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ABSTRACT

This paper extends prior work with normalized radial visualizations (NRVs) that includes the RadViz mapping onto

the two-dimensional unit disk. Here we examine point sensitivity under varying assumptions about dimensional

anchor motion. First, we describe the role of the barycenter of the dimensional anchors as the position where

records map to under a NRV when all of their dimensional values are equal. Next, we explore the intuition that

data records whose standard deviation across the dimensions is small map close to the barycenter under a NRV;

such data records have low mobility. When the dimensional anchors are arranged uniformly on the RadViz circle,

our distance formulation provides a preprocessing test that is sufficient for concluding that a record will lay within

a circle of radius 1
2

around the barycenter. This test is independent of the ordering of the dimensional anchors

on the circle. Then, for RadViz we employ a robotic motion planning analogy which utilizes the Minkowski sum

to show that when some of the dimensional anchors’ positions are free to move on the unit circle, then a data

record maps inside an annulus, whose center, inner and outer radii are computable. Extending the motion planning

analogy, we are able to determine a dimensional anchor configuration which places a data record image point at a

chosen position. To illustrate this, the Weave visualization system has been enhanced to include interactive point

sensitivity features.

Keywords
Computer Graphics, Radial Visualization, Visual Analytics

1 INTRODUCTION

Radial visualizations, with some variety in con-

struction, originated in the 19th century. Rad-

Viz [HGM+97b] is a 2D visualization that displays d

dimensional data by arranging labels at points on the

circumference of the unit circle. Figure 1 shows an

example of a basic RadViz image for a dataset with

14 dimensions. RadViz can be viewed as a partic-

ular instance of a Normalized Radial Visualization

(NRV) [DGRG12], which describes a transformation

in Euclidean space from E
d → E

d′ , where d′ = 2 (see

Section 1.1). Each of n data records are then associated

with points on the interior of the circle by way of the

RadViz algorithm. The labels located on the unit circle

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

Figure 1: A RadViz image of a 14d data set [DGRG12].

are called Dimensional Anchors (DAs), one for each of

the d dimensions.

This paper examines point sensitivity for this type of ra-

dial visualization under varying assumptions about di-

mensional anchor motion. That is, we observe how a

data record’s position in the image space changes as di-

mensional anchors move (how sensitive the point is to

changes in DA positions). The literature on this topic is

scarce. The closest work appears to be Reem’s [Ree11]

examination of how the geometric characteristics of
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a Voronoi diagram [Aur91] change under small per-

turbations of the sites. Yi et al. [YMSJ05] discuss

data records moving towards dimensional representa-

tives (see Section 1.1).

Our approach begins in Section 2 by highlighting the

NRV barycenter (average, center or centroid) of the

dimensional anchors as the position where records map

to when all of their dimensional values are equal. This

can differ from the RadViz unit disk’s center. Records

whose standard deviation across the dimensions is

small map close to the barycenter, and we derive

a bound on this distance that applies to arbitrary

dimension of the NRV image space. Such records have

low mobility under motion of the dimensional anchors.

Next Section 3 uses a motion planning analogy (see

Section 1.2) in the RadViz context to show that, when

some of the dimensional anchors’ positions are free

to move on the unit circle, then a data record maps

inside an annulus, whose center and inner and outer

radii we provide. The motion planning analogy extends

further to allow us to, given any point on a data

record’s annulus, reverse-engineer to recover a set of

dimensional anchor positions that yield that point. An

earlier version of Sections 2 and 3 appears in the PhD

thesis [Rus13]. Section 2 extends beyond [Rus13] the

bound on barycenter distance to arbitrary dimension

of the NRV image space. Section 3 generalizes the

annulus center and radius calculation to accommodate

moving an arbitrary number of DAs.

These results are beneficial to the visualization analyst

who wants to understand the freedom of movement of

data record image points under motion of the dimen-

sional anchors. For this paper the Weave visualization

system [DSFG12] has been enhanced to include inter-

active point sensitivity features. Weave is a highly in-

teractive open source web-based visualization platform

that provides the ability to integrate, analyze, and visu-

alize distributed data and databases, and to disseminate

the results in a web page. Weave is available on the

github public code repository. Section 4 provides con-

clusions and offers avenues for future research.

1.1 Normalized Radial Visualization

Early examples of radial visualizations are William

Playfair’s pie charts and Florence Nightingale’s polar

plots [WGK10]. Draper et al. provide a comprehensive

survey of radial visualizations [DLR09]. Diehl et al.

empirically evaluate the strengths and weaknesses

of radial visualization for a task such as memorizing

positions of visual elements, and they suggest that

radial visualization, while outperformed in some ways

by Cartesian coordinates, can help the user focus on

specific data dimensions [DBB10]. Some additional

examples of advances in the use of radial visualiza-

tions include Circle Segments [AKK96], 2D Star

Coordinates [Kan00], 3D Star Coordinates [SY06],

RadViz [HGM+97a], and SphereViz [SDC07].

Yi et al. [YMSJ05] describe a radial visualization that

employs “magnets”, which exhibit and attraction force

with a point based on the product of the dimension’s

value in the data record and the strength of the magnet.

In a manner similar to the RadViz DAs, the magnets

act upon only a single dimension. The magnets may

also be moved and the motion of the particles examined.

Unlike RadViz, the magnet may also repel a particle.

Tominski et al. [TA04] describe several different visual-

ization methods which take high dimensional data and

map it to a 2D image space. Although their TimeWheel

is oriented toward datasets that have a temporal com-

ponent, it may be used for other datasets where an in-

dependent variable is chosen as the variable of focus.

Once this focus variable is placed in the center, the

ordering of the remaining variables poses a difficulty

as in RadViz and Parallel Coordinate [ID90] visualiza-

tion. Both their MultiComb and spike glyph are sim-

ilar, however less sensitive to the arrangement of the

non-focal component. This is in contrast with RadViz,

where there is no particular component that is the focus

of the analysis.

Daniels et al. [DGRG12] establish a number of

theoretical properties of radial visualizations as well

as rigorously formulate a broader class of Radial

Visualizations – the aforementioned NRVs. RadViz

is shown there to be a special instance of NRVs.

RadViz has been shown in the literature to be useful

for multi-dimensional data. For example, DiCaro

et al. [DCFMFM10] use d ≤ 8, Figure 1 shows

d = 14, Daniels et al. include a RadViz example

from bioinformatics with 6817 genes, each associated

with a dimensional anchor, and RadViz is applied

in bioinformatics for supervised learning in [KB10].

Other RadViz research includes integration of RadViz

with Parallel Coordinates by Bertini et al. [BAS+05],

Vectorized RadViz [Sha04, SGM08, Zim11] and using

RadViz to visualize time series data [NS11].

Prior to Daniels et al. other authors, such as

Nováková [Nov09] and McCarthy et al. [MMH+04],

had offered informal observations on properties for-

mally stated and proved in Daniels et al. [DGRG12],

such as points which lie on a line crosscutting the

origin map to a single point in the RadViz plane.

McCarthy [MMH+04] states “points with approxi-

mately equal dimensional values will lie close to the

center.” In this paper we show that the barycenter of

the DAs is actually involved; in McCarthy’s case the

barycenter is coincident with the center of the unit disk.

The RadViz mapping is analogous to spring forces us-

ing Hooke’s Law. Informally we may picture each data

image in RadViz as being tethered to multiple springs,

one for each dimension, with each of these springs at-
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Figure 2: An illustration of RadViz’s spring force anal-

ogy [GYLG05].

tached to one of the DAs (see Figure 2). These springs

“pull” the data image towards the circumference of

the circle. To formulate the mapping [DGRG12], we

start with the stretching forces (~F) of d springs under

Hooke’s law for the i th data record vi. At equilibrium

we have:

d−1

∑
j=0

~Fj = 0 =
d−1

∑
j=0

vi, j(~S j −~x) (1)

where ~Fj = k~x for k some spring constant and ‖~x‖ is

the stretched distance. The stretched distance is the dis-

tance from the DA to a point in the two-dimensional

image space. We substitute for k the data record’s value

for the j th dimension: vi, j. For x we substitute the dis-

tance between the DA ~S j on the unit circle and the data

record’s image x and then solve for~x:

~x =
∑d−1

j=0
~S jvi, j

∑d−1
j=0 vi, j

. (2)

In two-dimensional RadViz we then have:

xi,1 =
∑d−1

j=0 cos(θ j)vi, j

∑d−1
j=0 vi, j

xi,2 =
∑d−1

j=0 sin(θ j)vi, j

∑d−1
j=0 vi, j

. (3)

In the above expressions~S j is decomposed into its com-

ponents for the xi,1 and xi,2 position of the DA (respec-

tively, in Cartesian coordinates, cos(θ j) and sin(θ j)).
These expressions are generalizable to higher dimen-

sional NRVs [DGRG12]. Thus, RadViz is a spe-

cial case of an NRV. Here we list several character-

istics of NRVs which were established in Daniels et

al. [DGRG12] and are applied in this paper:

1. The scaling transformation η , where for the i th

record vi in a data set of d dimensions, ηi is a per-

spective transformation:

ηi =
1

∑d−1
j=0 vi, j

. (4)

2. The η transformation projects each data point onto

a simplex facet which is the intersection of the pro-

jective hyperplane ∑
j=d−1
j=0 D j = 1 with the positive

orthant. Here D j is a variable for the j th dimension.

3. The η transformation is composed with an affin-

ity [FR87, Far02] which takes points from the sim-

plex facet to inside the convex hull of the DAs. This

does not require the DAs to be cocircular.

4. An NRV maps lines to lines, ellipsoids to ellipsoids,

and preserves point ordering and convexity.

Using η we can reformulate Eq. 2 as:

~x = ηi

d−1

∑
j=0

~S jvi, j. (5)

DAs need not be on the circle in an NRV, but for some

of our RadViz results we assume that they are, as is

customary.

1.2 Motion Planning

In Section 3 we demonstrate a link between some con-

cepts from robotic motion planning and point sensitiv-

ity. O’Rourke [O’R98] explores in depth the motion

planning subfield of a so-called “robot arm.” This arm

is a succession of fixed length segments with one end in

a fixed position referred to as the “shoulder,” where the

shoulder is assumed to be at the origin. For an m-link

robot arm we label each of the m links as ℓm. Given

m link lengths connected to an arm, the reachability

problem asks: “which points in the plane can the m-link

arm’s outer tip reach?”

O’Rourke relates results attributed to Hopcroft et

al. [HJW85] that address this. Hopcroft et al. also

prove a theorem which allows us to compute the

inner and outer radii of the annulus: “The reacha-

bility region for an m-link arm is an origin centered

annulus with outer radius ri,O = ∑m
l=1 ℓl and inner

radius ri,I = 0 if the longest link length ℓM is less

than or equal to half the total length of the links,

and ri,I = ℓM − ∑l 6=M ℓl otherwise.” The annulus

results rely on the Minkowski sum of two sets B1 and

B2, which is defined as the set of pairwise sums of

points from each of the two sets. Formally we write

B1 ⊕ B2 = {b1 + b2|b1 ∈ B1,b2 ∈ B2} [dBvKOS00].

The Minkowski sum is associative [GS93].

A recursive procedure is described by O’Rourke which,

when supplied with a point p in the annulus, reverse-

engineers angles for the robot arm’s links that allow the

arm to reach that point. The base case is one involving

3 links, which can be solved using several cases based
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on intersection of a circle with an annulus. At the i th

level of the recursion the problem is to reach a point pi.

A circle of radius ℓi is constructed, centered at pi, and

that circle is intersected with the annulus for the first

i−1 links to produce a point ti. A set of i−1 angles are

determined recursively in order to reach ti and then link

li is added to the result to allow connection of ti to pi.

The procedure’s running time is linear in the number of

links.

O

p

Figure 3: An example of an annular reachability re-

gion for a robot arm, with 4 links, shouldered at O,

together with a link configuration allowing the arm to

reach point p.

Figure 3 illustrates an example of an annular reacha-

bility region for a 4-link robot arm. In Figure 3 the

arrangement of 4 links allowing the tip of the arm to

reach point p forms a link configuration.

2 BARYCENTER PROXIMITY

The barycenter (average, center, or centroid) bP of the

DAs is expressed as:

bP =
∑d−1

j=0
~S j

d
(6)

Figure 4 illustrates the barycenter of a set of di-

mensional anchors for the 310 records from the

6-dimensional Vertebral Column dataset [BL13]. Note

that the barycenter of the DAs in Figure 4 is not at the

unit disk’s center. Data record images that are close to

bP are undesirable, partly because they can represent

cancellation of opposing DA contributions. In addition,

we show that the barycenter is the place where records

of all equal dimensional values map to. Starting from

Eq. 3 we have:

xi,1 =
∑d−1

j=0 cos(θ j)v0

∑d−1
j=0 v0

=
∑d−1

j=0 cos(θ j)

d
(7)

and, similarly,

xi,2 =
∑d−1

j=0 sin(θ j)v0

∑d−1
j=0 v0

=
∑d−1

j=0 sin(θ j)

d
(8)

Figure 4: The barycenter and convex hull for an ar-

rangement of DAs. Data points represent the 310

records from the 6d Vertebral Column dataset [BL13]

shown in Weave [DSFG12].

This yields Eq. 6. We note that this result extends to all

NRV’s. Furthermore, it does not require the DAs to be

cocircular. The impact is that, regardless of where the

DAs are placed, such records always lie at the barycen-

ter of the DAs.

We observe that having records of all equal dimensional

values map to the barycenter implies a corollary to

Lemma 2.1 of Daniels et al. [DGRG12]. That lemma,

which applies to NRV transformations, involves the

η mapping and is summarized in item 2 in our Sec-

tion 1.1. The corollary is that the line x1 = x2 = · · ·= xd ,

which is perpendicular to the simplex facet associated

with η , maps under the η transformation to the center

of the simplex facet, which then maps, under the affin-

ity which takes the simplex facet into the NRV image

space, to the barycenter bP of the dimensional anchors.

Thus, the line x1 = x2 = · · ·= xd maps to the barycenter.

2.1 Upper Bound on Distance from

Barycenter

Here we relate a data image’s distance in the d′-dim-

ensional image space from the NRV barycenter bP to

the standard deviation of the data values across the d

dimensions in the original data space. The 2D RadViz

context is the special case in which d′ = 2. This devel-

opment does not assume that the dimensional anchors

are uniformly placed on a circle, nor must they even be

cocircular.

First we formulate dimensional value vi, j for data

record vi in the data space in terms of the standard

deviation σi of its dimensional component values, and

the record’s mean v̄i =
(

∑d−1
j=0 vi, j

)

/d:
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σi =

√

√

√

√

1

d

d−1

∑
j=0

(vi, j − v̄i)2 (9)

(vi, j − v̄i)
2 = σ2

i d −
d−1

∑
l 6= j

(vi,l − v̄i)
2 (10)

vi, j =

√

√

√

√σ2
i d −

d−1

∑
l 6= j

(vi,l − v̄i)2 + v̄i. (11)

Let us call the square root term γ . So, the NRV map-

ping, as expressed in Eq. 5 using ηi from Eq. 4, now

looks like this (for the kth component in the image

space):

xi,k = ηi(S0k
(γ0 + v̄i)+ · · ·+Sd−1k

(γd−1 + v̄i))

= ηi

(

d−1

∑
j=0

S jk(γ j + v̄i)

)

. (12)

We notice that v̄i =
∑d−1

j=0 vi, j

d
=

η−1
i
d

. So we may rewrite

this as:

xi,k = ηi

(

d−1

∑
j=0

S jk(γ j +
η−1

i

d
)

)

. (13)

If we cancel the η ′
i s and group terms conveniently we

have:

xi,k = bP,k +ηi

(

d−1

∑
j=0

S jk γ j

)

. (14)

where bP,k is the kth component of the barycenter. Thus,

the distance of, for example, the kth component of

the NRV projected point to the kth component of the

barycenter of the DAs is:

xi,k −bP,k = bP,k +ηi

(

d−1

∑
j=0

S jk γ j

)

−bP,k (15)

or just:

ηi

(

d−1

∑
j=0

S jk γ j

)

. (16)

If we make some substitutions to remove the γ terms

we have:

ηi

(

d−1

∑
j=0

S jk(vi, j − v̄i)

)

. (17)

The Euclidean distance, in the image space, from the

barycenter is:

Dist(xi,bP) = ηi

√

√

√

√

d′

∑
k=1

(

d−1

∑
j=0

S jk(vi, j − v̄i)

)2

. (18)

Finally, if we hold ηi(vi, j − v̄i) ≤ 1
d
√

ρ , where ρ is an

arbitrary constant, we then have:

Dist(xi,bP) ≤

√

(

1√
ρ

)2

+

(

1√
ρ

)2

(19)

Dist(xi,bP) ≤
√

2

ρ
. (20)

Thus, we are able to identify a circular region, centered

at bP with radius Dist(xi,bP) ≤
√

2
ρ , in which points

satisfying this condition must lay.

In the case when σi = 0 any of the vi, j are equal to v̄i

and so the total distance from bP is 0, as we would ex-

pect from earlier in this section. The alternate way of

showing this result using the standard deviation assists

in appealing to our intuition concerning the relationship

between the data record values and the point locations

within the circle.

In RadViz, as σi increases the distance from bP in-

creases to a maximum of 2, the maximum possible in

the unit circle. The maximum distance of 2 may be

closely approached in a case such as the following ex-

ample: given d DAs place all but one at (0,1). Place

the one remaining DA at (0,−1). We are then able to

see that the distance may be calculated as 1+(d−2)/d.

For the 100d data record < 1,0,0, . . . ,0 > with D0 the

DA at (0,−1) we find that we have a distance of 1.98.

The restriction of points to lay within a circle of ra-

dius
√

2
ρ centered at bP has particular significance for

RadViz with uniform placement of DAs. Specifically,

if ρ = 8 points will then lay within a circle of radius
1
2
. Points in that region are of limited usefulness to

the user due to, among other factors, the cancellation

of forces from opposing DAs. The user would have

difficulty assessing which DAs are most influential for

points in this region. In the case where we uniformly

place DAs on the unit circle we are able to identify,

without completing the RadViz transformation, which

points are restricted to lay within this region.

3 CIRCULAR DIMENSIONAL AN-

CHOR MOTION

Here we examine the effects on a data image’s posi-

tion of dimensional anchor motion. We assume that
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DAs are cocircular and move in circular paths along

the common RadViz circle. Section 3.1 allows one DA

to move, which moves a data image in a corresponding

circle. Section 3.2 moves multiple DAs. This creates an

annular region, as in motion planning for a “shoulder-

based” multi-link robot arm (Section 1.2). Reverse-

engineering a configuration of DA angles for a given

position on an annulus is covered in Section 3.3.

3.1 Moving One Dimensional Anchor

Without loss of generality let us move the 0th DA in a

360◦ arc, and we solve for record vi’s image~x:

vi,0(~S0 −~x)+ · · ·+ vi,d−1( ~Sd−1 −~x) = 0 (21)

~x =

(

ηi

d−1

∑
j=1

~S jvi, j

)

+ηi
~S0vi,0. (22)

So, by moving any one DA the movement of

the point will trace a circular path with center
(

ηi ∑d−1
j=1 cosθ jvi, j,ηi ∑d−1

j=1 sinθ jvi, j

)

and radius ηivi,0.

This effect can be seen in Figure 5. Note that the point

circle’s center location is determined only by the data

record values and DAs that are fixed in position and

that the point circle’s radius is determined by the data

record values associated with DAs that are moving.

Figure 5: The circular path traced by the single high-

lighted point (indicated by the arrow) when the DA for

Lumbar Lordosis Angle is moved around the circle.

Data points represent records from the Vertebral Col-

umn dataset [BL13] shown in Weave [DSFG12]. Cen-

ter = (−0.20,0.18) and radius = 0.27.

3.2 Moving Multiple Dimensional An-

chors

To examine the effects of moving multiple DAs we will

consider (again, without loss of generality) the case of

moving the 0th and 1st DAs in a 360◦ arc. The two DAs

move independently of each other. In Section 3.1 we

saw that moving any one DA in a 360◦ arc results in the

data point tracing a circular path. In this case of multi-

ple DAs we then have a composition of circular paths.

This composition of circular paths may be expressed

using the Minkowski sum defined in Section 1.2. As

shown in Figure 6 the result of varying more than one

DA results in any one data image forming an annulus.

In what follows we derive the center and inner and outer

radii of the annulus.

Figure 6: The annular path traced by the single high-

lighted point (indicated by the arrow) when the DAs for

Pelvic Incidence and Pelvic Tilt are moved around the

circle. Data points represent records from the Vertebral

Column dataset [BL13] shown in Weave [DSFG12].

Center = (−0.14,0.36) and inner radius = 0.14 and

outer radius=0.20.

First, returning to our DAs we have:

~x =

(

ηi

d−1

∑
j=2

~S jvi, j

)

+
(

ηi
~S0vi,0 ⊕ηi

~S1vi,1

)

. (23)

Since the Minkowski sum is associative, varying addi-

tional DAs follows similarly. For example, varying a

third DA, say, the 2nd one, would be expressed as:

~x =

(

ηi

d−1

∑
j=3

~S jvi, j

)

(24)

+
((

ηi
~S0vi,0 ⊕ηi

~S1vi,1

)

⊕ηi
~S2vi,2

)

.

See Figure 7 for an example.

For a given data record value, the center of the annu-

lus is completely determined by the fixed dimensional

anchors (Eq. 26). In general, if T is a set of m + 1 di-

mensional index values for which DAs are varying and

Tj is the j th index in T , then the annulus is:

~x = ci,T +
m
⊕

l=0

ηi
~STl

vi,Tl
, (25)
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where the center of the annulus is given by

ci,T = ηi

d−1

∑
j=0,Tj /∈T

~S jvi, j. (26)

To obtain its inner and outer radii we use the analogy

from robot motion planning summarized in Section 1.2.

In our case the robot arm will not necessarily have its

shoulder at the origin but this does not affect our appli-

cation of this theorem; our shoulder is at the center of

the annulus.

For data record vi, we interpret the radius of each circu-

lar path traced when varying any one DA as the length

of any link ℓ. Thus, when varying the 0th DA for record

vi, ℓ0 = ηivi,0 and, in general, ℓl = ηivi,l . The outer

radius is therefore:

ri,T,O =
Tm

∑
l=T0

ℓl =
Tm

∑
l=T0

ηivi,l (27)

The inner radius ri,T,I depends, as indicated in Sec-

tion 1.2, on the relative link lengths. Again, let ℓM be

the maximum link length for the moving DAs. If this

is at most half of the total link lengths, then ri,T,I = 0.

Otherwise:

ri,T,I = ℓM − ∑
l∈T,l 6=M

ℓl = ℓM − ∑
l∈T,l 6=M

ηivi,l . (28)

Since these radii all have ηi as a common factor, the

reach of these links can be seen, then, to be directly

proportional to the value vi, j of the record for dimen-

sion j. From this we note that our ability to reposition a

data image also is directly dependent on vi, j. The result

of the center, link lengths, inner and outer radii calcula-

tions, according to the above, is illustrated in Figure 7

for the case where D0, D1 and D2 are moving.

The outer radius of the annulus associated with a partic-

ular data record point is dependent upon the data record

value for the dimensions for which the DAs are mobile.

It is independent of the location of the fixed DAs or the

value of the point’s coordinate in the dimensions which

correspond to the fixed DAs. Figure 8 illustrates this by

altering the size of the point in the RadViz visualization

in proportion to the outer radius of the point’s annulus.

This feature provides a use case for the visualization

analyst to further explore data relationships by showing

the relative mobility of the records.

3.3 Reverse-Engineering Dimensional

Anchor Configuration

Section 3.2 allows us to solve the following problem.

Given a point p determine if there are DA positions al-

lowing a data image to lie at p. This is accomplished by

constructing the annulus A and then testing if p is in A.

Figure 7: The annular path traced by the single high-

lighted point (indicated by the yellow text box) when

the DAs for Lumbar Lordosis Angle, Pelvic Radius,

and Grade of Spondyloisthesis are moved around the

circle. Data points represent records from the Vertebral

Column dataset [BL13] shown in Weave [DSFG12].

Center = (0.23,−0.04) and inner radius = 0.07 and

outer radius=0.43.

Figure 8: The size of the point varies with the outer ra-

dius of the annulus. The annulus outer radius for the

selected anchors (in red), is used for setting point size.

Points closer to Pelvic Radius and Grade of Spondy-

lolisthesis are larger, indicating a stronger expression

for these anchors.

If p is in A, a natural next question is: can we find a set

of DA positions producing p? This reverse-engineering

task is addressed here. Again, we use a motion planning

analogy; this is the one from Section 1.2 which uses a

recursive approach.

The algorithm described by O’Rourke [O’R98] (sum-

marized in Section 1.2) is formulated in a recursive

fashion. Since our goal is a high-dimensional visual-

ization, from a practical point of view we need to avoid

recursion stack depth overhead. Our prototype imple-

mentation of the algorithm written in Perl uses an it-

erative interpretation of the recursive algorithm which
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takes into account the properties of our annuli and that

our “links" are DAs.

Our iterative algorithm receives as input the data record

array, the target point, and an array which contains the

indices of the fixed DAs. We start with creating a circle

centered at the final target point and an annulus com-

posed of the remaining moving dimensions. At each

iteration we perform the same intersecting of the circle

and annulus as in the recursive algorithm. We select one

point from the points of intersection as the target point

for the next iteration. As each moving DA is placed we

compose a new annulus with the remaining DAs.

As with the recursive procedure we conclude when two

DAs remain and the annulus problem has reached our

base case of intersecting two circles (this is in contrast

to O’Rourke’s base case mentioned in Section 1). Fig-

ure 3 in Section 1 illustrates an example of a robot arm

link configuration.

As an illustration of another use case, the data ana-

lyst has moved the point in Figure 7 to a new location

(within the annulus). A new configuration for the mov-

ing DAs has been calculated and all of the points in the

RadViz image have been placed with the new DA con-

figuration. The result of moving this point, as it appears

in Weave, may be seen in Figure 9.

Figure 9: In comparison with Figure 7, the indicated

point was moved to a different location on the annulus

and a new configuration of the moving the DAs was

calculated.

4 CONCLUSION

This paper contributes to the understanding of point

sensitivity in NRVs, that is, where and how data record

images move under DA motion. We have shown that

the barycenter of the DAs in a NRV is important be-

cause data records whose dimensional values are all

equal map to the barycenter, regardless of the posi-

tions of the DAs. (Note that the barycenter changes

when the DA positions change.) Our bound on the dis-

tance from a data record’s image to the barycenter can

form the basis for a preprocessing step for exploration

in radial visualization where the DAs are placed uni-

formly. We have presented a correspondence between

robot arm motion in the 2D plane and circular motion

of DAs. This confines a data record’s image to an an-

nulus, whose center and inner and outer radii we pro-

vide. Given a point in an annulus we also show how to

recover an associated DA configuration. This can po-

tentially be extended to solve the following problem:

given k points, what is an optimal DA arrangement to

place these points closest to the boundary? Examples

of our point sensitivity features are demonstrated using

the Weave system. The insights provided in this pa-

per lay a foundation for additional avenues for future

visualization work on point sensitivity and possibly di-

mensional anchor placement heuristics. One promis-

ing direction for future work with dimensional anchor

placement heuristics would seek dimensional anchor

configurations that help to visualize clustered multi-

dimensional data; in this context prior work such as that

in the FreeViz system [DLZ07] and by Albuquerque et

al. [AEL+10] may be relevant.
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