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Abstract 

New efficient algorithms for the line clipping by the given rectangle in E2 are presented. The first 
algorithm is based on the line direction evaluation, the second one is based on a new coding 
technique of clipping rectangle’s vertices. It allows solving all cases more effectively. 
A  comparison of the proposed algorithms with the Liang-Barsky algorithm and some 
experimental results are presented, too. 
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1. Introduction 

Many algorithms for clipping a line by a rectangular 
area or a convex polygon in E2 or by a non-convex 
or convex polyhedron in E3 have been published so 
far, see [4], [5], [6], [7], [8] for main references. The 
line segment clipping by rectangular window in E2 is 
often restricted to the use of the Cohen-Sutherland 
(CS) algorithm [1] or its modifications based on 
some presumptions like small clipping window or 
more sophisticated coding technique [9], etc. The 
line clipping problem solution is a bottleneck of 
many packages and applications and, therefore, it 
would be desirable to use the fastest algorithm even 
though it is more complex. 

 
In many applications it is necessary to clip lines 

instead of line segments. It can be shown that the CS 
algorithm is faster than the Liang-Barsky (LB) 
algorithm [1] for the line segment clipping, but for 
the line clipping the LB algorithm is more 
convenient and faster. 

 
2. LB Algorithm  

The LB algorithm is based on clipping of the given 
line by each boundary line on which the rectangle 
edge lies. Let us assume that we have a line p 
defined by two points A(xA, yA) and B(xB, yB). In the 
LB algorithm, the given line is parametrically 

represented. At the beginning of computation, the 
parameter t is unlimited i.e. t ∈ (−∞,+∞) and then 
this interval is subsequently curtailed by all the 
intersection points with each boundary line of the 
clipping rectangle, see [2], [3]. 
 

A weakness of the LB algorithm is the need to 
compute the parameter t of those intersection points, 
which are not part of the result. For example, see the 
line p in Figure 1, all four values t, representing 
intersection points with each boundary line, are 
computed but only two are valid. Some 
considerations how to improve the efficiency of the 
LB algorithm resulted into the new LSA and SF 
algorithms for the line clipping.  
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Figure 1: Line clipping against a rectangular 

window 
 
3. Proposed methods 

3.1. LSA Algorithm 

The LSA algorithm for the line clipping is 
a straightforward modification of the LSSA 
algorithm for the line segment clipping, see [8]. The 
LSA algorithm is based on the simple evaluation of 
line direction because the usual coding scheme of the 
line segment’s end-points cannot be used. The 
comparison between directions of the given line and 
clipping rectangle’s diagonal decides which edges 
(horizontal or vertical) are used first to compute the 
intersection points between the line and the clipping 
window. This approach enables to avoid the 
calculation of the intersection points that do not lie 
on the boundary edges of the clipping rectangle. 
 
3.2. SF Algorithm 

The proposed separation function (SF) algorithm for 
the line clipping is based on a new coding technique 
for vertices of the given clipping rectangle. The 
given line p divides the whole plane into two 
regions. The separation function is defined as: 
 

F(x,y) = a*x + b*y + c 
 
where  a = Δy = yB - yA , 

b = -Δx = xA – xB , 
c = xB*yA - xA*yB. 

  
The sign of the separation function value F(Vi) 

(i ∈ [1,4]) in the i-th vertex of the rectangular 
window determines the region in which the vertex 
lies. Using the value of the separation function in all 
vertices we can distinguish 7 fundamental cases, see 
Figure 2. 

 

 
Figure 2: Line categorization by clipping edges 

 
This analysis led naturally to the SF algorithm. 

The basic steps can be defined as:  
 

• calculate the coefficients a, b, c, 
 
• use the separation function F to characterise 

the location of vertices of the given clipping 
rectangle, 

 
• determine the appropriate case, 
 
• calculate the intersection points with 

appropriate edges. 
 
It can be seen that only the intersection points 

required for the output are computed. 
 
We will describe now the classification process 

more in detail. Let us denote c1, c2, c3, c4 values of 
the separation function in the clipping rectangle’s 
vertices V1, V2, V3, V4, see Figure 1. 

 
There are two major cases to be distinguished: 
 
• the vertices V1 and V3 lie on the different 

sides of line p, see Figure 2.a-d, 
 
• the vertices V1 and V3 lie on the same side of 

line p, see Figure 2.e-f.  
 
a) The vertices V1 and V3 are in the different 
sides of the line, i.e. c1 * c3 < 0. In this case, the 
sign of expression (c2*c4) determine whether V2 
and V4 lie on the same sides of line p (Figure 
2.a-b) or not (Figure 2.c-d). 

 
If the vertices V2 and V4 lie on the same side 

of line p, the additional test c1*c2>0 determines 
on which edge the intersection points lie. If 
c1*c2 > 0 then the intersection points lie on the 
edges e2 and e3, see Figure 2.a. Otherwise, the 
intersection points lie on the edges e1 and e4, see 
Figure 2.b. 

 
In the case, when V2 and V4 lie on the 

different sides of line p, if c1*c2 > 0 then the 
intersection points lie on the edges e2 and e4, see 
Figure 2.c. Otherwise, the intersection points lie 
on the edges e1 and e3, see Figure 2.d. 

 
b) The vertices V1 and V3 lie on the same side 
of the line. In this case, if c1*c2 < 0, i.e. V1 and 
V2 lie on the different sides of the line, then the 
intersection points lie on the edges e1 and e2, see 
Figure 2.e. Otherwise, the additional test 
c1*c4 > 0 determines whether the whole line is 
outside of clipping rectangle, see Figure 2.f, or 
the intersection points lie on the edges e3 and e4, 
see Figure 2.g. 
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The complete SF algorithm can be implemented 
by the Algorithm 1. 
3.3 Modified SF algorithm 

It can be seen that some modifications can be 
done to improve the efficiency of SF algorithm.  

 
a) The first modification is based on the observation 
that the co-ordinates of the intersection points can be 
calculated from the separation function value of the 
clipping window’s vertices. It is very simple to 
derive the following expressions: 
 

• x = xA + (ymax – yA) * Δx/Δy = xmin –  c1/Δy 
(the intersection point on the top boundary) 

 
• y = yA + (xmax - xA) * Δy/Δx = ymax +  c2/Δx 

(the intersection point on the right boundary) 
 

• x = xA + (ymin – yA) * Δx/Δy = xmin –  c4/Δy 
(the intersection point on bottom boundary) 

 
• y = yA + (xmin - xA) * Δy/Δx = ymax +  c1/Δx 

(the intersection point on the left boundary) 
 

It can be seen that we can save one addition and 
one multiplication for each intersection point by 
using these expressions. 

 
b) Better results can be obtained while replacing the 
direct calculation of c2, c3, c4 by using the 
pre-calculated values as follows: 
 

• c2 = Δy * xmax – Δx * ymax + c = c1 + Δy * w 
• c3 = Δy * xmax – Δx * ymin + c = c2 + Δx * h 
• c4 = Δy * xmin – Δx * ymin + c = c1 + Δx * h 

 
where: 

 w= xmax – xmin (the clipping window’s width) 
h= ymax – ymin(the clipping window’s height) 

 
c) We can get further speed-up when applying the 
following replacements: instead of two statements 
(c:= xB *  yA – xA * yB; c1:= Δy * xmin – Δx * ymax + c), 
we can use only one (c1:=Δy*(xmin–xA) - Δx* (ymax–
yA)) and instead of the condition (c1 * c3 < 0), we can 
use the condition (c1 * (c2 + Δx * h) < 0). 
 

All of above mentioned modifications can be 
implemented by the MSF algorithm, see Algorithm 
2. 

 
Since the conditions Δx = 0 , Δy = 0 occur 

practically with zero probability, the test of these 
conditions can be left out and the further speed-up 

can be reached. This algorithm will be reported as 
the MSF-1 algorithm. 
4. Experimental results 

For experimental verification of the LB and LSA 
algorithms and the proposed SF, MSF and MSF-1 
algorithms, all fundamental cases were tested and 
8.106 different lines were randomly generated for 
each considered case, see Figure 3 and Figure 4.  

Let us introduce the coefficients of efficiency 
νLSA, νMSF, νMSF-1 as: 

 

LSA

LB
LSA T

T
=ν , 

MSF

LB
MSF T

T
=ν , 

1
1

−
− =

MSF

LB
MSF T

Tν  

 
where TLB, TLSA, TMSF, TMSF-1 are times consumed 

by the LB, LSA algorithm and the modifications 
MSF and MSF-1 algorithms of the SF algorithm (the 
MSF-1 algorithm is the MSF algorithm without 
testing of conditions Δx = 0, Δy = 0). 

Table 1 contains experimental results obtained 
for Pentium II-350MHz/64MB RAM/512KB 
CACHE, similar results were also obtained for 
Pentium-75MHz/32MB RAM and Pentium PRO-
200MHz/128MB RAM. This table shows that the 
LSA and MSF algorithms are significantly faster 
than the LB algorithm in all cases. It can be seen that 
the speed-up varies from 1.3 to 1.87 for all common 
cases. The common case is the case when the given 
line is neither horizontal nor vertical (cases p1-p7).  

The MSF-1 algorithm is based on the fact that 
strictly horizontal or vertical lines are highly 
improbable in normal situations. The speed-up of the 
MSF-1 algorithm can be expected from 1.7 to 2.16 
for all common cases, see Table 1. 
 
 

 
 

Figure 3: Generic lines for algorithms comparison 
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procedure SF_Clip ( xA, yA, xB, yB: real); {points A(xA, yA,) and B(xB, yB) determine the clipped line} 
global var xmin, xmax, ymin, ymax: real;  { co-ordinates of clipping window corners } 
var t, Δx, Δy, c, c1, c2, c3, c4 : real; 
begin Δx := xB - xA; 
     if  Δx = 0 then  
      begin if (xA < xmin) or (xA > xmax) then EXIT; {the line is outside of the rectangle} 
          yA := ymin; yB := ymax; 

DRAW_LINE (xA, yA, xB, yB); EXIT {SF_Clip} 
     end; 
    Δy := yB - yA; 
    if  Δy = 0 then  
     begin if (yA < ymin) or (yA > ymax) then EXIT; {the line is outside of the rectangle} 
          xA := xmin; xB := xmax;  

DRAW_LINE (xA, yA, xB, yB); EXIT {SF_Clip} 
     end; 
  c := xB * yA – xA * yB;  c1:= Δy * xmin – Δx * ymax + c; 
  c2:= Δy * xmax – Δx * ymax + c;  c3:= Δy * xmax – Δx * ymin + c; 
    if (c1* c3< 0) then  
   begin  c4:= Δy * xmin – Δx * ymin + c;  
          if (c2 * c4 > 0) then 

if (c1 * c2 > 0) then    {case a} 
     begin yB := yA + (xmax - xA) * Δy / Δx; xB := xmax; 
          xA := xA + (ymin – yA) * Δx / Δy; yA := ymin  

end 
else    {case b} 

     begin xB := xA + (ymax – yA) * Δx / Δy; yB := ymax; 
          yA := yA + (xmin - xA) * Δy / Δx; xA := xmin  

end 
           else       {(c2 * c4 < 0)} 

if (c1 * c2 > 0) then    {case c} 
     begin      t := Δy / Δx; 
          yB := yA + (xmax - xA) * t; xB := xmax; 
          yA := yA + (xmin - xA) * t; xA := xmin  

end 
else begin      t := Δx / Δy;  {case d} 

          xB := xA + (ymax – yA) * t; yB := ymax; 
          xA := xA + (ymin – yA) * t; yA := ymin  

end 
    end 
   else   { (c1* c3> 0) } 
    begin if (c1 * c2 < 0) then    {case e} 
           begin yB := yA + (xmax - xA) * Δy / Δx; xB := xmax; 
         xA := xA + (ymax – yA) * Δx / Δy; yA := ymax       

end 
          else begin c4:= Δy * xmin – Δx * ymin + c; 

if (c1 * c4 > 0) then EXIT;  {case f} 
else    {case g} 

      begin xB := xA + (ymin – yA) * Δx / Δy; yB := ymin; 
           yA := yA + (xmin - xA) * Δy / Δx; xA := xmin 

end 
           end 
     end; 

DRAW_LINE (xA, yA, xB, yB) 
end { SF_Clip }; 

 
Algorithm 1: SF algorithm
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procedure MSF_Clip ( xA, yA, xB, yB: real); {points A(xA, yA,) and B(xB, yB) determine the clipped line} 
global var xmin, xmax, ymin, ymax, h, w: real;  {corners’ co-ordinates and size of clipping window} 
var t, Δx, Δy, c1, c2, c3, c4 : real; 
begin Δx := xB - xA; 

/* {tests if line is vertical or horizontal} 
     if  Δx = 0 then  
      begin if (xA < xmin) or (xA > xmax) then EXIT; {the line is outside of the rectangle} 
          yA := ymin; yB := ymax;  

DRAW_LINE (xA, yA, xB, yB); EXIT {MSF_Clip} 
     end; 
    Δy := yB - yA; 
    if  Δy = 0 then  
     begin if (yA < ymin) or (yA > ymax) then EXIT; {the line is outside of the rectangle} 
          xA := xmin; xB := xmax;  

DRAW_LINE (xA, yA, xB, yB); EXIT {MSF_Clip} 
     end; 

/*{end of the section to be removed for MSF-1 algorithm} 
  c1:= Δy * (xmin – xA) - Δx * (ymax - yA); c2:= c1 + Δy * w; 
    if c1* (c2 + Δx * h) < 0 then  
   begin  c4:= c1 + Δx * h;  
          if (c2 * c4 > 0) then 

if (c1 * c2 > 0) then    {case a} 
     begin yB := ymax + c2 / Δx; xB := xmax; 
          xA := xmin – c4 / Δy; yA := ymin  

end 
else    {case b} 

     begin xB := xmin – c1 / Δy; yB := ymax; 
          yA := ymax + c1 / Δx; xA := xmin  

end 
           else       { (c2 * c4 < 0) } 

if (c1 * c2 > 0) then    {case c} 
     begin      t := 1.0 / Δx; 
          yB := ymax + c2 * t;  xB := xmax; 
          yA := ymax + c1 * t;  xA := xmin  

end 
else begin      t := 1.0 / Δy;  {case d} 

          xB := xmin – c1 * t;  yB := ymax; 
          xA := xmin – c4 * t;  yA := ymin  

end 
    end 
   else   { (c1* c3> 0) } 
    begin if (c1 * c2 < 0) then    {case e} 
           begin yB := ymax + c2 / Δx; xB := xmax; 
         xA := xmin – c1 / Δy; yA := ymax      

end 
          else begin c4:= c1 + Δx * h; 

if (c1 * c4 > 0) then EXIT;  {case f} 
else    {case g} 

      begin xB := xmin – c4 / Δy; yB := ymin; 
           yA := ymax + c1 / Δx; xA := xmin  

end 
           end 
     end; 

DRAW_LINE (xA, yA, xB, yB) 
end { MSF_Clip }; 
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Algorithm 2: MSF algorithm
 

 
 

Figure 4: Horizontal and vertical lines  
 
 

 Pentium II 
350MHz/64MB RAM 

Case νLSA νMSF νMSF-1 
P1 1.63 1.87 2.16
P2 1.55 1.59 1.70
P3 1.65 1.74 1.87
P4 1.30 1.53 1.68
P5 1.42 1.49 1.72
P6 1.81 1.87 2.16
P7 1.37 1.49 1.72
P8 2.62 2.62 1.52
P9 1.16 1.16 0.75
p10 1.26 1.26 0.94
p11 2.19 2.20 1.55
p12 2.17 2.19 1.75

 
Table 1: Experimental results 

 
5. Conclusion Acknowledgements 

The both new LSA and SF (including its 
modifications) algorithms for line clipping against 
a given rectangle in E2  were developed, verified and 
tested. The proposed algorithms are convenient for 
all applications, especially when many lines must be 
clipped. These algorithms give similar efficiency but 
the LSA algorithm is simpler to implement and 
interpret. The LSA and MSF algorithm claim the 
superiority over the LB algorithm for all cases. 
Experiments proved that the speed-up can be 
considered up to 1.6 times on the average for the 
LSA algorithm. The MSF and MSF-1 algorithms 
were also implemented as the modifications of the 
SF algorithm. The speed-up of MSF-1 algorithm can 

be considered up to 1.86 times on the average for all 
common cases.  

The new developed algorithms proved that the 
approach “test first and compute after all tests“ can 
bring a significant speed-up. There is a hope, that the 
LSA algorithm and modifications of the SF 
algorithm can be extended to E3 case and 
implemented in hardware, too. 

Some related reports are available in the on-line 
form at the URL: 

http://herakles.zcu.cz/publication.htm 
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