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ABSTRACT

We present a robust feature matching approach that considers features from more than two images during matching. Tradi-

tionally, corners or feature points are matched between pairs of images. Starting from one image, corresponding features are

searched in the other image. Yet, often this two-image matching is only a subproblem and actually robust matches over mul-

tiple views and/ or images acquired at several instants in time are required. In our feature matching approach we consider the

multi-view video data modality and find matches that are consistent in three images. Requiring neither calibrated nor synchro-

nized cameras, we are able to reduce the percentage of wrongly matched features considerably. We evaluate the approach for

different feature detectors and their natural descriptors and show an application of our improved matching approach for optical

flow calculation on unsynchronized stereo sequences.

Keywords: Keypoint matching, motion estimation, multi-view video.

1 INTRODUCTION

In recent years the increased availability of high qual-

ity video cameras together with readily available stor-

age space and fast data transfer has led to a grow-

ing interest in stereoscopic or, more general, multiple

view video. Although multi-view video data actually

is highly redundant, many algorithms in the processing

pipeline consider only pairs of images. One important

processing step is establishing feature point correspon-

dences that are used, e.g. as low-level starting point for

motion estimation [SLW+10, BWSS09, BBM09]. De-

termination of robust feature points and corresponding

feature point descriptions has been an intensely investi-

gated area of research for decades [MTS+05, MS05].

In spite of great advances, wrongly matched corre-

spondences are still commonly encountered. If addi-

tional information on the images is provided, e.g. by

calibration, synchronization or assumption of constant

rigid motion, this information can be used to eliminate

wrongly matched correspondences [HZ03]. Unfortu-

nately, in practical applications additional information

is not always available as, for instance, multiple cam-

eras are hard to synchronize in an outdoor environment

and usually images of independently moving objects

are recorded.

The goal of our work is to develop a versatile, robust
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feature point matching method that is generally appli-

cable, e.g. also in the unconstrained multi-view video

setup. Our basic idea is to exploit the redundancy in

the data of multi-view video sequences with a common

field of view. We use it to establish more reliable cor-

respondences to ensure high-quality matches. Feature

points are matched by considering loops of images. We

introduce three image consistent matching and evaluate

it by means of the percentage of wrong matches.

Additionally, we show how a stereo-video optical

flow algorithm [SLM10] can benefit from incorporat-

ing our robustly matched features. Recent research

has shown that optical flow can be improved if

ideas from feature matching are included into the

approach, [BBM09, XJM10]. In contrast to variational

based optical flow algorithms that require an iterative

approach to cope with large distances [BBPW04], fea-

tures can be matched independently from their position

in the image and thus deal with arbitrary distances,

as long as their descriptor is sufficiently robust to

the corresponding changes in perspective or object

deformations. For the inclusion of feature matching,

optical flow approaches pay careful attention to outier

matches as these are able to prevent convergence to

the desired motion fields. In this work we show that

our robust loop matching strategy which exploits the

data modality given for multi-view video is able to

improve optical flow estimations without further outlier

treatment.

2 RELATEDWORK

Usually features are matched between two images from

synchronized cameras and spurious matches can be

discarded using epipolar geometry [SZ02, HZ03]. Gen-

erally, the assumption of global affine motion between
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Figure 1: Three images with detected features (SIFT)

of a multi-view video sequence: our algorithm ac-

cepts three images with some common field of view

acquired by one or several unsynchronized and uncali-

brated cameras. By requiring consistency of matches

on a loop of three images, false matches are elimi-

nated and correspondences between images can be es-

tablished robustly.

two images can be used to validate matches [BGPS07].

But also game theoretic approaches exploiting local

similarity transforms are used to establish reliable

matchings between two images [ART10].

If several independent objects move in a monocular

sequence, e.g. for person or object tracking [YJS06],

feature locations from previous frames can also be

used to estimate feature locations in the current frame

[Zha94]. Assuming that features have at most one

correct match in each frame, disjoint tracks of features

over multiple frames can be considered to improve

correspondences [VRB03, SS05, SSS06]. Thereby,

the tracks provide a regularization of the matches

over time, but no feedback for the correctness of the

tracking is provided.

For static scenes, the trifocal tensor [TZ97] can be

used to consider consistency of the matching between

more than two images [BTZ96]. Yao and Cham first

verify and add matches between image pairs to sat-

isfy the epipolar constraint, before the matches are ex-

tended to image triples and the trifocal tensor is com-

puted [YC07]. In contrast, Zach et al. first deter-

mine global, invertible transformations between im-

age pairs before they detect wrong transformations on

multi-image loops and discard them [ZKP10], enabling

more robust multi-image static 3D reconstruction.

If a dynamic scene is recorded by multiple, unsyn-

chronized cameras Ho and Pong work with high den-

sity feature points and use assignments of neighboring

pixel in a relaxation labeling framework to obtain con-

sistent matchings [HP96]. In the same setup, Ferrari et

al. perform consistency checks on loops of images, but

require an additional similarity measure that is different

from the measure used to establish preliminary match-

ings [FTV03].

Mathematically the problem of finding consistent

correspondences on three sets of equal, finite car-

dinality is well studied [Spi00] and approximation

algorithms to the NP-hard problem have been proposed

by several authors [CS92, BCS94].

In Sect. 3 we will adapt these approximation schemes

to sets of different sizes. In Sect. 4 we evaluate the

results of this new algorithm. We incorporate our con-

sistent matches into a three image spatio-temporal op-

tical flow algorithm, Sect. 5 and show how consistency

of flow and features can improve dense correspondence

estimation.

3 THREE IMAGE-FEATURE MATCH-

ING

Let I1 :Ω1 → R, I2 :Ω2 → R and I3 :Ω3 → R be three

images of a multi-view video sequence that have some

common field of view on a dynamic scene. In contrast

to previous robust matching methods, we do not require

epipolar geometry between images to be applicable, nor

do we assume a temporal ordering, i.e. the three im-

ages can be acquired by one, two or three unsynchro-

nized cameras, Fig. 1. For each image Ii, i ∈ {1,2,3} a

feature detector determines features fi,k,k ∈ {1, . . . ,Ni}
with corresponding descriptors si,k. We denote the de-

scriptor distance function with d(si,k,s j,m). In our ex-

periments, Sect. 4, we evaluate the algorithm for sev-

eral detector/ descriptor variants, so we keep the de-

scription general in this section.

Usually, after detection the features are matched be-

tween two images at a time. Authors of different de-

scriptors propose slightly different matching methods.

To keep the results comparable, we follow the approach

of [MS05] and use nearest neighbor matching (NN) for

all two-matching steps.

A more elaborate two-matching strategy (NNDR)

compares the distance of the nearest neighbor to the dis-

tance of the second nearest neighbor and only accepts

a match if their ratio is below a threshold [Low04]. We

also include this matching strategy into our evaluation.

If more than two images are considered, inconsis-

tencies in the matches such as ( f1,k, f2,m), ( f1,k, f3,n)
and ( f2,m, f3,p), p 6= n become obvious. In multi-view

video, corresponding feature points are supposed to be-

long to one single scene point, so inconsistent matches

indicate false matches. A straightforward approach to

reduce the number of false matches is to filter out any

match that is not consistent on a three image circle. To

eliminate inconsistent matches already during the as-

signment we formulate the matching problem in a dif-

ferent way.

In our approach we look for triples ( f1,k, f2,m, f3,n)
such that each fi, j is present in at most one triple. To

each of the triples we assign a cost d̃ that is the sum of
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the distances of all three descriptors d̃(s1,k,s2,m,s3,n) =
d(s1,k,s2,m) + d(s1,k,s3,n) + d(s2,m,s3,n), i.e. the dis-

tance between each pair of features is considered in the

cost function, which therefore is independent of the or-

dering of the images. In contrast to previous approaches

this formulation requires the matches in all images to

be similar and thus closes the loop between the images,

providing a feedback to the matching and avoiding the

drift commonly encountered in considering ordered set

of images. If all features were present in all three im-

ages this is an instance of the classical three-matching

problem with decomposable cost-function, a NP hard

problem which can be solved approximately with the

following algorithm [CS92]:

i. Match the features in I1 and I2, e.g. using the Hun-

garian algorithm, (see [PS98]).

ii. Merge the sets of features on the basis of

the matching in (i.) such that the new cost

function between features in I1 and I3 is

d̂(s1,k,s3,n) = d̃(s1,k,s2,m,s3,n).

iii. Match the features in I1 and I3 with the new distance

function.

iv. Sum up all distances present in the matching.

v. Interchange the role of I1, I2, I3 and restart at (i.).

vi. Of the three matchings thus obtained, return the one

with the smallest sum of distances.

Note that step (ii.) enforces the third feature in the triple

to be close both to the feature in I1 and the feature in

I2. Enforcing this condition simultaneously provides

the means to transport the information of the other im-

ages to the bilateral matching.

The three-match returned by this algorithm can be

proved to lie within a certain distance to the actual best

solution and in practice it often turns out to be the best

solution [BCS94].

Yet, working with real images, we have to deal with

occluded and non-detected features as well as with non-

distinctive descriptors. We therefore adjust the above

algorithm. In step (i.) we use NN matching or option-

ally NNDR matching. Additionally we match feature

points only if they are mutual nearest neighbors. Thus

the processing is independent from the ordering of the

images and the feature points. For step (ii.) we remove

all features from both images that are not matched in the

previous step. We are only interested in feature points

that can be matched consistently in three images. As

the number of feature points differ in every image and

we do not require all feature points to be matched, the

sum of all matchings is no longer a reliable quality mea-

sure and step (iv.) is skipped. Correspondingly, for step

(vi.) we do not return the match with the smallest over-

all cost, as this is dependent on the number of feature

points actually matched. Instead we merge the three

matches and only return those triples that are found

in all three matching directions. Though this last step

might seem rather restrictive, in our setup we opt for

less matches with high quality instead of a higher num-

ber of matches with more questionable quality. This

proceeding is in accordance with considering d̃ in (iii.)

that enforces the matches to be mutual neighbors. In

summary our algorithm looks as follows:

1. (a) Match the features in I1 and I2, using NNmatch-

ing, optionally with distance check to the second

nearest neighbor.

(b) Match the features in I2 and I1, using NNmatch-

ing, optionally with distance check to the second

nearest neighbor.

(c) Accept only symmetrically matched features.

2. Remove unmatched features in I1 and merge the re-

maining features on the basis of the matching in (1.)

such that the new cost function between matched

features in I1 and features in I3 is d̂(s1,k,s3,n) =
d̃(s1,k,s2,m,s3,n).

3. (a) Match the features in I1 and I3 with the new dis-

tance function using NN matching.

(b) Match the features in I3 and I1 with the new dis-

tance function using NN matching.

(c) Accept only symmetrically matched features.

4. Interchange the role of I1, I2, I3 and restart at (1.).

5. Merge the three matchings and return only those

matches that are assigned in all three matching di-

rections.

4 EVALUATION OF THREE IMAGE-

FEATURE MATCHING

A great number of feature detectors [MTS+05] and

feature descriptors [MS05] exist in literature. For a

comparison of those we refer the reader to these sur-

veys. The aim of our work is to evaluate the im-

pact of three-image matching and so we chose four

widely used detector/ descriptor combinations for our

evaluations: SIFT [Low04] and SURF [BETV08] are

both scale invariant detectors for blob-like structures

and with their natural descriptors also invariant to ro-

tation and changes in illumination. We also evalu-

ate our matching algorithm on Harris-corners [HS88]

and the more recent accelerated corner detector FAST

[RD06] and combine both with the normalized cross

correlation (NCC) on a 9× 9 window. We transform

the normalized cross-correlation to a cost function via

d(si,k,s j,m) = 1−NCC( fi,k, f j,m) to obtain a descriptor

distance as used in Sect. 3. Using rather advanced and

robust detectors as well as rather low level detectors we
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SIFT NN SURF NN Harris NN FAST NN SIFT NNDR

# M %WM # M %WM # M %WM # M %WM # M %WM

art
2IM 1444 53.39 616 64.45 93 49.46 474 45.57 674 10.53

3IM 603 11.28 177 20.90 44 13.64 220 13.64 506 2.57

books
2IM 1786 15.58 713 38.85 364 21.98 914 27.02 1506 2.52

3IM 1373 2.26 318 8.81 200 9.00 517 8.70 1315 0.84

dolls
2IM 2206 23.75 809 35.60 134 18.66 812 19.33 1583 2.21

3IM 1545 4.27 434 7.60 102 2.94 528 4.17 1367 1.02

laundry
2IM 1112 49.64 675 68.89 158 80.38 420 55.58 627 19.94

3IM 550 15.82 193 28.50 32 40.63 174 17.24 457 7.66

moebius
2IM 1634 24.24 475 38.95 77 20.78 317 35.65 1211 4.54

3IM 115 5.02 254 14.96 50 4.00 160 6.88 1011 2.47

reindeer
2IM 943 27.78 428 43.69 49 20.78 290 33.79 683 6.88

3IM 664 7.08 200 14.50 37 8.11 143 11.89 578 2.77

waving
2IM 4345 11.12 1314 24.20 196 26.53 353 19.97 3804 1.26

3IM 3995 4.76 1069 12.16 156 19.23 135 9.43 3720 0.70

stonemill
2IM 628 34.71 251 62.55 225 49.78 763 49.15 366 2.73

3IM 427 13.11 114 35.96 133 27.82 452 22.79 324 0.62

RubberW.
2IM 2077 3.85 236 16.53 48 0.00 255 6.67 1975 0.56

3IM 1585 0.32 107 5.61 25 0.00 153 1.31 1510 0.20

Hydr.
2IM 1111 16.56 432 20.88 176 25.57 576 22.74 853 1.52

3IM 254 2.76 56 8.93 20 15.00 70 8.57 136 0.74

wall
2IM 7776 25.44 2365 49.26 1693 28.53 6733 33.71 5327 0.56

3IM 5363 2.50 686 5.10 906 1.21 2892 1.87 4714 0.19

graffiti
2IM 2057 62.52 1385 77.98 265 90.68 822 91.12 689 25.83

3IM 626 11.50 140 33.57 8 87.50 39 78.95 338 4.14

Table 1: As three image matches (3IM) have to satisfy stricter requirements than two image matches (2IM),

the total number of matches is reduced while the quality of the matching is increased as the percentage of wrong

matches (%WM) is considerably decreased no matter which of the feature detectors (SIFT, SURF, Harris or FAST)

or matching strategy (nearest neighbor(NN) or nearest neighbor with threshold on the distance ratio (NNDR) ) is

used.

want to evaluate our matching scheme independently

from the detector used.

For reason of comparison, in our experiments we

apply nearest neighbor (NN) matching in all cases

[MS05]. Additionally we apply the more advanced

NNDR matching that was proposed for SIFT-features,

using a threshold of 0.8 on the distance ratio [Low04].

We apply the thresholding step accordingly in the

matching step (1.), but found it to have no impact in the

matching step (3.) as the combined matching already is

sufficiently distinguishing. We therefore do not apply

the distance check in (3.).

Using a naïve MATLAB implementation on a

2.66GHz processor, three image consistent matching

of 975 FAST features with 81 dimensional descriptors

in I1, 944 features in I2 and 860 features in I3 for

the art scene requires 736ms. With the same setup,

independent two-matchings between I1 and I2, I1 and

I3 and I2 and I3 last together 126ms.

In our experiments we determine the number of

matches and the percentage of matches outside a

5 pixel circle around the ground-truth location in

different scenes. The scenes art, books, dolls, laundry,

moebius and reindeer are rectified multiple view

images of a static scene with known disparity [SP07].

The scenes waving [SLM10] and stonemill [LLM10]

are synthetic, unsynchronized stereo sequences of a

moving scene with known ground-truth correspon-

dence fields. The scenes RubberWhale and Hydrangea

are the only monocular sequences of more than two
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(a) (b)

Figure 2: The two image-based matching approach (a)

results in more outliers (red circles) and a lower rela-

tive amount of inliers (yellow crosses) than our three

image based-matching (b). From top to bottom: scene

art with SIFT features, RubberWhale with SURF fea-

tures, stonemillwith Harris corners, laundrywith FAST

features, all using nearest neighbor matching.

images with independently moving objects and known

ground-truth motion from the Middlebury optical

flow data set [BSL+07]. In contrast, the scenes wall

and graffiti describe a viewpoint change for a static,

mostly planar scene [MS05]. The number of matches

and percentage of outliers are shown in Tab. 1, some

examples are given in Fig. 2. As expected the number

of matches is reduced with our stricter three-matching

strategy. But at the same time the percentage of outliers

among the assigned matches is also considerably

reduced.

We also apply our algorithm to the real multi-video

recordings scenes market, 421 × 452 pixel, and

capoeira, 817× 578 pixel, which are recorded using

unsynchronized, uncalibrated cameras with automatic

gain, while in the scene outside, 270 × 480 pixel,

cameras are additionally hand-held. The algorithm is

performed on the entire images with all features points

found, but for visibility reasons, Fig. 3 shows the results

only for 100 randomly selected SIFT-features: matched

features are marked with a white x and connected

via a yellow line to the location of the corresponding

(a) (b) (c)

Figure 3: For three real world scenes market, capoeira

and outside (a) we compare different matching strate-

gies. Two-image matches (b) provides a larger num-

ber of matches but many outliers among them. Three-

image matches (c) reduce the number of outliers con-

siderably. For better visibility here 100 features are ran-

domly selected and connected with the location of their

matched features by a yellow line if such a feature is

found.

feature. As features are only matched if they are likely

correspondences in three images, the three matching

algorithm obviously decreases the number of matches

as compared to the algorithm that matches features

based on two images. But our algorithm renounces to

match many inconsistent features so that the percentage

of outliers is greatly decreased. As we will show in

the subsequent sections, this reduction of the relative

amount of outliers allows matching based algorithms

to start off much better.

5 APPLICATION TO STEREO-VIDEO

CONSISTENT OPTICAL FLOW

Recent optical flow algorithms started to include fea-

ture matches into the dense correspondence estima-

tion to faithfully detect large motion also of small ob-

jects. More specifically, Xu et al. consider motion

vectors of matched features to possibly assign them to

pixels all over the image [XJM10], whereas Brox et

al. [BBM09] include matched regions as prior into their

optical flow algorithm. We adopt the latter idea here

and include matched features into the state-of-the-art

optical flow for stereo sequences [SLM10]. This opti-

cal flow approach is derived from an optical flow algo-

rithm [WTP+09] classified on the Middlebury bench-

mark [BSL+07]. It considers symmetry and consis-

tency on a three image loop and therefore provides a

suitable mean to evaluate the three image based match-

ing. While in the approach of Brox et al. [WTP+09]
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(a) (b) (c) (d)

Figure 4: For the scenes art, laundry, waving, stonemill, Rubber Whale and Hydrangea (a) dense ground-truth

motion fields are given (b). Compared to the motion fields of the loop-consistent TV-L2 algorithm of [SLM10], (c)

the inclusion of our three-image match as prior results in motion fields with better motion detail (d).

several matches are considered to make sure that the

correct correspondence is among them, we incorpo-

rate our matched features in their one-to-one fashion.

Adopting the notation of wr
i, j for the current estimate

of the motion field between image Ii and I j we simply

replace the point-wise energy Eq in [SLM10] with

E f = Eq +δ f ‖Wi, j−wr
i, j−dwi, j‖

2
2 (1)

where for matches ( fi,k, f j,n, fh,m) and [ fi,k] the nearest
integer position to the feature location

Wi, j :Ωi → R
2
, Wi, j(x) =

{

f j,n− fi,k if x = [ fi,k]

0 else

(2)

is a function that describes the matching of the features,

µ ,c > 0 constants and

δ f (x) = µ

{

1− arctan
d̃(si,k,s j,n)

c2π if x = [ fi,k]

0 else
(3)
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a function that assigns values depending on the match-

ing costs or 0 to each point in Ωi. This new energy is

still a quadratic function in the update dwi, j, so the up-

dating scheme of [SLM10] is maintained. Note that for

all experiments we fix µ = 103 and c = 1
5

To speed up calculations and assist the determina-

tion of large flows, loop consistent flow estimation is

performed on a factor 0.5 image pyramid. Similar to

[BBM09] we down-sample the prior Wi, j by consider-

ing the 2× 2 pixels that are represented by one single

pixel in the next coarser level. From the four pixels

in the finer level we only pass on to the next coarser

level half the motion and the weight of the pixel with

the highest weight δ f (x). Thus, if no other matches are

found in the vicinity, the original match is propagated to

the next coarser level or else the match with the smallest

cost is used. Having thus established a matching-based

prior on all levels of a scale pyramid, we initialize the

dense flows on the coarsest level with zero and perform

10 iterations of the updating scheme before proceeding

to the next finer level. We use the upscaled flow field

from the previous level as initialization on the finer level

and thus proceed till the original resolution is reached.

5.1 Evaluation

To evaluate the impact of three image-consistent match-

ing on optical flow estimation, we use all the data sets

with known ground-truth motion from Sect. 4 except

for the scenes graffiti and wall which only contain cam-

era motion around a planar scene and are therefore of

no interest for dense motion field estimation. We mea-

sure the average angular error (AAE) and average end-

point error (AEE) [BSL+07] between the computed and

the ground-truth displacement fields. For comparison,

we also calculate flow fields with a two-image TV-L2

approach [SLM10] incorporating standard two image-

feature matching as prior and the three image-loop con-

sistent optical flow algorithm [SLM10] without prior.

As SURF features provide the best cover of our test

scenes with feature points, we here only show the re-

sults obtained with SURF. Flow fields incorporating

priors obtained with other descriptors behave qualita-

tively in the same way:

If only two image matches and forward flow are con-

sidered, wrong matches have a strong impact and lead

to results with high error, Tab. 2. In [SLM10] Sell-

ent et al. show that loop consistent flow improves the

results of the TV-L2 approach. Incorporating feature

points that are likewise consistent on three images is

able to further improve the results. An improvement is

also visible in the flow field, Fig. 4, as small structures

such as e.g. the hand in the waving scene are better

preserved than without the prior matches.

6 CONCLUSIONS AND FUTURE

WORK

In our article we show that even in the absence of cam-

era calibration and synchronization, feature points can

be matched more robustly if three images are consid-

ered simultaneously. By requiring that features are con-

sistent in three images, the quality of the matching im-

proves as the percentage of wrong matches is consider-

ably reduced.

We also combine three-image matching with three

image-loop consistent optical flow estimation and ob-

tain dense flow fields that have a smaller error and better

preserved motion details than either the loop-consistent

flow or basic flow with non-robustly matched features.

In this work we extend the traditional two image ap-

proach to three images and obtain more robust results.

Future work in this direction compromises to evaluate

whether this trend can be continued if four or more im-

ages are used and whether there is an optimal number

of images to be used.
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