modification of the LSSA
algorithm for the line segment clipping, see [8]. The
LSA algorithm is based on the simple evaluation of
line direction because the usual coding scheme of the
line segment’s end-points cannot be used. The
comparison between directions of the given line and
clipping rectangle’s diagonal decides which edges
(horizontal or vertical) are used first to compute the
intersection points between the line and the clipping
window. This approach enables to avoid the
calculation of the intersection points that do not lie
on the boundary edges of the clipping rectangle.

3.2. SF Algorithm

The proposed separation function (SF) algorithm for
the line clipping is based on a new coding technique
for vertices of the given clipping rectangle. The
given line p divides the whole plane into two
regions. The separation function is defined as:

F(x,y) = a*x + b*y + c

where a = Δy = yB - yA ,

b = -Δx = xA – xB ,
c = xB*yA - xA*yB.

The sign of the separation function value F(Vi)

(i ∈ [1,4]) in the i-th vertex of the rectangular
window determines the region in which the vertex
lies. Using the value of the separation function in all
vertices we can distinguish 7 fundamental cases, see
Figure 2.

Figure 2: Line categorization by clipping edges

This analysis led naturally to the SF algorithm.

The basic steps can be defined as:

• calculate the coefficients a, b, c,

• use the separation function F to characterise

the location of vertices of the given clipping
rectangle,

• determine the appropriate case,

• calculate the intersection points with

appropriate edges.

It can be seen that only the intersection points

required for the output are computed.

We will describe now the classification process

more in detail. Let us denote c1, c2, c3, c4 values of
the separation function in the clipping rectangle’s
vertices V1, V2, V3, V4, see Figure 1.

There are two major cases to be distinguished:

• the vertices V1 and V3 lie on the different

sides of line p, see Figure 2.a-d,

• the vertices V1 and V3 lie on the same side of

line p, see Figure 2.e-f.

a) The vertices V1 and V3 are in the different
sides of the line, i.e. c1 * c3 < 0. In this case, the
sign of expression (c2*c4) determine whether V2
and V4 lie on the same sides of line p (Figure
2.a-b) or not (Figure 2.c-d).

If the vertices V2 and V4 lie on the same side

of line p, the additional test c1*c2>0 determines
on which edge the intersection points lie. If
c1*c2 > 0 then the intersection points lie on the
edges e2 and e3, see Figure 2.a. Otherwise, the
intersection points lie on the edges e1 and e4, see
Figure 2.b.

In the case, when V2 and V4 lie on the

different sides of line p, if c1*c2 > 0 then the
intersection points lie on the edges e2 and e4, see
Figure 2.c. Otherwise, the intersection points lie
on the edges e1 and e3, see Figure 2.d.

b) The vertices V1 and V3 lie on the same side
of the line. In this case, if c1*c2 < 0, i.e. V1 and
V2 lie on the different sides of the line, then the
intersection points lie on the edges e1 and e2, see
Figure 2.e. Otherwise, the additional test
c1*c4 > 0 determines whether the whole line is
outside of clipping rectangle, see Figure 2.f, or
the intersection points lie on the edges e3 and e4,
see Figure 2.g.

Machine Graphics & Vision, Vol. 9, no. 1/2, pp. 297-306, 2000

3

The complete SF algorithm can be implemented
by the Algorithm 1.
3.3 Modified SF algorithm

It can be seen that some modifications can be
done to improve the efficiency of SF algorithm.

a) The first modification is based on the observation
that the co-ordinates of the intersection points can be
calculated from the separation function value of the
clipping window’s vertices. It is very simple to
derive the following expressions:

• x = xA + (ymax – yA) * Δx/Δy = xmin – c1/Δy
(the intersection point on the top boundary)

• y = yA + (xmax - xA) * Δy/Δx = ymax + c2/Δx

(the intersection point on the right boundary)

• x = xA + (ymin – yA) * Δx/Δy = xmin – c4/Δy
(the intersection point on bottom boundary)

• y = yA + (xmin - xA) * Δy/Δx = ymax + c1/Δx

(the intersection point on the left boundary)

It can be seen that we can save one addition and
one multiplication for each intersection point by
using these expressions.

b) Better results can be obtained while replacing the
direct calculation of c2, c3, c4 by using the
pre-calculated values as follows:

• c2 = Δy * xmax – Δx * ymax + c = c1 + Δy * w
• c3 = Δy * xmax – Δx * ymin + c = c2 + Δx * h
• c4 = Δy * xmin – Δx * ymin + c = c1 + Δx * h

where:

 w= xmax – xmin (the clipping window’s width)
h= ymax – ymin(the clipping window’s height)

c) We can get further speed-up when applying the
following replacements: instead of two statements
(c:= xB * yA – xA * yB; c1:= Δy * xmin – Δx * ymax + c),
we can use only one (c1:=Δy*(xmin–xA) - Δx* (ymax–
yA)) and instead of the condition (c1 * c3 < 0), we can
use the condition (c1 * (c2 + Δx * h) < 0).

All of above mentioned modifications can be
implemented by the MSF algorithm, see Algorithm
2.

Since the conditions Δx = 0 , Δy = 0 occur

practically with zero probability, the test of these
conditions can be left out and the further speed-up

can be reached. This algorithm will be reported as
the MSF-1 algorithm.
4. Experimental results

For experimental verification of the LB and LSA
algorithms and the proposed SF, MSF and MSF-1
algorithms, all fundamental cases were tested and
8.106 different lines were randomly generated for
each considered case, see Figure 3 and Figure 4.

Let us introduce the coefficients of efficiency
νLSA, νMSF, νMSF-1 as:

LSA

LB
LSA T

T
=ν ,

MSF

LB
MSF T

T
=ν ,

1
1

−
− =

MSF

LB
MSF T

Tν

where TLB, TLSA, TMSF, TMSF-1 are times consumed

by the LB, LSA algorithm and the modifications
MSF and MSF-1 algorithms of the SF algorithm (the
MSF-1 algorithm is the MSF algorithm without
testing of conditions Δx = 0, Δy = 0).

Table 1 contains experimental results obtained
for Pentium II-350MHz/64MB RAM/512KB
CACHE, similar results were also obtained for
Pentium-75MHz/32MB RAM and Pentium PRO-
200MHz/128MB RAM. This table shows that the
LSA and MSF algorithms are significantly faster
than the LB algorithm in all cases. It can be seen that
the speed-up varies from 1.3 to 1.87 for all common
cases. The common case is the case when the given
line is neither horizontal nor vertical (cases p1-p7).

The MSF-1 algorithm is based on the fact that
strictly horizontal or vertical lines are highly
improbable in normal situations. The speed-up of the
MSF-1 algorithm can be expected from 1.7 to 2.16
for all common cases, see Table 1.

Figure 3: Generic lines for algorithms comparison

Machine Graphics & Vision, Vol. 9, no. 1/2, pp. 297-306, 2000

4

procedure SF_Clip (xA, yA, xB, yB: real); {points A(xA, yA,) and B(xB, yB) determine the clipped line}
global var xmin, xmax, ymin, ymax: real; { co-ordinates of clipping window corners }
var t, Δx, Δy, c, c1, c2, c3, c4 : real;
begin Δx := xB - xA;
 if Δx = 0 then
 begin if (xA < xmin) or (xA > xmax) then EXIT; {the line is outside of the rectangle}
 yA := ymin; yB := ymax;

DRAW_LINE (xA, yA, xB, yB); EXIT {SF_Clip}
 end;
 Δy := yB - yA;
 if Δy = 0 then
 begin if (yA < ymin) or (yA > ymax) then EXIT; {the line is outside of the rectangle}
 xA := xmin; xB := xmax;

DRAW_LINE (xA, yA, xB, yB); EXIT {SF_Clip}
 end;
 c := xB * yA – xA * yB; c1:= Δy * xmin – Δx * ymax + c;
 c2:= Δy * xmax – Δx * ymax + c; c3:= Δy * xmax – Δx * ymin + c;
 if (c1* c3< 0) then
 begin c4:= Δy * xmin – Δx * ymin + c;
 if (c2 * c4 > 0) then

if (c1 * c2 > 0) then {case a}
 begin yB := yA + (xmax - xA) * Δy / Δx; xB := xmax;
 xA := xA + (ymin – yA) * Δx / Δy; yA := ymin

end
else {case b}

 begin xB := xA + (ymax – yA) * Δx / Δy; yB := ymax;
 yA := yA + (xmin - xA) * Δy / Δx; xA := xmin

end
 else {(c2 * c4 < 0)}

if (c1 * c2 > 0) then {case c}
 begin t := Δy / Δx;
 yB := yA + (xmax - xA) * t; xB := xmax;
 yA := yA + (xmin - xA) * t; xA := xmin

end
else begin t := Δx / Δy; {case d}

 xB := xA + (ymax – yA) * t; yB := ymax;
 xA := xA + (ymin – yA) * t; yA := ymin

end
 end
 else { (c1* c3> 0) }
 begin if (c1 * c2 < 0) then {case e}
 begin yB := yA + (xmax - xA) * Δy / Δx; xB := xmax;
 xA := xA + (ymax – yA) * Δx / Δy; yA := ymax

end
 else begin c4:= Δy * xmin – Δx * ymin + c;

if (c1 * c4 > 0) then EXIT; {case f}
else {case g}

 begin xB := xA + (ymin – yA) * Δx / Δy; yB := ymin;
 yA := yA + (xmin - xA) * Δy / Δx; xA := xmin

end
 end
 end;

DRAW_LINE (xA, yA, xB, yB)
end { SF_Clip };

Algorithm 1: SF algorithm

Machine Graphics & Vision, Vol. 9, no. 1/2, pp. 297-306, 2000

5

procedure MSF_Clip (xA, yA, xB, yB: real); {points A(xA, yA,) and B(xB, yB) determine the clipped line}
global var xmin, xmax, ymin, ymax, h, w: real; {corners’ co-ordinates and size of clipping window}
var t, Δx, Δy, c1, c2, c3, c4 : real;
begin Δx := xB - xA;

/* {tests if line is vertical or horizontal}
 if Δx = 0 then
 begin if (xA < xmin) or (xA > xmax) then EXIT; {the line is outside of the rectangle}
 yA := ymin; yB := ymax;

DRAW_LINE (xA, yA, xB, yB); EXIT {MSF_Clip}
 end;
 Δy := yB - yA;
 if Δy = 0 then
 begin if (yA < ymin) or (yA > ymax) then EXIT; {the line is outside of the rectangle}
 xA := xmin; xB := xmax;

DRAW_LINE (xA, yA, xB, yB); EXIT {MSF_Clip}
 end;

/*{end of the section to be removed for MSF-1 algorithm}
 c1:= Δy * (xmin – xA) - Δx * (ymax - yA); c2:= c1 + Δy * w;
 if c1* (c2 + Δx * h) < 0 then
 begin c4:= c1 + Δx * h;
 if (c2 * c4 > 0) then

if (c1 * c2 > 0) then {case a}
 begin yB := ymax + c2 / Δx; xB := xmax;
 xA := xmin – c4 / Δy; yA := ymin

end
else {case b}

 begin xB := xmin – c1 / Δy; yB := ymax;
 yA := ymax + c1 / Δx; xA := xmin

end
 else { (c2 * c4 < 0) }

if (c1 * c2 > 0) then {case c}
 begin t := 1.0 / Δx;
 yB := ymax + c2 * t; xB := xmax;
 yA := ymax + c1 * t; xA := xmin

end
else begin t := 1.0 / Δy; {case d}

 xB := xmin – c1 * t; yB := ymax;
 xA := xmin – c4 * t; yA := ymin

end
 end
 else { (c1* c3> 0) }
 begin if (c1 * c2 < 0) then {case e}
 begin yB := ymax + c2 / Δx; xB := xmax;
 xA := xmin – c1 / Δy; yA := ymax

end
 else begin c4:= c1 + Δx * h;

if (c1 * c4 > 0) then EXIT; {case f}
else {case g}

 begin xB := xmin – c4 / Δy; yB := ymin;
 yA := ymax + c1 / Δx; xA := xmin

end
 end
 end;

DRAW_LINE (xA, yA, xB, yB)
end { MSF_Clip };

Machine Graphics & Vision, Vol. 9, no. 1/2, pp. 297-306, 2000

6

Algorithm 2: MSF algorithm

Figure 4: Horizontal and vertical lines

 Pentium II
350MHz/64MB RAM

Case νLSA νMSF νMSF-1
P1 1.63 1.87 2.16
P2 1.55 1.59 1.70
P3 1.65 1.74 1.87
P4 1.30 1.53 1.68
P5 1.42 1.49 1.72
P6 1.81 1.87 2.16
P7 1.37 1.49 1.72
P8 2.62 2.62 1.52
P9 1.16 1.16 0.75
p10 1.26 1.26 0.94
p11 2.19 2.20 1.55
p12 2.17 2.19 1.75

Table 1: Experimental results

5. Conclusion Acknowledgements

The both new LSA and SF (including its
modifications) algorithms for line clipping against
a given rectangle in E2 were developed, verified and
tested. The proposed algorithms are convenient for
all applications, especially when many lines must be
clipped. These algorithms give similar efficiency but
the LSA algorithm is simpler to implement and
interpret. The LSA and MSF algorithm claim the
superiority over the LB algorithm for all cases.
Experiments proved that the speed-up can be
considered up to 1.6 times on the average for the
LSA algorithm. The MSF and MSF-1 algorithms
were also implemented as the modifications of the
SF algorithm. The speed-up of MSF-1 algorithm can

be considered up to 1.86 times on the average for all
common cases.

The new developed algorithms proved that the
approach “test first and compute after all tests“ can
bring a significant speed-up. There is a hope, that the
LSA algorithm and modifications of the SF
algorithm can be extended to E3 case and
implemented in hardware, too.

Some related reports are available in the on-line
form at the URL:

http://herakles.zcu.cz/publication.htm

Acknowledgements

The authors would like to express their thanks to all
who contributed to this work, mainly to recent MSc.
and PhD. students at the University of West
Bohemia in Plzen, who stimulated this work and
especially to Dr. Ivana Kolingerova for extremely
constructive criticisms.

References

1. Foley,D.J., van Dam,A., Feiner,S.K.,
Hughes,J,F.: Computer Graphics - Principles
and Practice, Addison Wesley, 2nd ed., 1990.

2. Liang,Y.D., Barsky,B.A.: A New Concept and
Method for Line Clipping, ACM Transaction on
Graphics, Vol.3, No.1, pp.1-22, 1984.

3. Liang,Y.D., Barsky,B.A., Slater,M.: Some
Improvements to a Parametric Line Clipping
Algorithm, Technical Report, No.92/688,
University of California at Berkeley, 1992.

4. Nicholl,T.M., Lee D.T., Nicholl R.A.: An
Efficient New Algorithm for 2-D Line Clipping:
Its Development and Analysis, SIGGRAPH
Proceedings, Vol.21, No.4, pp.253-262, 1987.

5. Skala,V.: O(lg N) Line Clipping Algorithm in
E2, Computers & Graphics, Vol.18, No.4,
Pergamon Press, pp.517-524, 1994.

6. Skala,V.: An Efficient Algorithm for Line
Clipping by Convex and Non-Convex Polyhedra
in E3, Computer Graphics Forum, Vol.15, No.1,
pp.61-68, 1996.

7. Skala,V.: A Fast Algorithm for Line Clipping by
Convex Polyhedron in E3,
Computers & Graphics, Vol.21, No.2, pp.209-
214,1997.

8. Skala,V., Bui, D.H.: Fast Algorithms for
Clipping Lines and line segments in E2, The
Visual Computer, Vol.14, No.1, pp.31-37,1998.

9. Sobkow,M.S., Pospisil,P., Yang,Y.H.: A Fast
Two-Dimensional Line Clipping Algorithm via
Line Encoding, Computers & Graphics, Vol.11,
No.4, pp.459-467, 1987.

Machine Graphics & Vision, Vol. 9, no. 1/2, pp. 297-306, 2000

