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Abstract

The main goal of this work is to explore the methods usable for image
similarity assessment. First part of this work is dedicated to a fea-
ture based approach utilizing the wavelet transform. The second part
is dedicated to methods for extracting low dimensional codes from
natural images. Particular emphasis is given to the use of neural net-
works. Secondary goal of this work is to explore the options of using
the deep learning methods in an unsupervised machine learning field,
especially in tasks of computer vision and image processing.
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Abstrakt

Hlavním cílem této práce je prozkoumat postupy využitelné pro ana-
lýzu podobnosti obrázků. První část práce je věnována příznakové
metodě založené na waveletové transformaci. Druhá část se věnuje
metodám pro extrakci nízko dimenzionálních kódů z přirozených ob-
rázků. Zvláštní důraz je kladen na využití neuronových sítí. Dalším
cílem této práce je prozkoumání možností využití hlubokého učení
v oboru strojového učení bez učitele, především v oblasti počítačo-
vého vidění a zpracování obrazu.
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1 Introduction

In the days of Internet boom, social networks and affordable smart
phones capable of taking high quality photos and videos, users have
instantaneous access to millions of images across the Web. Given
these circumstances the need to search, filter and organize the im-
ages is more and more crucial. In the case of small collections (i.e.
hundreds of items) it is possible to search for the desired images or
duplicates manually. This becomes infeasible if the number of items
increases. Online photo banks are good manifestation of the need for
easily searchable collection of images. The server gettyimages.com
was recently1 made available to public[6]. It hosts over 30 million
images and stock photographs. The photographs are tagged but the
tags can be rather misleading.

The problem with tagging is, that the tag sometimes does not
describe the object a user is interested in. Other typical problem is
the ambiguity of the tags. When I ran a query "black horse" with the
intent to retrieve images of dark coloured stallions, the first result was
an athlete training on a pommel horse with a black background. To
be fair, the search engine is smart enough to ask the user to resolve
the ambiguities.

Tags bring another issue. Each image has to be manually tagged.
Also the tags can be easily manipulated as shown by the 241543903 2

tag phenomenon. Given the diversity of natural language it is possible
to describe single image with multiple different tags with overlapping
meaning.

A breakthrough in research in recent years allows us to classify
images automatically. The problem is that systems capable of classi-

1March 5th, 2014
2 http://241543903.com/about-241543903

1

gettyimages.com


Introduction

fying natural images need to be trained on labelled data. That means
the problem is not solved, it is just shifted to another domain.

For this paper I have decided to look into a different problem. To
search and retrieve images using another images. This approach is
probably the most helpful when locating duplicates in large collections
of images or when searching for a picture with the same content but
in different resolution. Those are the main selling points of this family
of algorithms.

I see another potential use of the systems capable of searching
using image query: augmented reality systems recently gained on
popularity greatly. If the system will be backed by algorithms capable
of interactive image search, it would be possible to provide helpful
contextual information to the user. The possibilities are limitless.
From simple tasks such as recognizing the logo of an unknown brand
to confirming that the picked mushroom is actually edible.
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2 Brief Review of the Existing
Methods

In this chapter I will present a brief overview of the existing meth-
ods of solving the problem of retrieving similar images. Each section
will cover the principles and the basic ideas of each method. Even
though it is not explicitly stated for each method, all work under the
assumption of normalized data. Each method uses different normal-
ization but all the methods need image with identical size and colour
space.

2.1 Euclidean Distance

Calculating Euclidean distance of two images to estimate their sim-
ilarity is the simplest method in this review. That does not mean
that it does not have its uses. The Euclidean distance of two points
in N-dimensional space is defined as follows:

d(p,q) =

√√√√ N∑
i=1

(pi − qi)2, (2.1)

where p and q are two points (vectors) and the indexed form denotes
the respective elements of the vector.

This method brings several complications. At first, the metric is
designed to work with points in Euclidean space, not with images.
This can be overcome by treating each pixel of an image as an ele-
ment of a vector and calculating the mutual distance element–wise.
Other complication is the actual representation of the result. Given
the nature of this metric it is not entirely clear what should be the
threshold for discerning similar images from dissimilar. The initial di-
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Brief Review of the Existing Methods Euclidean Distance

mensions of the image also play a crucial role. The bigger the image
is, the bigger the resulting distance can be. Assume we are compar-
ing two images of dogs. For one calculation the images will be 32 by
32 pixels large, for the other only 16 by 16 pixels big. The distance
scales quadratically with respect to image dimensions. This effect can
be partially eliminated by scaling the resulting distance by the factor
proportional to the dimensions of the image

d(p,q) =

√∑N
i=1(pi − qi)2

|p|
. (2.2)

Euclidean distance possesses even more severe problem, it doesn’t
tell anything about the structure and content of the image. The loss
of information due to the reduction to single a number is too massive
to draw any conclusions from it. We can demonstrate this on the
artificial example in fig. 2.1.

Figure 2.1: All images have the same Euclidean distance to each other

All shown images have the same Euclidean distance to each other
but they are not similar. We will not consider the images being similar
despite the fact that they all have one dark quarter.

As stated before, using Euclidean distance as an absolute metric is
not practical. That does not mean it is an ineffective method though.
Due to its simplicity it can be used to select potential matches quickly
from a larger database. Albeit it is debatable what threshold to use
to differentiate the matches.

4
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2.2 Image Hashing

Perceptual hashing is, despite its name, quite different from its cryp-
tographic counterpart. In cryptography the data works as a seed to a
random function. In cryptographic hashing it is often also desirable
that similar input data produce different hashes.

For the image comparison the need is exactly the opposite. Similar
pictures should produce similar or same hash fingerprints. There is a
number of hashing methods designed to work with pictures (or texts,
audio, and other media) which fulfils the requirement.

All described hashing methods work on the same principle: At
first, the image dimensions are reduced. The final size is arbitrary
but the common choice is 8 by 8 pixels yielding 64 pixels in total.
The main benefit of scaling is the removal of high frequencies from
the image and improved performance of the algorithm. Scaling is
followed by a conversion to greyscale. This step reduces the image to
64 values. The hash is then calculated from there.

2.2.1 Average Hashing

Average hashing is the simplest approach to generate the hash fin-
gerprint. The resulting 8 by 8 matrix is converted to binary repre-
sentation by thresholding. The assignment of 0 or 1 is based upon a
comparison of the grey value g of the considered pixel with a predeter-
mined threshold value t. The resulting image can thus be calculated
with very little computational effort since for each pixel only a sim-
ple compare operation must be performed. The calculation (2.3) is

5
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applied to each element of the matrix.

ibin =

0 igrey ≤ t

1 otherwise
(2.3)

Value of parameter t is the average value of the input matrix.

2.2.2 Perceptual Hashing

The perceptual hashing[15, 22] uses a different approach for to ob-
tain the desired 64 values. First step is again a size reduction and
conversion to greyscale but the image is larger. The next step is to
calculate Discrete Cosine Transformation (DCT) of the image. DCT
expresses a finite sequence of data points in terms of a sum of co-
sine functions oscillating at different frequencies. The common use
of DCT is in JPEG compression algorithm and in various video and
audio compression algorithms.

Only 64 values representing the lowest frequencies in the image are
considered for further processing. These 64 values are then thresh-
olded using the eq. (2.3) described in previous paragraph. There is
one difference though: While calculating the average value for thresh-
olding, the first coefficient should be omitted. This coefficient corre-
sponds to 0th frequency and can significantly differ from the other
values and thus skewing the average.

2.2.3 Difference Hashing

The difference hashing is another approach to image hashing based
upon the same principle. Starting with scaled greyscale image, the
binary values are based upon difference of neighbouring pixels.

6
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ibin =

0 igrey[n] < igrey[n+ 1]

1 otherwise
(2.4)

The resulting binary images are then arranged to form 64-bit number
– the hash fingerprint. The arrangement method is of no consequence
as long as it is consistent. The resulting fingerprints are then com-
pared using Hamming distance where smaller distance means better
match.

These hashing techniques are quite powerful with regard to finding
matches in a large collection. The hashes are fairly robust to scaling
and colour manipulations and can be used to narrow down the search
space.

2.3 Feature-based Methods

Although this work is focused mostly on neural networks, I have to
mention the feature based methods for the sake of completeness.

Many systems designed for the task of content-based image re-
trieval are based upon the colour and shape features. In the early
years of the research there was a popular trend of using colour his-
togram only. The main flaw of this approach is that it leaves out the
spatial information entirely. Techniques based upon the histogram
only were later superseded by the colour correlograms, as seen in [11]
and the edge histograms [19].

Advancements in the research later introduced new methods fo-
cused more on the overall scene representation[18, 5]. GIST and SIFT
descriptors are able to extract interesting features from images util-
ising various signal processing techniques. These feature descriptors
were designed with recognition in mind but can be exploited in simi-

7
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larity assessment tasks as well.

I have dedicated one chapter to selected feature based algorithm
which I have successfully used earlier.

8



3 Multi-resolution Image
Querying

In [13] authors introduce an elegant method for fast retrieval of images
based upon a low quality query image. The system performs well
even when the query image is a rough hand-made sketch of the target
image. The authors use features extracted from an output of a wavelet
transform of the input image. The coefficients of the transform are
processed and stored in a custom-designed data structure which allows
a quick retrieval.

I have chosen this method as a feature-based counterpart to the
neural network approach also presented in this work. From the many
methods available I have chosen this one because I had previous ex-
perience with it.

3.1 Discrete Wavelet Transform

The wavelet transform is closely related to the Fourier transform.
Its key advantage is that the wavelet transformation has a temporal
resolution as well. The wavelet transform captures both frequency
and location information. Mathematically, the wavelet transform is
a representation of a function by orthonormal series generated by a
wavelet.

There are many wavelets. The simplest one is the Haar wavelet
designed by Alfréd Haar in 1910. For an input represented by a list
of 2n numbers, the Haar wavelet transform may be considered as
pairing the input values, storing the difference and passing the sum.
This process is repeated recursively pairing up the averages to provide
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Multi-resolution Image Querying Discrete Wavelet Transform

the next scale and finally resulting in 2n − 1 differences and one final
sum.

The Haar discrete wavelet transform can be expressed in a ma-
trix form. The transformation matrix (3.1) has N × N shape and
is composed of basis vectors derived from the Haar mother wavelet.
In the previous example the transform matrix (3.2) is only orthog-
onal. Equation (3.3) shows the smallest possible basis for the Haar
transformation.

H =


hT0
hT1
...

hTn

 (3.1)

H =
 1 1

1 −1

 (3.2) H = 1√
2

 1 1
1 −1

 (3.3)

The Haar wavelets were chosen because they are easiest to imple-
ment and fastest to calculate.

3.1.1 Extension to 2D

The Haar wavelet transform in its form presented in the previous
section is defined for a 1D signal. The extension to 2D images is
straightforward – first the rows are decomposed, then the columns.
However, there are two options how to proceed.

Standard decomposition fully decomposes the rows, then the
columns. This produces rectangular artefacts when used for image
compression.

10
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Figure 3.1: Process of standard Haar decomposition

Nonstandard decomposition alternates rows and columns, de-
composing one level at a time. In this case, the compression artefacts
are squares.

Figure 3.2: Process of nonstandard Haar decomposition

3.2 Image-querying Metric

The discrete wavelet transform (DWT) on its own does not help with
searching for similar images. The resulting transformed image has the
same size as the original data, thus there is no reduction of data to
process. The image-querying metric described in this section demands
preprocessed DWT coefficient to work properly.

3.2.1 Preprocessing of DWT Coefficients

The first step in preprocessing the transformed image is the trunca-
tion of the coefficients. An image of the size 32 by 32 pixels yields 1024
coefficients per colour channel. Certain number of the coefficients is

11
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usually zero or very close to zero, in the case of processing natural
images. This fact enables to employ the DWT in various data com-
pression scenarios – probably the best known is the JPEG 2000 image
compression algorithm. The image-querying metric takes advantage
of this fact to greatly simplify the results of the transformation.

In the truncation step of the preprocessing, only m coefficients
with the greatest magnitude are selected; rest of the coefficients is
set to zero. This truncation both accelerates the search for the query
and reduces storage for the database. Truncating the coefficients also
greatly improves the discriminatory power of the metric, probably
because it prioritizes the most important features of the image. The
number of preserved coefficients is to be found experimentally.

The next preprocessing step is the quantization of the truncated
coefficients. The quantization – alike the truncation – reduces the
search time and the storage space for database and improves the dis-
criminatory power of the metric. The quantized coefficients retain
little or no information about the original magnitudes of the major
features in an image. However, the presence or absence of these fea-
tures is sufficient to decide about similarity of the measured samples.
The coefficients are quantized using the signum function:

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(3.4)

3.2.2 Metric

The image querying metric is defined as follows:

‖Q, T‖ = w0,0 |Q[0, 0]− T [0, 0]|+
∑
i,j

wi,j
∣∣∣Q̃[i, j]− T̃ [i, j]

∣∣∣ . (3.5)

12
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The Q and T represent wavelet decompositions of the query and the
target image. The Q[0, 0] and T [0, 0] are coefficients corresponding
to the average intensity of the decomposed image. Further, let Q̃[i, j]
and T̃ [i, j] be the [i, j]-th truncated quantized coefficient of Q and T ;
its value is either -1, 0 or +1.

We can simplify the metric in several ways. The term
∣∣∣Q̃[i, j]− T̃ [i, j]

∣∣∣
can be replaced by

(
Q̃[i, j] 6= T̃ [i, j]

)
where the expression (a 6= b) is

evaluated as shown in eq. (3.6).

(a 6= b) =

1 if a 6= b

0 otherwise
(3.6)

Next, the terms are grouped together into buckets. The weights
are grouped using the function bin(i, j) which is defined as

bin(i, j) = min{max{i, j}, B}, (3.7)

where B is a parameter chosen manually. The idea behind grouping
is that the probability of coefficient being on the same scale level
as its neighbour is increasing with the distance from [0, 0], and that
information they carry has identical impact. As shown in fig. 3.2,
three quarters of the coefficients correspond to the same scale level.

Finally, to speed up the search in database, only the coefficients
of the query Q̃[i, j] which are non-zero are considered. The final form
of the metric is as follows:

‖Q, T‖ = w0,0 |Q[0, 0]− T [0, 0]|+
∑

i,j:Q̃[i,j]6=0

wi,j
(
Q̃[i, j] 6= T̃ [i, j]

)
.

(3.8)

It is worth noting that the last step disqualifies this formula as a
metric because it violates symmetry. In the rest of this work the term

13
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metric will be used to avoid confusion.

Computational form of the metric

Themetric (3.8) is further refined to allow for simple computations. It
is assumed that the final database will contain much more mismatches
than matches, therefore we can adjust the metric to reflect this. The
summation in eq. (3.8) can be rewritten in terms of equality operator

(a = b) =

1 if a = b

0 otherwise
(3.9)

Using this operator the term

∑
i,j:Q̃[i,j] 6=0

wi,j
(
Q̃ 6= T̃

)

in eq. (3.8) can be rewritten as

∑
i,j:Q̃[i,j] 6=0

wk −
∑

i,j:Q̃[i,j] 6=0

wi,j
(
Q̃ = T̃

)
.

Since the first term ∑
wk is independent of T̃ , we can ignore it for the

purpose of ranking the images in database with respect to the metric.
To rank the images, it is sufficient to calculate the expression

w0 |Q[0, 0]− T [0, 0]| −
∑

i,j:Q̃[i,j]=0

wbin(i,j)
(
Q̃[i, j] = T̃ [i, j]

)
. (3.10)

3.3 Tuning the Metric

The final metric (3.10) involves a linear combination of terms. In this
section, I will discuss how to find a good set weight to parametrize
the metric. It is possible to use some multidimensional optimizations

14
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but it would be difficult to find the appropriate cost function. The
regression models based upon the least squares fit are not suitable
for this task either. If the database contains 100 samples, then for
each match there are 99 mismatches. This would cause the regression
model to shift towards the mismatches. In contrast, using equal-sized
sets of matches and mismatches means leaving useful data out.

Another way of how to think of the problem of finding proper
weights for the metric is to consider it a classification problem. The
matches form one class and the mismatches second one, while the
parameters of the classification model will be used in the metric. The
simplest classifier – despite its name – is logistic regression which is
used to find the good set of weights.

3.3.1 Logistic regression

Logistic regression is a method capable of modeling a random variable
with Bernoulli distribution (B(p)) which is a special case of binomial
distribution Bi(n, p) where n – number of trials – is equal to 1 and p
is the probability of success.

In our case the dependent variable Y can only have two values 0
in the case of a mismatch and 1 in the case that the query and target
image matches. The random variable Y ∼ B(p) can be described as
follows

P (Y = y) = py(1− p)1−y. (3.11)

It is not possible to model the random variable directly in the form

Y = Θ0 + Θ1x1 + · · ·+ Θnxn

because the variable Y is discrete while the coefficients Θ and values
X are from R. We can model the probability that Y will get a specific
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value, though. Modelling the probability of Y getting value

P (Y = y) = Θ0 + Θ1x1 + · · ·+ Θnxn, y ∈ 〈0; 1〉

still does not guarantee that the data X will not generate a value
outside the interval 〈0; 1〉. This can be solved by introducing the
odds function:

odds(P (Y = 1)) = P (Y = 1)
P (Y = 0) = P (Y = 1)

1− P (Y = 1) (3.12)

The odds function represents how many times it is more likely that
the value of Y will be 1 as opposed to the value of Y being 0. The
range of the odds function is (0,∞).

The next step is to extend the range of the odds function so it
covers the whole (−∞,∞) interval. For this we define the logit func-
tion:

logit(P (Y = 1)) = ln(odds(P (Y = 1))) = ln

(
P (Y = 1)

1− P (Y = 1)

)
,

(3.13)
which can be modelled similarly to the linear regression:

logit(P (Y = 1)) = Θ0 + Θ1x1 + · · ·+ Θnxn.

The probability is expressed as follows:

P (Y = 1) = 1
1 + e−XT Θ (3.14)

which is a hypothesis for logistic regression model.

The next step is to find the appropriate cost function which can be
used for calculating the optimal parameters of the model. Similarly
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to linear regression we define the cost function as the least squares fit

J(Θ) = 1
m

m∑
i=1

Cost(hΘ(x(i)), y(i))

Cost(hΘ(x), y) =

− log(hΘ(x)) if y = 1

− log(1− hΘ(x)) if y = 0,
(3.15)

where hΘ(x) is hypothesis (3.14) and m is a number of training sam-
ples. Because y ∈ {0; 1} we can rewrite the Cost function as

Cost(hΘ(x), y) = −y log(hΘ(x))− (1− y) log(1− hΘ(x)),

then we can write the final cost function of the logistic regression
model as

J(Θ) = − 1
m

[
m∑
i=1
−y(i) log(hΘ(x(i)))− (1− y(i)) log(1− hΘ(x(i)))

]
,

(3.16)
which is a form suitable for minimization.

3.3.2 Gradient Descent

Gradient descent is a way to find a local minimum of function f(x).
We start with an initial guess and in each step we move in the direction
of negative gradient −∇f(x). We continue this process until we get
to the point, where the function gradient is zero. That point is local
minimum of the examined function. If our function is f(x) and the
initial guess is x0 then the gradient descent can be defined as follows:

xk+1 = xk + λ∇f(x), (3.17)

where λ is a learning constant. The purpose of this parameter is
to guarantee, that the algorithm will converge. The choice of λ is
usually in a range 10−1–10−6. Properly chosen parameter λ ensures
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that f(xk+1) ≤ f(xk) hold for every k.

The main problem for gradient descent are function which has
narrow valleys and plateaus. In case of narrow valleys, the gradient
descent can start oscillating in zig-zag pattern. Cause of this is, that
in each step the direction of gradient is almost perpendicular in each
step. The gradient descents progress slows down significantly.

Figure 3.3: Rosenbrock function

Another problem are the plateaus. On the plateau the gradient of
function is small. The progress is then slowed down significantly as
well.

Figure 3.4: Function with distinct plateau
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In the case of the logistic regression our goal is to minimize the
cost function (3.16). The update has then the following form:

Θj := Θj − λ
∂

∂Θj

J(Θ) (3.18)

this update is applied simultaneously to all Θ.

There exists two flavours of the gradient descent algorithm. The
batch gradient descent in listing 3.1 where before each step, every
training sample is examined.

Listing 3.1 Batch gradient descent
1 while not conve rged ( ) {
2 fo r j := 0 to n {
3 Θj := Θj − α

∑m
k=1

(
hΘ(x(i))− y(i)

)
x

(i)
j

4 }
5 }

The other is the stochastic gradient descent in listing 3.2. Which
makes step after every sample is examined.

Listing 3.2 Stochastic gradient descent
1 while not conve rged ( ) {
2 fo r i := 0 to m {
3 fo r j := 0 to n {
4 Θj := Θj − α

(
hΘ(x(i))− y(i)

)
x

(i)
j

5 }
6 }
7 }
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3.4 Implementation Details

In this section I will cover few implementation details of this method.
This section is meant only as an implementation guideline, it is not
meant as a program documentation.

3.4.1 Haar Wavelet Decomposition

As mentioned in section 3.1.1 there are two versions of the Haar
wavelet decomposition, I will cover only the standard decomposition
type.

Listing 3.3 Standard Haar decomposition
1 haar1D (A : a r r a y [ 0 . . .h−1]) {
2 while h > 1 {
3 h := h /2 ;
4 fo r i := 0 to h−1 {
5 A ’ [ i ] := (A[2 i ] + A[2 i + 1 ] ) /

√
2 ;

6 A ’ [ h+i ] := (A[2 i ] − A[2 i + 1 ] ) /
√

2 ;
7 }
8 A := A ’ ;
9 }

10 }

The code above performs decomposition on array A of h elements,
with h being a power of two. When working with images, this code
would decompose a single row or a column of a single colour channel
of the image. An entire n × n image T can be thus decomposed as
follows:

After the decomposition, the element T [0, 0] contains a value pro-
portional to the average intensity of the channel while the rest of the
array are the wavelet coefficients. It is important to emphasize that
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Listing 3.4 Image Haar decomposition
1 haar2D (T : a r r a y [ 0 . . .n−1, 0. . .n−1]){
2 fo r row := 0 to n−1 {
3 haar1D (T [ row , 0. . .n−1]) ;
4 }
5 fo r c o l := 0 to n−1 {
6 haar1D (T [ 0 . . .n−1, c o l ] ) ;
7 }
8 }

the algorithm processes the image in place, if the original image is
needed, it is necessary to create a copy first.

In the final database only value T [0, 0] and m coefficients with
the highest magnitude are stored (see section 3.2.1 on page 11). The
m coefficients are stored in six search arrays with one array for each
combination of sign (positive or negative) and colour channel.

For example, let D+
c denote the search array for positive elements

of the channel c. Each element of D+
c [i, j] then contains a list of

images that have a positive coefficient in the channel c at position
[i, j]. The search arrays are computed for each target image. Because
of the structure of the database it is simple to add new samples to
the collection.

The querying process is best described by the algorithm presented
in the original paper [13], shown in listing 3.5.

The resulting list of scores is sorted and the value with the lowest
score is the best match. The bin function is defined in eq. (3.7).
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Listing 3.5 Ranking query in database
1 rankQuery (Q : a r r a y [ 0 . . . n− 1 , 0 . . . n− 1 ] , m) {
2 l i s t := ∅
3 haar2D (Q) ;
4 s c o r e s [ i ] := 0 , ∀ i ;
5 foreach T in Database {
6 s c o r e s [T . i n d e x ] += w[0] ∗ |Q[0, 0]− T [0, 0]|
7 }
8 Q̃ := t r u n c a t e (Q , m)
9 fo r Q̃ [ i , j ] , ∀ i , j where Q̃ [ i , j ] 6= 0 {

10 i f Q̃ [ i , j ] > 0
11 l i s t := l i s t ∪ D+ [ i , j ]
12 e l se
13 l i s t := l i s t ∪ D− [ i , j ]
14

15 fo r ` in l i s t
16 s c o r e s [ ` ] −= w [ b i n ( i , j ) ]
17 }
18 return s c o r e s
19 }
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4 Low Dimensional Codes

In this chapter I will focus on the low dimensional codes approach.
There are few techniques how to extract the low dimensional codes
from images but I will mostly focus on neural networks. At first, I
will introduce principal component analysis, then the neural networks
in general, then I will cover few architectures of interest, and at last
I will discuss the tested methods in details.

4.1 Principal Component Analysis

The central idea of principal component analysis (PCA) is to reduce
the dimensionality of a data set consisting of numerous interrelated
variables while retaining as much of the variance present in the data
as possible. This reduction of dimensionality allows faster execution
of the algorithms and data compression. The compression is possible
when there is a redundancy present in the data. Correlation is a
redundancy as well; if the data is correlated it is not necessary to store
the whole information but only the main components and calculate
the rest of the original data. The image data are in general highly
locally correlated. The intensity of the picture element is strongly
correlated to the intensities of its neighbouring elements.

4.1.1 “Toy Example”

For the sake of this explanation, let’s pretend we are physicists study-
ing motion of ideal spring. The system in fig. 4.1 consists of a ball
of mass m attached to massless, frictionless spring. During the ex-
periment, the spring is stretched and because we are dealing with an
ideal system, the ball will oscillate along z-axis about its equilibrium.
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Camera #1

Camera #2

Camera #3

x

y

z

Figure 4.1: Spring experiment

The motion along the z-axis is solved by an explicit function of time.

In our experiment we set up three cameras at arbitrary positions
and angles recording the ball. Our goal then is to extract the equation
describing the movement of the ball. The task is also burdened by a
noise – the cameras have discrete resolution, our measurements are
not precise, or even the spring is less-than-ideal.

Dataset

Assume that the cameras are taking 30 frames per second, the exper-
iment run for 1 minute. This dataset has 1,800 6-dimensional vectors
where each camera provides 2-dimensional projection of the scene. In
general, each sample is m-dimensional vector where m is the dimen-
sion of the measurement. Those samples lay in m-dimensional vector
space defined by orthonormal basis. A simple choice of basis B is
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identity matrix I.

B =


b1

b2
...

bn

 =


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1

 = I

If we mark the three cameras A, B and C, then each sample can be
expressed as 6-dimensional vector:

x =
[
xA yA xB yB xC yC

]T

4.1.2 Idea Behind PCA

The goal of PCA is to find another basis, which is a linear combina-
tion of the original basis that re-expresses the data best. Under the
assumption that PCA is linear we can define m × n matrices X and
Y related by linear transformation P:

PX = Y, (4.1)

where X is matrix of samples, Y is matrix of samples projected into
a new basis, and P is the transformation matrix. To find the best
basis we have to find the correct transformation P.

The best basis should assure the following properties:

Low noise – The noise in data must be low so it does not obscure
the interesting features. There is no absolute scale for the noise but
rather a relation of the noise to the signal is used. Signal to noise
ratio (SNR) is defined as a ratio of variances:

SNR =
σ2
signal

σ2
noise

(4.2)
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A high SNR (� 1) indicates a precise data while a low SNR indicates
a noisy data.

Low redundancy – In our example with the spring, the redun-
dancy is induced to the experiment by using 3 cameras. In fig. 4.2a

(a) Data with low correlation (b) Data with high correlation

Figure 4.2: Data correlation example

the data has low correlation and redundancy. The 2 variables plot-
ted has little to no mutual information. In fig. 4.2b the data form a
distinct line. The two variables are clearly related i.e. one could be a
measurement in inches and the second a measurement in centimetres.
In the second example it would be enough to record the linear com-
bination of those variables which would reduce the dimensionality of
the data by one.

To find the redundancy between individual samples we have to
calculate covariance. Consider two sets of measurements with zero
mean.

A = a1, a2, . . . , an, B = b1, b2, . . . , bn

The variance of set S is defined as follows.

σ2
S = 〈aiai〉i

where 〈·〉i denotes average over values indexed by i. The covariance
between A and B is a straightforward generalization

covariance of A and B ≡ σ2
AB = 〈aibi〉i
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Two important facts about covariance:

• σ2
AB = 〈aibi〉i = 0 if and only if A and B are entirely uncorre-

lated,

• σ2
AB = σ2

A if A = B

The sets can be converted to vectors without loss of generality.

a =
[
a1 a2 . . . an

]
b =

[
b1 b2 . . . bn

]
Then the covariance can be expressed as a dot product of two vectors

σ2
ab = 1

n− 1abT , (4.3)

where the first term is a normalization factor. Finally from vectors
we can make one step further to matrix composed from vectors.

X =


x1(= a)
x2(= b)

...
xm

 .

The covariance matrix is then defined as

SX ≡
1

n− 1XXT . (4.4)

• The ijth element of matrix SX is equivalent to substituting
xi and xj into eq. (4.3).

• SX is a square symmetric m×m matrix.

• The diagonal terms of SX are the variance of the corresponding
vectors.
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• The off-diagonal terms of SX are the covariance of the corre-
sponding vectors.

SX quantifies the correlations among all possible pairs of vectors in
the dataset.

As our goal is to remove redundancy from the dataset and as the
redundancy is expressed in terms of covariance, we want the covari-
ances between separate measurements to be zero. The covariance ma-
trix SX contains the covariances of the measurements in off-diagonal
elements. We want these elements to be zero. Therefore, removing
redundancy diagonalizes the matrix SX.

PCA assumes that all basis vectors p1, . . . ,pm are orthonormal
and the matrix P is also orthonormal. Secondly, PCA assumes that
directions with the largest variance are the most important, i.e. the
most principal.

There are few other assumptions made about PCA:

I Linearity
Linearity assures that PCA can be reduced to a change of the
basis.

II Mean and variance are sufficient statistics
The only zero-mean probability distribution that is fully de-
scribed by the variance is the Gaussian distribution. If the
examined distribution is not Gaussian it could skew the results
of PCA. In practice, a lot of real-world data has Gaussian dis-
tribution due to Central Limit Theorem.

III Large variances hold important information
This assumption is based upon the idea that a dataset has a
high SNR. The principal components with higher variances are
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associated with the useful data and components with low vari-
ances with the noise.

IV The principal components are orthogonal
This assumption simplifies the problem so that it is solvable
with linear algebra decomposition techniques.

4.1.3 Solving PCA

One way to solve PCA is the eigenvector decomposition bu PCA is
more commonly associated with Singular Value Decomposition (SVD).

Singular Value Decomposition

Let X be an arbitrary m × n matrix and XTX be a rank r, square
symmetric n by n matrix.

Other definitions of interest are:

• {v̂1, v̂2, . . . , v̂r} is the set of orthonormal m×1 eigenvectors with
associated eigenvalues λ1, λ2, . . . , λn for the symmetric matrix
XTX (

XTX
)

v̂i = λiv̂i,

• σi ≡
√
λi are singular values,

• {û1, û2, . . . , ûr} is a set of orthonormal n×1 vectors defined by

ûi ≡
1
σi

Xv̂i,

• {ûi, ûj} = δij where δij is Kronecker delta, function of two
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variables defined as follows

δij =

0 if i 6= j,

1 if i = j,

• ‖Xv̂i‖ = σi.

The third assumption can be rewritten as

Xv̂i = σiûi. (4.5)

This can be extended to cover all vectors in the set and ultimately
deriving the SVD formula.

The first step is constructing a diagonal matrix Σ:

Σ ≡



σ1
. . . 0

σr

0

0 . . .
0


, (4.6)

where σ1 ≥ σ2 ≥ . . . σr are singular values. Next, we construct two
additional orthogonal matrices U and V.

V = [v̂1, v̂2, . . . , v̂r] ,

U = [û1, û2, . . . , ûr] .

The missing vectors are added so that the matrix is square and or-
thogonal. By combinig the previously defined matrices we get the
matrix form of SVD:

XV = UΣ. (4.7)

As V is orthogonal, we can multiply both sides of equation by V−1 = VT ,

30



Low Dimensional Codes Principal Component Analysis

which will give the final form of the decomposition:

X = UΣVT . (4.8)

Now the first k columns of U define a new basis for the reduced
space. To get the projections of the input dataset we have to project
the input samples into the reduced space:

zi = Ur
Txi,

where the Ur is the reduced matrix U containing the first k columns
and z is projection of the sample.

The selection of k designates the dimensionality of the target
space. The following formula is used to select a suitable k

∑k
i=1 σii∑n
i=1 σii

≥ p

where p is the parameter which controls the percentage of the retained
variance in the output space. If we need to retain 99% of the input
variance, we set p = 0.99 and choose the smallest k for which the
inequality holds true.
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4.2 Artificial neural networks

Artificial neural networks (ANN) are computational models inspired
by biological structures. The neural network is composed of artifi-
cial neurons modeled after the biological neurons. They are usually
presented as systems of interconnected neurons. The neurons are or-
ganized into layers and significance of connections are determined by
associated synaptic weights.

4.2.1 Biological neuron

Dendrite

Soma

Axon

Figure 4.3: Diagram of typical neuron by Jarosz Quasar1

Biological neuron is a basic unit of neural system. The neurons
are highly specialized cells capable of transmitting and processing
signals. The neurons exist in many forms but for simplicity I will show
only the basic typical neuron. A typical neuron is divided into three
main parts: the soma or cell body, dendrites, and axon. The soma
is a compact core from which the axon and dendrites extend. The
dendrites usually span profusely extending their farthest branches
only few microns far from the soma; axons, on the other hand, span
great lengths. Synaptic signals from other neurons are received by the

1 available under CC BY-SA 3.0 at http://en.wikipedia.org/wiki/File:
Neuron_Hand-tuned.svg
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Weights

Activation

z = b+∑
i xiwi

w1

w2

wn

x1

x2

xn

Σ

b

f(z) a = f(z)

ThresholdingInput

Figure 4.4: Diagram of artificial neuron

soma and dendrites while the signal to other neurons is transmitted
by the axon.

The synaptic signals are generated in the axon hillock which is a
point where the axon leaves its soma. When a signal travels along
an axon and arrives at a synapse of a receiving neuron it causes a
release of a transmitter chemical. The transmitter molecules diffuse
across the synaptic cleft and bind to receptor channels in the receiving
neuron. The effectiveness of transmission can be modified by changing
the number of the released transmitter molecules and the number of
the receiving channels. The synaptic weights adapt over the time so
that the whole network learns to perform useful computations.

4.2.2 Neuron Models

There are few types of artificial neurons. Artificial neurons are mod-
eled after the biological ones but there are some differences. The
most notable difference is that artificial neurons communicate using
real values rather than discrete peaks of activity. A scheme of the
artificial neuron is shown in fig. 4.4.

Binary threshold neuron – is the first model of the artificial neu-
ron authored in 1943 by McCulloch and Pitts. The neuron first com-
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putes the weighted sum of the inputs, then sends a fixed peak of
activity if the weighted sum exceeds a threshold. McCulloch and
Pitts thought that each spike is like a truth value of a proposition.
The input to the neuron is conceived as the logical formula and the
activation is the result of this formula.

There are two equivalent ways to write the equations for a binary
threshold neuron:

z =
∑
i

xiwi, z = b+
∑
i

xiwi,

b = −Θ

y =

1 if z ≥ Θ,

0 otherwise.
y =

1 if z ≥ 0,
0 otherwise.

(4.9)

In eq. (4.9) z is the total synaptic input of the neuron, y is the total
activation of the neuron and b or Θ is the activation threshold.

Linear neurons are defined by the following equation:

y =
∑
i

xiwi. (4.10)

The linear neuron separates the input space into two half-spaces.

Rectified linear neuron also known as linear threshold neurons
compute weighted sum of their inputs. The output is a non-linear
function of total input.

z = b+
∑
i

xiwi,

y =

z if z > 0,

0 otherwise.

(4.11)
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Sigmoid neurons give real-valued output that is a smooth func-
tion of their total input. They use logistic function which has rea-
sonable derivative. The derivative is important for efficient learning
algorithm.

z = b+
∑
i

xiwi

y = 1
1 + e−z

(4.12)

Stochastic binary neurons are practically the same as the sig-
moid neurons (4.12). The only difference is that they treat the output
as probability of activation.

4.3 Deep Learning

Disclaimer

The text in sections 4.3.1–4.3.4 is transcribed and/or adapted from
the copyrighted material publicly available at http://deeplearning.
net/tutorial. The intellectual property in those sections belongs to
their respective owners.

4.3.1 Autoencoders
Autoencoder is one of basic building blocks used in early stages
of deep architectures research. An autoencoder is 3-layer archi-
tecture with one hidden layer. An autoencoder transforms input
x ∈ [0, 1]d i.e. binary vector, to hidden representation y ∈ [0, 1]d

through deterministic mapping:

y = f(Wx + b)
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Where f(·) is a non-linearity, common choice for the non-linearity
is sigmoid (3.14) or tanh. W and b are weight matrix and bias
vector respectively. The hidden representation y is then mapped
back into reconstruction z through similar transformation:

z = f(W′y + b′)

In this case the ′ does not indicate transpose operation. z repre-
sents reconstruction of x from code y. The weight matrix W′ of
reverse mapping can be constrained by W′ = WT .

The parameters of this model are optimized in such way that
the average squared error

L(x, z) = |x− z|2

is minimized. In case the input is either bit vector or vector of
bit probabilities the loss function is defined as cross-entropy:

LH(x, z) = −
d∑

k=1
[xk log zk + (1− xk) log(1− zk)]

The idea is that the y captures the most interesting aspects of
input variation similar to principal component analysis (see sec-
tion 4.1 on page 23). y is viewed as lossy compression of x, but
it cannot be a good compression of all possible inputs. Learning
drives the autoencoder to provide good compression for training
samples and hopefully for samples with same distribution as the
training samples as well.

If the network has only one linear hidden layer and the mean
squared error is used to train the network, then the k hidden units
learn to project the input in the first k principal components od
the data. If the hidden layer is non-linear then, the auto-encoder
behaves differently from PCA, with the ability to capture multi-

36



Low Dimensional Codes Deep Learning

modal aspects of the input distribution.

4.3.2 Denoising autoencoders

One potential issue with autoencoders is that it there is no other
constraint than square error, then it could learn identity function
only. If the autoencoder learns identity, then it is only copying
input to output and no compression is happening. This problem
can be overcome by training the autoencoder to reconstruct from
corrupted version of input.

The denoising auto-encoder is a stochastic version of the au-
toencoder where the input is stochastically corrupted, but the
uncorrupted input is still used as target for the reconstruction.
Intuitively, a denoising auto-encoder does two things: try to en-
code the input (preserve the information about the input), and
try to undo the effect of a corruption process stochastically ap-
plied to the input of the autoencoder. The stochastic corruption
consists in randomly setting some inputs to zero.

4.3.3 Stacked autoencoders
The denoising autoencoders can be stacked to form a deep net-
work by feeding the latent representation (output code) of the
denoising autoencoder found on the layer below as input to the
current layer. The unsupervised pre-training of such an archi-
tecture is done one layer at a time. Each layer is trained as a
denoising auto-encoder by minimizing the reconstruction of its
input (which is the output code of the previous layer). Once the
first k layers are trained, we can train the k + 1-th layer because
we can now compute the code or latent representation from the
layer below. Once all layers are pre-trained, the network goes
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through a second stage of training called fine-tuning. Here we
consider supervised fine-tuning where we want to minimize pre-
diction error on a supervised task. For this we first add a logistic
regression layer on top of the network (more precisely on the out-
put code of the output layer). We then train the entire network
as we would train a multilayer perceptron. At this point, we only
consider the encoding parts of each auto-encoder. This stage is
supervised, since now we use the target class during training.

4.3.4 Energy-Based Models

Energy-based models (EBM) associate a scalar energy to each
configuration of the variables of interest. Learning corresponds
to modifying that energy function so that its shape has desirable
properties. For example, we would like plausible or desirable con-
figurations to have low energy. Energy-based probabilistic models
define a probability distribution through an energy function, as
follows:

p(x) = e−E(x)

Z
. (4.13)

The normalizing factor Z is called the partition function by
analogy with physical systems.

Z =
∑
x

e−E(x)

An energy-based model can be learnt by performing (stochastic)
gradient descent on the empirical negative log-likelihood of the
training data. As for the logistic regression we will first define
the log-likelihood and then the loss function as being the negative
log-likelihood.

L(θ,D) = 1
N

∑
x(i)∈D

log p(x(i))`(θ,D) = −L(θ,D)
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using the stochastic gradient −∂ log p(x(i))
∂θ

, where θ are the param-
eters of the model.

EBMs with Hidden Units

In many cases of interest, we do not observe the example x fully,
or we want to introduce some non-observed variables to increase
the expressive power of the model. So we consider an observed
part x and a hidden part h. We can then write:

P (x) =
∑
h

P (x, h) =
∑
h

e−E(x,h)

Z
. (4.14)

In such cases, to map this formulation to one similar to (4.13),
we introduce the notation of free energy, defined as follows:

F(x) = − log
∑
h

e−E(x,h) (4.15)

which allows us to write

P (x) = e−F(x)

Z
with Z =

∑
x

e−F(x).

The data negative log-likelihood gradient then has a particu-
larly interesting form.

− ∂ log p(x)
∂θ

= ∂F(x)
∂θ

−
∑
x̃

p(x̃) ∂F(x̃)
∂θ

. (4.16)

Notice that the above gradient contains two terms, which are re-
ferred to as the positive and negative phase. The terms positive
and negative do not refer to the sign of each term in the equation,
but rather reflect their effect on the probability density defined
by the model. The first term increases the probability of training
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data (by reducing the corresponding free energy), while the sec-
ond term decreases the probability of samples generated by the
model.

Restricted Boltzmann Machines (RBM)

Boltzmann Machines (BMs) are a particular form of log-linear
Markov Random Field (MRF), i.e., for which the energy function
is linear in its free parameters. To make them powerful enough
to represent complicated distributions (i.e., go from the limited
parametric setting to a non-parametric one), we consider that
some of the variables are never observed (they are called hidden).
By having more hidden variables (also called hidden units), we
can increase the modeling capacity of the Boltzmann Machine
(BM). Restricted Boltzmann Machines further restrict BMs to
those without visible-visible and hidden-hidden connections. A
graphical depiction of an RBM is shown below.

The energy function E(v, h) of an RBM is defined as:

E(v, h) = −b′v − c′h− h′Wv (4.17)

where W represents the weights connecting hidden and visible
units and b, c are the offsets of the visible and hidden layers
respectively.
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This translates directly to the following free energy formula:

F(v) = −b′v −
∑
i

log
∑
hi

ehi(ci+Wiv).

Because of the specific structure of RBMs, visible and hidden
units are conditionally independent given one-another. Using this
property, we can write:

p(h|v) =
∏
i

p(hi|v)

p(v|h) =
∏
j

p(vj|h).

RBMs with binary units

In the commonly studied case of using binary units (where vj
and hi ∈ {0, 1}), we obtain from eq. (4.14) and eq. (4.17), a
probabilistic version of the usual neuron activation function:

P (hi = 1|v) = sigm(ci +Wiv) (4.18)

P (vj = 1|h) = sigm(bj +W ′
jh) (4.19)

The free energy of an RBM with binary units further simplifies
to:

F(v) = −b′v −
∑
i

log(1 + e(ci+Wiv)). (4.20)

4.3.5 Sampling in an RBM

Samples of p(x) can be obtained by running a Markov chain to
convergence, using Gibbs sampling as the transition operator.

Gibbs sampling of the N random variables S = (S1, ..., SN) is
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done through a sequence ofN sampling sub-steps of the form Si ∼
p(Si|S−i) where S−i contains the N − 1 other random variables
in S excluding Si.

For RBMs, S consists of the set of visible and hidden units.
However, since they are conditionally independent, one can per-
form block Gibbs sampling. In this setting, visible units are sam-
pled simultaneously given fixed values of the hidden units. Simi-
larly, hidden units are sampled simultaneously given the visibles.
A step in the Markov chain is thus taken as follows:

h(n+1) ∼ sigm(W ′v(n) + c) (4.21)

v(n+1) ∼ sigm(Wh(n+1) + b), (4.22)

where h(n) refers to the set of all hidden units at the n-th step
of the Markov chain. What it means is that, for example, h(n+1)

i is
randomly chosen to be 1 (versus 0) with probability sigm(W ′

iv
(n)+

ci), and similarly, v(n+1)
j is randomly chosen to be 1 (versus 0) with

probability sigm(W.jh
(n+1) + bj). As t → ∞, samples (v(t), h(t))

are guaranteed to be accurate samples of p(v, h).

In theory, each parameter update in the learning process would
require running one such chain to convergence. It is needless to
say that doing so would be prohibitively expensive. As such, sev-
eral algorithms have been devised for RBMs, in order to efficiently
sample from p(v, h) during the learning process.

4.3.6 Deep Belief Networks

Hinton showed [10] that RBMs can be stacked and trained in a
greedy manner to form so-called Deep Belief Networks (DBN).
DBNs are graphical models which learn to extract a deep hierar-
chical representation of the training data. They model the joint
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distribution between observed vector x and the ` hidden layers
hk as follows:

P (x, h1, . . . , h`) =
(
`−2∏
k=0

P (hk|hk+1)
)
P (h`−1, h`) (4.23)

where x = h0, P (hk−1|hk) is a conditional distribution for the
visible units conditioned on the hidden units of the RBM at level
k, and P (h`−1, h`) is the visible-hidden joint distribution in the
top-level RBM.

The principle of greedy layer-wise unsupervised training can
be applied to DBNs with RBMs as the building blocks for each
layer [10, 2]. The process is as follows:

1. Train the first layer as an RBM that models the raw input
x = h(0) as its visible layer.

2. Use that first layer to obtain a representation of the input
that will be used as data for the second layer. Two com-
mon solutions exist. This representation can be chosen as
being the mean activations p(h(1) = 1|h(0)) or samples of
p(h(1)|h(0)).

3. Train the second layer as an RBM, taking the transformed
data (samples or mean activations) as training examples
(for the visible layer of that RBM).

4. Iterate (2 and 3) for the desired number of layers, each time
propagating upward either samples or mean values.

5. Fine-tune all the parameters of this deep architecture with
respect to a proxy for the DBN log-likelihood, or with re-
spect to a supervised training criterion
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4.4 Training Neural Networks

One way to look at the feed-forward neural network is a directed
graph. Each neuron of the network is one node of the graph. Every
node is a computational unit whose edges transmit numerical infor-
mation. Each unit is capable of evaluating some function of its input:
that is the activation function of neuron. The network represents a
chain of function compositions which transform input vectors to out-
put vectors. The network can be seen as a particular implementation
of some function ϕ which approximates some other function f . The
explicit form of function f is not known, we only have some implicit
knowledge through the examples present in training set. The goal of
learning the neural network is to approach with the ϕ as closely as
possible to f with the expectation that ϕ is a good approximation of
f . The difference between ϕ and f can be described by cost function
C.

To get the better idea of the cost function let us consider simple
case of mean squared error. We are given training set

{(x1, y1), (x2, y2), · · · , (xn, yn)}

and feed-forward neural network. The x is training sample, the y is
the target value. We introduce new set of vectors {a1, a2, · · · , an}
which is the activation of output layer of the neural network. We
want to capture how well the neural network approximates the target
values from the training set. To quantify this information we define
the following cost function:

C ≡ 1
2

n∑
i=1
‖ai − xi‖2. (4.24)

As seen in previous section, there is also another definition of the cost
function but the goal is still the same: to find such values of weights
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and biases in neural network so that the cost is minimal.

4.4.1 Backpropagation Algorithm

The goal of backpropagation is to compute partial derivatives ∂C/∂w
and ∂C/∂b of the cost function C with the respect to network weights
w and biases b. For backpropagation to work, the cost function must
have the following property:

C =
∑
x

Cx.

x is a set of all training samples i.e. the total cost function is the
sum of all individual cost functions for each training sample. If this
assumption is true, we can calculate the partial derivatives for each
sample individually. The total value of C is then a sum of individual
derivatives.

The backpropagation is based on basic algebraic operation such
as vector addition and matrix multiplication. One exception is the
Hadamard product which is less common. The Hadamard product
denoted as u�v is defined as follows: u�v = ui ∗vi,∀i. An example
of this operation is:  a

b

�
 c

d

 =
 ac

bd

 .

Let me now introduce notation used in the following paragraphs.
First, wljk is the weight from kth neuron in the (l − 1)th layer to the
jth neuron in the (l)th layer. Next, blj is the bias of jth neuron in lth

layer. Finally, δlj is the error of the jth neuron in lth layer.

Following are the backpropagation algorithm and the explanation
of the equations:
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1. Input – The activation a1 of the input layer is set.

2. Feedforward – Computes zl = wlal−1 + bl; ∀ l = 2, 3, . . . , L
and al = f(zl), where L is the number of network layers and
f(·) is the neuron activation function.

3. Network error – Calculates the output layer error δL = ∇aC�
f ′(zL). f ′(·) is derivation the of f(·), the neuron activation
function and � is the Haddamard product.

4. Backpropagation – Propagates the error back through the
network. Computes δl = ((wl+1)Tδl+1) � f ′(zl); ∀ l = L −
1, L − 2, . . . , 2. The input layer l = 1 is not affected by the
error.

5. The network parameters – The change of cost function with
respect to parameters of the network is ∂C

∂wl
jk

= al−1
k δlj and ∂C

∂bl
j

=
δlj.

In the input step of algorithm, the activation of neurons is set
the values obtained from training set. Then in the feedforward step
the input sample is propagated through the whole network. For each
layer is calculated the weighted input z and then the activation of
the layer. The equation presented in step 3 is actually matrix form
of following equation for the error of single neuron in output layer:

δLj = ∂C

∂aLj
f ′(zLj ). (4.25)

The first term ∂C/∂aLj measures how fast the cost is changing as the
function of the jth activation. The second term measures how fast is
the activation function f changing. The derivation of these two terms
is more clear if we look how small change of weighted neuron input
affects the final cost.

The small change ∆zlj of the neuron’s weighted input propagates
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through network in the forward pass. When ∆zlj is added to the
weighted neuron input the actual neuron’s activation will be alj =
f(zlj+∆zlj) changing activation of all subsequent neurons. The overall
amount of cost change is then ∂C

∂zl
j
∆zlj.

The backpropagation equation shows how to calculate the error in
layer l in terms of the error in the next layer l + 1. The transpose of
weight matrix (wl+1)T is used because the error is propagated from
through network backwards – from layer l + 1 to layer l. Given this
equation we can compute the error for any layer l in the network.

With the knowledge of the change of cost function of the net-
work with respect to parameters, we can apply the gradient descent
algorithm with following update rules:

wl ← wl − α
∑
x

δx,l(ax,l−1)T

bl ← bl − α
∑
x

δx,l
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5 Experitments and Results

5.1 Datasets

This section conveys general information about the dataset I have
considered and tested while working on this thesis. The following
datasets are all of natural images. I have purposely disqualified the
MNIST dataset even though many breakthrough discoveries in the
field of deep learning were presented on it. The reason is that MNIST
dataset comprises of images of handwritten digits and thus is more
suitable for supervised classification algorithms.

5.1.1 Imgur Dataset

The first idea was to write a web crawler program which would down-
load random images from image hosting server Imgur.com. To avoid
potential trouble with owners of the server, I have created a simple
algorithm, inspired by the operating system scheduler, which peri-
odically updated a list of public proxy servers which were used to
download the images.

Although the approach worked, it was impractical. The public
web proxy servers are quite slow, usually limiting the bandwidth.
Given this limitation, the mean time of image transfer was around
10 seconds. Another problem was the latency of the proxies, in some
cases it took up to 50 seconds to get the response from a server. In
the end, I was able to download around 80 images per hour.
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5.1.2 NUS WIDE

NUS WIDE[4] is a dataset created at National University of Sin-
gapore. It contains over 250.000 images acquired from photography
hosting server Flickr.com. There is also a number of derived datasets
containing various features extracted from the images available in the
NUS WIDE dataset.

The dataset is distributed as a set of urls pointing to the im-
ages. The problem with this dataset is again the potential violation
of Flickr’s terms of service. Another issue is that the dataset was pub-
lished in 2009. During the 5 years, a significant portion of the dateset
was removed from Flickr. Unfortunately, in the case of a missing
image, Flickr does not respond with standard 404 HTTP response
code but with custom image with message that the requested image
is missing. It should be possible to automatically detect this image,
as it is same every time, but I have opted for other dataset.

5.1.3 CIFAR 10

The CIFAR-10 and CIFAR-100[16] are labeled subsets of a 80 Million
Tiny Images dataset. They were collected by Alex Krizhevsky, Vinod
Nair, and Geoffrey Hinton.

The dataset consists of 60,000 32x32 colour images. Each image
has one of 10 labels assigned, hence the name CIFAR 10. This dataset
is widely recognised and used for testing various image classification
and computer vision tasks.

I have done some tests with this dataset, but in the end I have
decided to use other dataset because the 32x32 images are not suitable
for printing. The image size is not actually a problem because all the
algorithms I have tested are using images of this size. The only issue
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is that is hard to demonstrate the results with images of this size.

5.1.4 MIRFLICKR

The MIRFLICKR[12] dataset comes in two versions. The first version
MIRFLICKR25000 contains 25,000 images distributed under Creative
Commons licence. The MIRFLICKR-1M contains 1 million of images.
Both dataset were retrieved from photography hosting server Flickr.
com.

Image tags
sassy sugarpants
project
sliding doors
love
day 361
absolute clarity
365 more

Figure 5.1: Random image with its associated tags – bad tags

Every image has a set of user defined tags associated with them.
These tags are often not descriptive enough to aid in the search for
similar images. One example from MIRFLICKR is shown in fig. 5.1.
In this case the tags are probably useful for the author of the image
but not for image retrieval system.

Of course not all images have tags which are not useful. For
example, in the fig. 5.2 the tags are very descriptive.
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Image tags
amazon kindle
ebook
ereader
digital

Figure 5.2: Random image with its associated tags – good tags

5.2 Tools

5.2.1 Python

Python is object-oriented dynamically typed interpreted scripting lan-
guage. Python is developed as an open source project. Thanks to its
user-friendliness and high performance it has been utilized by many
large organizations, among others for example Google, CERN, Ya-
hoo and NASA. A variety of interpreters exists for all major platform
Windows, Mac OS and Linux. Many Linux distributions are shipped
with Python.

For scientific calculations, there are libraries like Numpy, Scipy
and Matplotlib, whose goal is to provide mathematical computations
to Python. I think that with proper libraries, Python can easily
replace Matlab. There is also a number of specialized libraries des-
ignated for machine learning and artificial intelligence. The main
advantage of Python is the speed of development, broad spectrum of
available libraries and powerful syntax.
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5.2.2 Theano

Theano [3] is a Python library designed for defining, optimizing and
evaluating mathematical expressions, especially those with multidi-
mensional arrays. Theano is much more expressive than hand crafted
C code and can be faster if the generated code is run on GPU. The
GPU support is to a large degree transparent to the user. The GPU
code is generated by the framework itself, the user only has to use
the data containers correctly.

Theano combines features of a computer algebra system with fea-
tures of an optimizing compiler. This allows Theano to produce highly
optimized custom code for many mathematical operations. Thanks to
the optimization features, Theano can improve speed and numerical
stability. Theano also features support for the symbolic features such
as automatic differentiation.

5.2.3 Pylearn

Even though Theano provides wide spectrum of features with a high
level of abstraction, it is still a bit cumbersome to work with. This
was probably one of reasons to create the Pylearn [7] framework. If
I were to compare these two I would say that Theano is to Pylearn
what is assembly to C++. The main goal of Pylearn is to provide
standard, easy-to-use toolkit for efficient machine learning.

Pylearn is being developed at the University of Montreal and can
be seen as an abstraction layer on top of Theano (together with few
other scientific libraries). The idea behind Pylearn is that user creates
description of the experiment without the need to do any program-
ming with Theano. Unfortunately, Pylearn is still being developed,
with new features introduced as needed. This, and lack of proper doc-
umentation, makes it hard to use without extensive effort and reverse

52



Experitments and Results Tools

engineering the framework.

5.2.4 Theanets

Theanets is another library based on top of Theano. It provides simple
and clean interface for testing and experimenting with various types
of neural networks. At the moment, the library contains a frame of
generic feed-forward network and implementations of the classifier,
autoencoder and regressor networks. More advanced networks are
not available. The concept of the library is similar to the concept of
Pylearn but because the scale of the library is much smaller it is much
easier to use.

5.2.5 RBM Implementation

The authors of the Theano framework provided some example code
for training RBMs. The code provided is only for machines with
binary input units and binary hidden units, which are not suitable
for working with natural images. To successfully train deep belief
network with natural images it is necessary to use RBM with Gaus-
sian visible units and binary hidden units. This machine acts like an
adapter for the whole belief network.

Unfortunately my attempts of implementing one using Theano
were unsuccessful so I have used pure Python implementation pro-
vided by David Warde-Farley at https://gist.github.com/dwf/
359323. This implementation cannot use GPU but the Numpy [17]
library is capable of utilizing multiple cores if available.
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5.3 Experiments

During my research I did not find any method which could objectively
quantify the similarity of two images. Furthermore, the small part
of the dataset I have chosen does not contain many images which
are similar. With respect to this work, the similarity is the visual
one, not the semantic one. That is to say that two images of sunset
are considered similar because of akin colours and position of those
colours. On the other hand, an image of a black cat on the street
is not considered similar to an image of an orange cat in grass, even
though that in both cases the key motive is the cat.

I have created a custom dataset derived from the training data.
First, I have resized all images from the MIRFLICKR25000 dataset
to 32 by 32 pixels. This way I have the input images consistent with
those from the CIFAR dataset. At this resolution, the total number
of pixels is 3072 – 1024 per colour channel – which yields reasonable
times when training the neural networks. Next, I have created a
copy of these images and converted them from RGB to Lab colour
space. My reasoning behind this was that Lab is more suitable for
expressing perceived colour similarity[14] which could improve the
algorithm recall.

For the training phase I have selected 5000 images, for testing
purposes I took the first 1000 images. The testing images were fur-
ther altered providing 4 testing sets in total – 2 alterations, 2 colour
spaces. To one set of testing images I have applied Gaussian blur with
parameter σ = 5. In the second set 20% of pixels chosen randomly
were set to black.

For the testing I have first trained the system using the training
set of 5000 images and then I have measured the rank of the test
images in the trained system. For systems where it is applicable,
I have used euclidean system of low dimensional codes produced to

54



Experitments and Results Experiments

(a) Original image

(b) Distorted versions of image scaled up 8 ×

Figure 5.3: Test dataset example

rank the queries. If the system does not produce codes I have used
corresponding rank function. The rank of query expresses the distance
of the actual target image, the image that was selected as best match.
This means that an image with a rank of 0 is exact match. In following
subsection I will present results of the experiments.
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5.3.1 How to read results

Each table is divided into 4 sectors: 2 sectors horizontally, one for Lab
colour space and second for RGB colour space and 2 sectors vertically,
one for blurry query images and one for noisy query images. The
rank means how many images were selected as better match than the
actual target. 0 means exact match, 1 means one image was closer to
query than the correct target and so on. The ranks are divided into
5 groups: best three results, then ranks from 2 to 20 and the rest.
All data in tables are in percent. The highest score in each row is
emphasized.

5.3.2 Euclidean distance

This is the simplest method presented. I have measured the Euclidean
distance between pairs of images directly. The results seem satisfac-
tory, but these recall rates are to be expected. In this artificially
constructed use case the noisy images are virtually the same as the
originals. In the case of blurry images the recall rate drops by ~30%
but almost all the target queries are still ranked in the top 20. The
average distance of codes – in this cases pixels – are 4346 and 5043
for blurry and noisy images respectively. In the RGB colour space
the average distances of codes are 4350 and 5044.

Table 5.1: Results of Euclidean distance experiment

blur noise
rank 0 1 2–20 >20 0 1 2–20 >20
Lab

69.2 9.6 18.1 3.1 98.3 0.5 1.2 0
RGB

69.2 9.6 18.1 3.2 98.1 0.5 1.3 0.1
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5.3.3 PCA

In this experiment I have first fitted the model with 1000 training
images. These images were then projected into a given number of
principal components. From the model parameters I have found that
99 principal components contains > 99% of the input variance. I
have chosen two more numbers of principal components to test the
algorithm under different conditions. For the noisy images, the recall
is almost the same as the values for euclidean distance. The recall
for blurry images improved by ~40% in comparison to the euclidean
distance (table 5.1). The number in first column in table 5.2 is the
number of principal components used.

Table 5.2: Results of PCA experiment

blur noise
rank 0 1 2–20 >20 0 1 2–20 >20
Lab

33 98.3 0.5 0.9 0.3 88.6 4.1 67 6
99 89.2 3.6 6.3 0.9 95.6 1.7 24 3
297 73.8 7.9 15.1 3.2 97.6 1 13 1

RGB
33 98.3 0.5 0.9 0.3 87.1 4 80 9
99 89.2 3.5 6.4 0.9 94.7 2.2 29 2
297 73.8 7.9 15 3.3 96.9 1.2 18 1

5.3.4 Autoencoder and Denoising Autoencoders

In neural network experiments I have tested different settings of neu-
ron activation and number of hidden units. In case of the autoencoder
network, the network learned the identity function in all test cases.
When the network learns the identity function, the reconstruction er-
ror is low but all codes extracted from the hidden units are same. As
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a code, I have used the activation of the hidden units stimulated with
an input sample.

For the denoising autoencoder, in addition to various activation
functions and sizes of hidden layer, I have added the noise ratio pa-
rameter. This parameter expresses how much of the input neurons
will be randomly set to zero. In this case, the networks have to recon-
struct the original data from the corrupted input. This is the exact
use case of my tests, unfortunately for the parameters I have chosen
the network learned mostly identity function. In table 5.3 the first
column from the left is activation function, second is number of hid-
den units and the third is the ratio of noise added to input units. I
have run the calculations for all combinations of parameters: three
activation functions (linear, sigmoid, tanh), three counts of hidden
units (33, 99, 297) and three setting of the noise parameter (0.1, 0.3,
0.5). In the table 5.3 I have omitted the rows where the result was
identity function.

The first column marks the activation function and number of
hidden units, in second column are the values of noise parameter.
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Table 5.3: Results of denoising autoencoder experiment

Lab blur noise
rank 0 1 2–20 >20 0 1 2–20 >20

sigmoid
297 0.3 0.6 0.2 3.2 96.0 0.7 0.3 2.7 95.9

0.5 0.2 0.2 3.6 96.0 0.3 0.2 3.2 96.3
tanh

99 0.3 0.2 0.2 3.4 96.2 0.2 0.0 3.2 96.6
0.5 0.2 0.2 3.5 96.1 0.2 0.2 3.5 96.1

297 0.1 1.3 1.2 17.1 80.4 1.1 0.9 17.9 80.1

RGB blur noise
rank 0 1 2–20 >20 0 1 2–20 >20

tanh
99 0.3 0.3 0.2 2.7 96.4 0.1 0.2 3.5 96.2
297 0.5 1.6 1.8 16.6 80.0 1.6 1.4 16.4 80.6

5.3.5 Deep Belief Network

For the deep belief network I have used the deep autoencoder with
the following layer sizes: [3072, 8192, 4096, 2048, 1024, 512, 256, 128,
64]. Where the the first layer on the left (3072) is the visible layer
and last is the deepes layer. Each layer was first pretrained using the
dedicated RBM and the whole autoencoder was fine tuned. For my
network I have chosen the same parameter as Hinton in [10].

The results of the DBN testing are comparable with result from
the PCA with respect to recall. The DBN actually provides much
better results than the PCA, as seen from the average code distance.

For PCA with 297 principal components the average code distance
is ~4300. In the case of the DBN, the average distance of the codes
is ~3; three orders of magnitude smaller. This means that the code
for corrupted queries are much closer to desired target in case of the
DBN which means better accuracy.
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Table 5.4: Results of DBN experiment

blur noise
rank 0 1 2–20 >20 0 1 2–20 >20
Lab
64 18.9 6.6 41.4 33.1 21.8 9.9 48.7 19.6
128 33.5 10.5 36.3 19.7 41.7 13.9 34.5 9.9
256 70.2 12.4 16.3 1.1 77.6 11.5 9.8 1.1
512 89.4 5.9 4.7 0.0 92.2 4.3 3.2 0.3
1024 95.6 2.5 1.9 0.0 95.9 2.3 1.5 0.3
RGB

64 0.1 0.1 1.8 98.0 0.1 0.1 1.8 98.0
128 0.1 0.1 1.8 98.0 0.1 0.1 1.8 98.0
256 11.4 5.2 28.0 55.4 5.6 3.1 19.3 72.0
512 44.3 9.3 28.3 18.1 34.3 8.2 31.2 26.3
1024 61.0 9.3 19.3 10.4 70.4 8.5 15.3 5.8

The main disadvantage of using the DBN is the performance. The
training of stack of RBMs took ~22 hours to train the network on
8 core CPU (Intel i7-2600K @ 3.4GHz) on 5000 images. This dura-
tion would be definitely shorter in a case of training on GPU, but
I was unable to create working GPU implementation of the RBM
network.

5.3.6 Multi-resolution Image Querying

In this experiment, I have created database with 1000 testing images.
Then I have used these images to tune the weights of the ranking
function (see eq. (3.10) on page 14) using the logistic regression. The
number of buckets was fixed at 4. I have tested the recall for various
values of the parameter m and also for a database for which all the
weights were set to 1.

The tuning of the parameters especially improved the recall for
blurry images for lower values of m. On the other hand, the recall
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Table 5.5: Results of Multi-resolution Image Querying experiment.
Metric weights are set to 1.

blur noise
rank 0 1 2–20 >20 0 1 2–20 >20
Lab
20 2.6 1.1 26.6 69.7 5.2 3.0 35.9 55.9
40 37.2 12.6 41.6 8.6 36.0 14.1 38.2 11.7
60 78.9 7.2 11.8 2.1 56.2 15.0 23.5 5.3
80 89.8 3.7 5.5 1.0 63.1 12.5 20.0 4.4
100 93.6 2.4 3.4 0.6 66.2 11.0 19.4 3.4
120 95.6 1.5 2.4 0.5 69.7 9.9 17.5 2.9

RGB
20 1.9 1.3 25.9 70.9 5.5 2.6 35.8 56.1
40 36.4 12.5 42.3 8.8 36.7 13.1 38.8 11.4
60 76.6 8.5 12.9 2.0 55.3 15.5 23.7 5.5
80 87.9 4.2 6.3 1.6 62.5 12.7 20.4 4.4
100 92.4 3.0 3.6 1.0 66.1 11.3 19.1 3.5
120 95.1 1.5 2.7 0.7 69.4 9.8 17.6 3.2

Table 5.6: Results of Multi-resolution Image Querying experiment.
Metric weights are tuned using logistic regression.

blur noise
rank 0 1 2–20 >20 0 1 2–20 >20
Lab
20 73.6 10.6 13.9 1.9 2.4 1.2 8.8 87.6
40 90.8 4.5 3.5 1.2 5.1 2.5 12.9 79.5
60 94.4 3.2 2.0 0.4 9.4 2.5 13.8 74.3
80 95.1 2.5 2.1 0.3 14.3 2.4 14.0 69.3
100 95.6 2.3 1.9 0.2 17.4 3.0 13.5 66.1
120 96.6 1.9 1.4 0.1 20.9 3.5 14.0 61.6

RGB
20 74.8 9.8 13.5 1.9 2.2 1.2 9.2 87.4
40 90.9 4.8 3.1 1.2 5.8 2.1 11.1 81.0
60 94.9 2.8 1.9 0.4 9.3 3.0 13.1 74.6
80 95.2 2.6 1.9 0.3 14.0 3.2 12.9 69.9
100 95.9 2.3 1.6 0.2 17.6 2.4 15.0 65.0
120 96.5 2.1 1.3 0.1 20.2 2.9 16.2 60.7
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rate for noisy images dropped significantly. This is caused by the
training on the clear images.

As the last experiment, I have tested the ability of this method
to retrieve target images based on a hand-painted query. I have se-
lected 18 random images from the training set and painted them in
MS Paint. I was painting using the mouse and from memory so the
paintings are very inaccurate. From the 18 painted queries the system
was able to correctly identify 9. These 9 queries had rank 0 which
means an exact match.

(a) Painted query image (b) Target dataset image

Figure 5.4: Painted query test
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(a) Painted query image

(b) Target dataset image

Figure 5.5: Painted query test
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6 Conclusion

The original assignment for this work was to find a metric which
allows to objectively measure the similarity of two images. I have to
admit that the only algorithm capable of this, that I have tested, is
the Euclidean distance. All the other methods either provide relative
information or does not work objectively. On the other hand, I think
that it is impossible to find such metric without defining what is the
similarity of two images. There are many ways of how to approach
this problem. The main two approaches, that I can think of, are the
semantic approach and the content based approach. In the case of
the semantic approach, the images are considered similar if they can
be described by the same and/or similar keywords. Assigning these
keywords is still an open problem. The other approach is based on
processing the actual content of the image, either the pixels directly
or some extracted features.

In this work, I have focused on the content based approach, or
more specifically, on extracting low dimensional codes from the im-
ages. These codes can be used to find images with similar codes which
should be similar. I have found out that neural networks with shal-
low architecture are not suitable for this task. At least when used
directly. The deep belief networks have shown a big potential which
is supported by the results of recent research in the field of deep
learning.

Two main problems with neural network caused the poor results.
Neural networks need a big amount of data to learn, extracting useful
codes from natural images in unsupervised manner. Together with big
amount of data, the neural networks demand extended periods of time
for learning, which slows down the research and testing significantly.
The other significant problem with neural networks is the scalability.
Codes extracted by neural network are useful for closed static set of
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images only. If the set should be updated regularly, while learning
on the new data, then the existing codes would have to be discarded
and the new codes calculated again. For this reason, I do not think
it would be sensible to use a system backed by neural network as, for
example, a web search engine.

The method based on Haar wavelet transform works surprisingly
well. The main issue that I see with this approach is, again, a lack of
training data. Compared to the neural network approach, this method
has many benefits. It can work in online manner, adding new images
to database on the fly. It is easy to tune to specific domain of queries.
And it provides better results with less data, so the initial cost of
deployment is low in the term of resources.

I would say that neural networks definitely have a bright future.
And there are fields where other approaches does not work. But for
such an open ended problem, as the image similarity assessment truly
is, the neural networks, as I have used them, are not the best tool
available.
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List of Abbreviations

• DCT – discrete cosine transform, a mathematical transform
related to the Fourier transform

• JPEG – a method of compression of digital photographs

• GIST – a low dimensional representation of the scene, which
does not require any form of segmentation

• SIFT – Scale-invariant feature transform, an algorithm in com-
puter vision to detect and describe local features in images

• DWT – discrete wavelet transform, a mathematical procedure
in numerical analysis and functional analysis

• PCA – principal component analysis, a statistical procedure

• SNR – signal-to-noise ratio, a measure that compares the level
of a desired signal to the level of background noise

• SVD – singular value decomposition, a matrix factorization
method

• ANN – artificial neural network, a computational model in-
spired by a biological nervous systems

• EBM – energy based model, see section 4.3.4 on page 38

• BM – Boltzmann machine, a type of stochastic recurrent neural
network

• RBM – restricted Boltzmann machine, a generative stochastic
neural network

• DBN – deep belief network, type of neural network/graphical
model in machine learning
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• GPU – graphics processing unit, a special stream processor
used in computer graphics hardware

• RGB – RGB colour model is an additive colour model

• Lab – Lab colour space, a colour space based on nonlinearly
compressed CIE XYZ color space
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A MIRFLICKR Top 20 Tags

Table A.1: 20 most frequent tags in MIRFLICKR dataset

tag count tag count
explore 1483 night 621
sky 845 nature 596
nikon 805 sunset 585
2007 794 green 569
blue 761 clouds 558
bw 737 macro 547
canon 686 light 516
water 641 flower 510
red 623 big fave 469
portrait 623 white 431
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B User Guide

This guide is intended to provide some basic information on how
to run the included software. Detailed program documentation is
included with the software.

B.1 Requirements

Even though Python is multiplatform the recommended platform is
Linux.

• Python – all code is written in Python, and was tested with
Python 2.7. The support for Python 3 is not guaranteed.

• Theano – this framework can be obtained at http://deeplearning.
net/software/theano/install.html the linked page includes
detailed installation instructions. If you want to run the code
on GPU you will also need computer with NVIDIA graphics
card with NVIDIA CUDA drivers and SDK installed.

• Theanets – framework built on top of Theano can be obtained
from https://github.com/lmjohns3/theano-nets

• RBM code – code for training and testing RBMs and DBNs can
be obtained from https://gist.github.com/dwf/359323

• dataset – it is possible to use any set of images. The datasets I
have used are listed in section 5.1 on page 48.

• Imagemagick suite – this tool is needed for preparation of the
data, namely resizing and converting colour space.

72

http://deeplearning.net/software/theano/install.html
http://deeplearning.net/software/theano/install.html
https://github.com/lmjohns3/theano-nets
https://gist.github.com/dwf/359323


User Guide Installation

B.2 Installation

1. Install and test all required libraries. Then copy all files to tar-
get destination in system and run script setup_vars.sh this
script update environment variables for easier use of the pro-
grams.

2. Download dataset and unpack it in desired location. Then run
the conversion script. The script is called with one parameter
– location of the data. The script require all images to be in
JPEG format. The conversion script creates necessary directo-
ries and prepares the images. When the script run successfully
it will create resized copy of the dataset with resized images.
Copy of dataset in Lab colour space with resized images and
two test datasets for each colour space. Next the script creates
two gzipped Pickle files for each of four datasets. One file con-
tains all images in Numpy ndarray format, the second contains
images from dataset in transformed into vector and stored in
matrix.

B.3 Running experiments

Experiments are divided into directories named according to their
method. Each directory contains two Python scripts. One for build-
ing the experiment and second for testing. Only exception is the
Euclidean distance experiment, where is not any model to build. In
the build phase the script creates the model of the experiment and
stores it in gzipped file. The test code then runs a test on this model
and outputs results. The test code expects the model with certain
filename, so it is not recommended to change the generated files.

The build phase can be quite long and performance demanding.
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Especially the code for building DBN model. During my tests the
code run for 22 hours. The resulting models are fairly small, but the
size of model depends on the parameters of model. In case of neural
networks in the files are stored weights and biases for the networks
and some internal metadata. As a rule of thumb the model of neural
network has at least (layer_in×layer_out+bias_in+bias_out)×8
bytes. The actual size will probably be smaller thanks to gzip com-
pression. At least 1GB is necessary for the DBN with parameters
presented in this work. Other models are much smaller.

B.4 Results

The output of the test script is text file woth collected results. The
file has 2 columns separated by space. The first column is rank of
the sample, the second column is the distance of code of sample and
code of target. Each line represents single sample from test dataset.
The line number corresponds to id of sample, e.g. first sample is on
first row and so on. When evaluating the results bear in mind that
Python and Numpy internally uses C-like array indexing where firt
element has index 0.
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