A Threefold Representation for the Adaptive Simulation of
Embedded Deformable Objects in Contact

Martin Seiler
ETH Zirich, Switzerland
seiler@vision.ee.ethz.ch

Jonas Spillmann
ETH Zirich, Switzerland
spillmann@vision.ee.ethz.ch

Matthias Harders
ETH Zirich, Switzerland
mharders@vision.ee.ethz.ch

ABSTRACT

We propose an approach for the interactive simulation of deformable bodies. The key ingredient is a threefold representation
of the body. The deformation and dynamic evolution of the body is governed by a cubic background mesh. The mesh is
hierarchically stored in an octree-structure, allowing for a fully local adaptive refinement during the simulation. To handle
collisions, we employ a tetrahedral mesh, allowing for an efficient collision detection and response. We then show a physically-
plausible way to transfer the contact displacements onto the simulation mesh. A high-resolution surface is embedded into the
tetrahedral mesh and only employed for the visualization. We show that by employing the adaptive threefold representation,
we can significantly improve the fidelity and efficiency of the simulation. Further, we underline the wide applicability of our

method by showing both interactive and off-line animations.

Keywords: Physically-Based Animation, Deformable Models, Collision Handling, Finite Elements, Adaptivity

1 INTRODUCTION

Interactive simulation of soft tissue calls for both ef-
ficient and physically-plausible methods to model the
non-linear deformations. To accomplish this, the finite
element method (FEM) is commonly employed. How-
ever, the real-time simulation of larger systems with
many degrees-of-freedom (DOF) quickly exceeds the
capabilities of today’s computer hardware. Still, a large
number of DOF are necessary to faithfully reproduce
the deformations. In this paper, we discuss two strate-
gies to make the simulation of geometrically-complex
deformable bodies compatible with the real-time con-
straints, notably the adaptive simulation, and the em-
bedding approximation.

In an adaptive simulation of deformable bodies, as
e.g. discussed by Debunne etal. [6], the DOF are dy-
namically arranged in regions of interest, and removed
from the undeformed parts. This is particularly attrac-
tive in the context of surgery simulations where the in-
teraction between the soft tissue and a surgery tool is
considered. Here, the regions of interest are commonly
spatially narrow regions around the tip of the tool.

The second strategy, called embedding, is orthogo-
nal to the adaptive simulation. In order to animate a
geometrically-complex surface, the surface is embed-
ded into a coarse simulation mesh. The deformation
is then governed by the simulation mesh, and the sur-
face vertices are interpolated. Although the embedding
technology is known since long [33, 23], it gained in-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

creasing attention with the recent advances of Nesme
etal. that consider the varying material properties of the
embedded body in the derivation of the stiffness matri-
ces of the simulation mesh [24]. Still, the unification of
an adaptive simulation with the embedding strategy in
the context of an interactive simulator is not well inves-
tigated.

Contribution In this paper, we propose a method
for the adaptive real-time simulation of complex de-
formable bodies. The key ingredient is a threefold
body representation of the body, consisting of a coarse
simulation mesh, a mid-resolution tetrahedral collision
mesh, and a high-resolution surface for the visualiza-
tion.

The coarse simulation mesh is a non-conforming
rectangular grid composed of cubic elements, and
governs the deformation and dynamic evolution of
the body. The cubic elements allow for an octree
representation, and enable the adaptive refinement.
The surface-interpolating tetrahedral mesh is ex-
clusively employed to detect and resolve collisions.
This is because tetrahedra are well-suited for many
collision detection schemes. Moreover, the tetrahedra
approximate the surface of the body much better
than the cubic elements of the simulation mesh, and
therefore allow for a precise and physically-plausible
handling of boundary conditions. We then present a
formulation for transferring the contact displacements
back on the simulation mesh such that the momentum
is preserved. This contrasts previous approaches that
commonly performed the collision handling directly
on the surface and therefore degrade the performance
if high-resolution surfaces are employed. By em-
ploying our threefold body representation, we can

Journal of WSCG

Figure 1: Adaptive resoultion of simulation mesh. A liver model is deformed by a human guided tool. Interactive
simulation of a deformable liver. The adaptive resolution allows for an efficient simulation, since the DOF are
arranged in the region of interest around the tool. The high-resolution surface is exclusively employed for the

visualization.

adaptively simulate complex, highly deformable bodies
at interactive rates, as shown in Fig. 1.

2 RELATED WORK

The physically-based simulation of soft bodies is an ac-
tive area of research. For an overview, we refer to the
excellent survey of Nealen etal. [25]. In this paper,
we focus on the interactive real-time simulation of soft
bodies. Due to their simplicity and efficiency, mass-
spring systems [2, 33, 11] are frequently used. How-
ever, it is not easy to preserve the global deformation
behavior of an object under adaptive refinement. The fi-
nite element method (FEM) builds directly on the laws
of continuum mechanics [13] and is therefore better
suited for the adaptive simulation. We employ a linear
FE method with a co-rotational stiffness tensor, allow-
ing to reproduce large deformations [17, 18].
Embedding To improve the efficiency, we consider
an embedding strategy where a detailed surface mesh
is embedded in a coarse simulation mesh [5, 33]. The
surface is commonly embedded by linear interpolation,
although other techniques such as harmonic coordi-
nates (suitable for arbitrary polygons) [14, 20] or mov-
ing least squares [15] have been proposed. Recently,
Nesme etal. have proposed to compute a kinematic re-
lation between the coarse and the surface nodes by per-
forming a static FE analysis, and then use this relation-
ship for the embedding [24]. We employ linear embed-
dings since this is favorable in the context of an adaptive
simulation.

The usage of cubic elements in the simulation mesh
is favorable in the context of adaptive refinement. How-
ever, one disadvantage of a hexahedral simulation mesh
is that its boundary is not conforming. Therefore,
boundary conditions arising from, e.g., contact han-
dling cannot be easily imposed directly on the sim-
ulation mesh. Some authors [10, 29, 8] impose the
boundary conditions directly on the surface mesh, but
this degrades the performance in case of highly de-
tailed surface meshes. Therefore, we propose a novel
threefold representation where a low-resolution non-
conforming hexahedral mesh governs the deformation,
a mid-resolution tetrahedron mesh is employed to de-
tect collisions and impose boundary conditions, and a
high-resolution triangle mesh is used for visualization.

Adaptive deformation A widely used strategy to fur-
ther accelerate the simulation of soft bodies is to em-
ploy an adaptive framework. This is usually accom-
plished by considering a hierarchy of meshes at differ-
entresolutions. Then, based on some level-of-detail cri-
terion, each portion of an object can be simulated at a
different resolution, and the physical properties are in-
terpolated in between the different resolutions [6]. In
case of tetrahedral meshes, the hierarchy is usually pre-
computed [35, 26] since dynamic splitting and merging
of tetrahedra is a difficult task. This is where the use of
a hexahedral simulation mesh becomes most evident.
This is because the octree-refinement of hexahedrons is
particularly simple [7, 23]. In turn, the different res-
olutions do not need to be pre-computed; instead, the
adaptation can be done on the fly. This is particularly
impressive demonstrated in [23] where the refinement
level is governed by the position and orientation of the
camera.

One problem inherent to multi-resolution is the
lack of compatibility between elements at differ-
ent resolutions, resulting in incompatible nodes or
T-junctions. Apart from the strategy of avoiding
incompatible elements by, e.g., employing a red-green
refinement strategy [16] or extending the model to
arbitrary polygons [34, 20], there exist a wealth of
approaches to enforce the compatibility explicitly. For
example, this can be done by imposing constraints and
solving them accordingly, e.g., with the method of
Lagrange multipliers [4]. The discontinuous Galerkin
FE method (DG-FEM) treats each element in isolation,
and employs penalty forces to weakly enforce com-
patibility [15]. However, it comes with the drawback
of simulating more DOF than are actually desired in
the simulation. A similar strategy that neglects the
deformation of the elements is presented in [3]. As an
alternative to these works, hierarchical multi-resolution
approaches [9, 23] consider the interaction of an
incompatible node with all its direct and indirect
parents, thereby avoiding a special treatment of the
constraints. However, the resulting system tends to be
denser, which influences the performance of an implicit
solver. We follow the approach of Sifakis etal. which
propagates the force gradients between incompatible
nodes [30]. This approach has the key advantage that

the incompatible nodes do not need to be simulated,
and no special constraint handling is necessary.

3 OVERVIEW

We employ a threefold representation to simulate the
deformable body. The starting point is a high-resolution
surface obtained from, e. g., a geometric modeling pro-
cess or an MRI scan. From this surface, we compute
a tetrahedral mesh whose boundary nodes interpolate
the surface. The tetrahedral mesh defines the material
distribution of the body. We underline that since the
tetrahedral mesh is not employed for the deformation
computation, the tetrahedra do not need to be particu-
larly well-shaped.

To dynamically simulate the deformable body, the
tetrahedral mesh is embedded into a coarse rectangu-
lar simulation mesh whose nodes correspond to La-
grangian mass points with associated dynamic proper-
ties. The simulation, including the handling of colli-
sions, is done by employing a standard manifold pro-
jection method, which first assembles the global stiff-
ness matrix K, then performs an unconstrained time-
evolution to obtain unconstrained positions X(t + h),
and then projects the solution back on the geometric
manifold imposed by the contact constraints to obtain
non-colliding positions x(t + h). Since the contact han-
dling is done with the tetrahedral mesh, the positions X
of the tetrahedral mesh nodes must be interpolated from
the simulated points, and the resulting feasible positions
Xc must be transferred back on the simulation mesh af-
terwards. As a post-processing step, an oracle, i.e. a
heuristic decision maker, performs the adaptive refine-
ment in order to arrange the DOF according to the re-
gions of interest.

repeat
K «+ AssembleStiffnessMatrix(x(t))
X(t + h) < TimeEvolution(x(t), X(t),K)
X¢ + UpdateCollisionMesh(X(t + h))
X¢ +— ComputeFeasiblePositions(Xc)
X(t + h) <— TransferFeasiblePositions(xc)
AdaptiveRefinement(x(t + h))

until stop;

4 SIMULATION MESH

The simulation mesh is a partition of the simulation do-
main into cubic elements of different sizes. An octree is
employed to store the hierarchy of elements. Since we
opt for a pure local refinement of elements, we need to
handle the resulting mesh incompatibility, i. e., we need
to detect and handle the T-junctions. Having in mind
that we want to adaptively refine and un-refine the mesh
on-the-fly, we first describe a compact representation of
the intrinsic coordinates of the simulation elements and
nodes. We then describe an approach to detect the T-
junctions and discuss the deformation model as well as
the numerical integration method.

91

4.1 Location coordinates

A path to an element of the octree is determined by the
information whether we continue on the left or right
side of three split planes. This corresponds to a se-
quence of binary decisions per dimension, with a 0 for
left, and a 1 for right. We now store this decisions for
each dimension separately and obtain a 3-tuple of bit
sequences

Sx X1 X ...
S=|s|=|ny...
S 17 ...

where, e.g., X1 € [0,1] encodes the information whether
the element lies on the left or right side of the top-level
plane splitting the X-axis. We denote these 3-tuples as
location coordinate, similar to the term location code
[21, 27, 1]. Each component of the location coordinate
is now represented in fixed point arithmetic. The main
benefit of this representation is that point coordinates
can be exactly compared, thus avoiding the headaches
that come with floating point comparisons. The navi-
gation within the octree can now be efficiently done by
adding appropriate offset vectors.

4.2 Adaptive refinement

By having assigned a unique location coordinate to
each element within the octree, we have now the tools
in hand to efficiently refining refine elements. We refine
an element if the deformation energy of the element is
above a certain threshold. This simple heuristic is based
on the observation that contacts induce deformations.
Then, the DOF must be arranged in order to reproduce
the deformation, as we will show later. If, in contrast,
the deformation energy of a refined element is below a
second threshold, then we merge its sub-elements. It
is important not to merge strongly deformed elements,
since this results in popping artifacts [26].

To refine, we recursively split an element into eight
sub-elements of same size. Further, we underline that
the refinement is purely local, without restriction on the
level difference between adjacent elements, which is in
contrast to[7]. This avoids that refinements are propa-
gated throughout the entire mesh, which would degrade
the performance.

However, at this point we have to consider that
the original simulation mesh does not correspond to
the simulated body, but to the cubic bounding-box of
the embedded body. Therefore, after a refinement,
some elements might not contain any material (see
Fig. ??). These void elements do not need to be
simulated. Thus, after having refined an element, we
test each sub-element for material intersection, i. e., we
determine the intersection of the sub-elements with the
tetrahedral mesh and remove the empty elements from
the simulation.

Following [6], we interpolate the positions and ve-
locities linearly. In order to adjust the mass contribu-

Journal of WSCG

Figure 2: We employ a threefold representation of the body, notably a deformation mesh, a collision mesh, and an
embedded surface. The top row shows the result of a full simulation while bottom row shows the same scene but
with an adaptive simulation, where elements are refined in regions of large deformation.

tions of the sub-elements, we iterate over the embed-
ded tetrahedral corner points and distribute their masses
barycentrically on the simulation nodes. In addition,
we scale the stiffness matrix in order to account for el-
ements that are only partially filled with material. As
Nesme etal. point out, this improves the stability, be-
cause lighter elements are now also softer [23].

4.3 Detecting T-junctions

T-junctions are inevitable if elements in an octree are
refined in isolation, i. ., without considering the neigh-
borhood of the element. While refining elements in iso-
lation is favorable with respect to efficiency and imple-
mentation ease, the T-junctions require a special treat-
ment in order to avoid cracks during the simulation. To
check whether a given node is a T-junction, we traverse
its set of at most eight adjacent elements, and check
whether the element is not empty and the node is not a
corner of that element. Since T-junctions are not known
a priori, this has to be done for each node. Further,
since the height of the unbalanced octree is in &(N),
the T-junction detection is in ¢ (N?) in theory. Still,
since numerical issues forbid an unlimited refinement,
the height of the tree can be considered as constant in
practice. By imposing restrictions on the level differ-
ences, linear-time T-junction detection algorithms can
be designed [7, 1], but this comes at the price of a non-
local refinement.

4.4 Dynamic deformation model

The adaptive refinement of the simulation mesh results
in a complex of cubic elements and mass points. To
compute the elastic response of the deformable body,
we rely on the linear co-rotational FE method as dis-
cussed in, e g., [18]. This approach has the advantage
that for each element, the stiffness tensor K ¢ depends
solely on the un-deformed point coordinates and an el-
ement rotation Re. Since in the element frames, the
elements are axis-aligned cubes, we can pre-compute

the elemental stiffness tensors in an analytical way, see
Appendix. To estimate the rotation, we follow the ap-
proach described in [19]. We then assemble a global
stiffness matrix K from the elemental stiffness matrices
Ke.

To compute the dynamic evolution of the deformable
body, we assume that the mass points obey the Newton
equations of motion. The time-dependent positions and
velocities of the points then result from numerically in-
tegrating the equations of motion with a semi-implicit
solver. We use the pre-conditioned conjugate gradient
from the Taucs library?! to solve the linear system.

45 T-junction handling

At this point, we have considered all nodes of the sim-
ulation mesh as DOF. However, this is not true for the
T-junction nodes which are barycentrically constrained
to edges or faces of adjacent elements. To enforce these
constraints and avoid cracks in the simulation, we fol-
low an approach proposed by Sifakis etal. in [30] and
later generalized by Nesme etal. [24]. The key obser-
vation is that there exists a linear relation between the
coordinates Xgy of the full system, and the coordinates
Xredqu OF the reduced system containing only real DOF,

M)

where the matrix W contains the barycentric co-
ordinates of the T-junctions with respect to their
parents [30]. Nesme etal. have shown that a similar
relation holds between the nodal forces,

Xiull = W Xredu

freau = W fru

@)

where the vector fgy contains the forces on all
points [24]. The operator W T distributes these onto the
reduced points, excluding the hard bound points. Since

L http://www.tau.ac.il/"stoledo/taucs/

92

we employ an implicit solver, we assemble the global
stiffness matrix likewise as

Kredu = W Kt W. 3)

We now employ the reduced stiffness matrix K yegy to
solve for the future positions. The advantage of this ap-
proach is that the dimension of the system is reduced
by the number of T-junctions, and that no special con-
straint treatment is required. The downside, however, is
that assembling the reduced system is more expensive,
and that the reduced system is denser.

5 TETRAHEDRAL MESH

While the simulation mesh governs the deformation and
dynamic evolution of the body, boundary conditions
such as contact constraints are imposed on the tetrahe-
dral mesh. In this section, we describe how to update
the tetrahedral mesh, handle collisions, and transfer the
displacements back onto the simulation mesh.

5.1 Mesh update

We assume that each node of the tetrahedral mesh lies
in exactly one element of the simulation mesh. Thus,
we can derive a linear relation between the simulation
mesh nodes x and the tetrahedral mesh nodes X,

Xc = HX (4)

where the matrix H contains the barycentric coordinates
of the tetrahedral mesh nodes with respect to the simu-
lation mesh nodes. These correspond to the linear shape
functions evaluated at X.. The matrix H needs to be re-
computed only after an adaptive refinement.

Consequently, having computed the (colliding) future
simulation mesh positions X(t -+ h), we update the tetra-
hedral mesh nodes with Xc(t 4+ h) = HX(t +h). Then,
the collision handling is performed on the (colliding)
positions X, as described in the following.

5.2 Coallison handling

To detect inter-object collisions, we employ a spatial
hashing approach [32]. Then, the penetration depths are
computed with the approach described in [12]. Since
both approaches rely on a tetrahedral discretization,
they go hand in hand with our threefold representation.

To resolve collisions, we employ a position-based
scheme similar in spirit to [28] and [31]. That is, we
resolve each point-triangle collision locally while con-
serving the momentum. This process is repeated itera-
tively until all penetrations are resolved. Experiments
indicate that 5-10 iterations provide sufficient accuracy.
The result of the computation are collision-free posi-
tions x¢ and corresponding displacements d¢ = X¢ — Xc.

5.3 Transferring the displacements

Having computed the collision displacements, we have
to transfer the solution back onto the simulation mesh
in order to realize the collision response. Still, this has
to be accomplished such that the momentum of the sim-
ulation mesh is as well preserved. Moreover, one has to
consider that the resolutions of the simulation mesh and
the tetrahedral mesh might differ significantly.

To accomplish this, we again resort to [24] which re-
lates the forces f on the coarse nodes to the forces f. on
the embedded points as

f=HTf.. (5)

To apply this relation, we write fo = %h‘ZMCdC, where
M is the diagonal mass matrix of the tetrahedral mesh.
Then, f = $h~2HTMdc. Still, it is favorable to handle
collisions on the velocity level. Thus, we convert the
resulting contact forces f back to contact displacements
d, and obtain the final displacement transfer formula-
tion as

1
d=2h’M~! (EhZHTMCdC> =M H"Md: (6)

where M is the diagonal mass matrix of the simulation
mesh nodes. We then update the positions with x(t +
h) « X(t +h) +d, and the velocities with x(t + h) «
h=1(x(t+h) —x(t)). The key benefit of this formulation
is that the momentum is preserved, which is crucial for
the physical plausibility of the simulation.

To understand the consequence of this transfer for-
mulation, one has to consider the case where many
tetrahedral points are embedded in a single element.
In this case, the masses of the simulation nodes are
larger than the masses of the collision nodes. Conse-
quently, the resulting simulation node displacements d
are smaller than the computed displacements d¢, and
the collisions cannot be resolved. This problem can
only be overcome by dynamically refining the coarse
elements in the region of the interaction. In turn, this
results in smaller and lighter elements that can properly
react to the collision. Therefore, a good adaptation ora-
cle is crucial.

6 SURFACE MESH

In order to improve the fidelity, we employ a high-
resolution triangle surface for the visualization. This
surface is linearly embedded in the tetrahedral mesh,
having the advantage that the barycentric coordinates
do not need to be re-computed after refinement of the
simulation mesh. Another benefit is that since we
compute the non-colliding positions of the tetrahedral
nodes and update the vertices of the surface mesh there-
after, visible collisions are avoided even if the simula-
tion mesh fails to reproduce the deformation accurately
enough, as discussed before.

Journal of WSCG

Scene | High-res Adaptive
element count 1024 265
Bar ms / time step 120 17
speed-up factor - X
element count 896 75
Plane ms / time step 102 8
speed-up factor - 13x

Table 1: Performance measurements of our method.
The first row shows the timings of the adaptive bar sim-
ulation illustrated in Fig. 2. For this scenarios, we ob-
tain a speed-up a factor of 7 by employing the adaptive
model. The second row illustrates that for the interac-
tive plane scene (see Fig. 4), we obtain a speed-up of a
factor of 13 since we only refine the mesh in the region
of interest around the tool.

7 RESULTS

In this section, we evaluate the performance of our
method, and demonstrate our method in various chal-
lenging interactive and off-line scenarios. We underline
that the pre-computation time of our method is negligi-
ble. All experiments have been performed on an Intel
quad-core CPU @ 2.6 GHz with a GeForce GTX 280.

7.1 Performance

To show that the application of our method results in a
significant performance gain without compromising the
accuracy, we perform an experiment where an elastic
bar is laid between two rigid obstacles (see Fig. 2). The
length of the bar is 0.2m, its density is 2 x 10% kg m~3,
the Young modulus is 5 x 10° Pa, and the Poisson ratio
is 0.4. We perform the experiment with a non-adaptive
high resolution simulation mesh and compare it with
an adaptive simulation mesh. The measurements (see
Tab. 1) indicate a speed-up factor of seven with only
minor loss in visual quality.

7.2 Examples

First we verify that our method yields comparable re-
sults as a reference simulation: we use tetrahedral FEM
to simulate the same body at a higher resolution. Fig. 3
shows for one example that this is indeed the case.

Figure 3: Qualitative comparison of a hanging bar.
Left: The deformation mesh of the tetrahedral FEM
consists out of 800 elements. Right: Our method em-
beds the body into 9 cubic elements.

94

Our method is particularly attractive in scenarios
where a user interacts in a spatially coherent area
of a large object. To illustrate this, we perform an
experiment where the user interacts with an elastic
plane lying on the ground (see Fig. 4). The size of
the plane is 0.2m x 0.2m, its density is 400kg m 3,
the Young modulus is 3 x 10* Pa, and the Poisson
ratio is 0.4. Since we employ a co-rotational stiffness
tensor, large deformations can be reproduced plausibly,
as illustrated in Fig. 4. There are on average 75
elements simulated, and the tetrahedral collision mesh
contains 8k elements. The average computation of one
simulation step takes 8ms, where 10~3ms are spent for
the adaptive (un-)refinement. The simulation runs at 19
frames per second on average. A similar performance
cannot be achieved by employing a non-adaptive model
(see Tab. 1). In this case, the frame rate drops to 3 fps,
and an interactive manipulation is not possible.

To show that our method can also be employed for
a complex off-line simulation, we drop 81 elastic toy
bikes discretized into 384 tetrahedra on the ground (see
Fig. 5). The computation of the dynamics of up to 3k
elements takes 70ms per time step on average. The de-
tection of 220 collisions takes 20ms and the computa-
tion of the non-colliding positions, including transfer-
ring the displacements, takes 7ms. The surface meshes
of the bikes contain 13k triangles each, performing the
collision handling on the surfaces directly would there-
fore result in a significant computational overhead. In
total, the simulation takes about 7s per frame, including
the rendering of 2.5 million surface triangles.

8 CONCLUSION

In this paper, we have presented an approach for ro-
bust and efficient simulation of deformable bodies. The
key ingredient has been a novel threefold representa-
tion, where a coarse simulation mesh governs the de-
formation and dynamic evolution, a tetrahedral mesh
is employed to handle collisions, and a high-resolution
surface is visualized. The simulation mesh is a parti-
tion of the domain into axis-aligned cubes, and there-
fore enables a straight-forward adaptive refinement. We
have then discussed an efficient approach to detect the
T-junctions. A linear co-rotational FE method, in tan-
dem with an implicit numerical integration method, is
employed to compute the dynamic evolution.

We have further discussed a physically-plausible way
to update the embedded tetrahedral mesh, and after-
wards transfer the collision displacements back onto
the deformation mesh. Our formulation preserves the
momentum and is therefore physically plausible. Ex-
periments indicate that we can simulate interacting de-
formable bodies at interactive rates.

As future work, we plan to adapt the stiffness ten-
sor in order to reflect the embedded material, similar
in spirit to Nesme etal. [24]. In addition, we will ad-
dress topological changes such as cutting and fracture.

Figure 4: By employing an adaptive scheme, we can reproduce rich deformations at interactive rates. This is
because a large object is refined locally, thus arranging the DOF in the regions of interest. To illustrate this, we
perform a simulation of a deformable plane being manipulated by a user. The simulation runs at 19 frames per
second on average. Left: The hexahedral simulation grid. Middle: The tetrahedral collision mesh. Right: The
high-resolution surface mesh.

Figure 5: Massive scenario of bikes falling on the ground. The collisions induce deformations, which in turn make
that the objects are being refined. The surface meshes of the bikes contain 13k triangles each. Since we perform
the collision handling on the tetrahedral mesh, the simulation of the full scenario depicted on the right takes only
7s per frame.

This work has been supported by the Swiss CTI project
ArthroS.

REFERENCES

[1]

(2]

3]

[4]

[5]

(6]

Aizawa K., Tanaka S.: A constant-time algorithm
for finding neighbors in quadtrees. vol. 31, IEEE
Computer Society, pp. 1178-1183.

Bridson R., Fedkiw R., Anderson J.: Robust
treatment of collisions, contact and friction for
cloth animation. ACM Transactions on Graphics
(2002), 594-603.

Botsch M., Pauly M., Wicke M., Gross M.: Adap-
tive space deformations based on rigid cells. Com-
puter Graphics Forum 26, 3 (2007), 339-347.

Carey G. F.: Computational Grids: Generation,
Adaptation and Solution Strategies. Taylor &
Francis, 1997.

Capell S., Green S., Curless B., Duchamp T.,
Popovit Z.: Interactive skeleton-driven dynamic
deformations. ACM Transaction on Graphics
(Proc. SIGGRAPH) 21, 3 (2002), 586-593.
Debunne G., Desbrun M., Cani M.-P., Barr A. H.:
Dynamic real-time deformations using space and
time adaptive sampling. in Proc. SIGGRAPH
(2001), pp. 31-36.

[7]

(8]

[°]

[10]

[11]

[12]

[13]

Dequidt J., Marchal D., Grisoni L.: Time-critical
animation of deformable solids: Collision detec-
tion and deformable objects. Computer Anima-
tion and Virtual Worlds 16, 3-4 (2005), 177-187.

Faure F., Barbier S., Allard J., Falipou F.:
Image-based collision detection and response be-
tween arbitrary volumetric objects. in ACM
Siggraph/Eurographics Symposium on Computer
Animation, SCA 2008, July, 2008 (2008).

Grinspun E., Krysl P., Schroder P.. CHARMS: a
simple framework for adaptive simulation. ACM
Transactions on Graphics (Proc. SIGGRAPH) 21,
3(2002), 281-290.

Galoppo N., Otaduy M. A., Tekin S., Gross M.,
Lin M. C.: Soft articulated characters with fast

contact handling. Computer Graphics Forum 26,
3(2007), 243-253.

Georgii J., Westermann R.: Mass-spring systems
on the gpu. Elsevier Science (July 2005).

Heidelberger B., Teschner M., Keiser R., Mueller
M., Gross M.: Consistent penetration depth esti-
mation for deformable collision response. in Proc.
Vision, Modeling, Visualization (2004), pp. 339-
346.

Hughes T.: The Finite Element Method. Prentice-

Journal of WSCG

Hall, NJ, 1987.

[14] Joshi P., Meyer M., DeRose T., Green B., Sanocki
T.: Harmonic coordinates for character articula-
tion. ACM Trans. Graph. 26, 3 (2007), 71.

Kaufmann P., Martin S., Botsch M., Gross M. H.:
Flexible simulation of deformable models using
discontinuous galerkin fem. Graphical Models 71,
4 (2009), 153-167.

Molino N., Bridson R., Teran J., Fedkiw R.: A
crystalline, red green strategy for meshing highly
deformable objects with tetrahedra. in Proc.
12th International Meshing Roundtable (2003),
pp. 103-114.

Mdiller M., Dorsey J., McMillan L., Jagnow R.,
Cutler B.: Stable real-time deformations. in Proc.
ACM SIGGRAPH/Eurographics symposium on
Computer animation (2002), pp. 49-54.

Miuller M., Gross M.: Interactive virtual materi-
als. in Proc. Graphics Interface (2004), pp. 239-
246.

Mdiller M., Heidelberger B., Teschner M., Gross
M.: Meshless deformations based on shape
matching. ACM Transaction on Graphics (Proc.
SIGGRAPH) 24, 3 (2005), 471-478.

Martin S., Kaufmann P., Botsch M., Wicke M.,
Gross M. H.: Polyhedral finite elements using
harmonic basis functions. Comput. Graph. Forum
27,5 (2008), 1521-1529.

Morton G.: A computer oriented geodetic data
base and a new technique in file sequencing, 1966.

Muller M., Teschner M., Gross M.: Physically-
based simulation of objects represented by surface
meshes. in CGI "04: Proceedings of the Computer
Graphics International (2004), pp. 26-33.

Nesme M., Faure F., Payan Y.: Hierarchical multi-
resolution finite element model for soft body sim-
ulation. in 2nd Workshop on Computer Assisted
Diagnosis and Surgery, March, 2006 (2006).

Nesme M., Kry P. G., Jerdbkova L., Faure F.: Pre-
serving topology and elasticity for embedded de-
formable models. in SIGGRAPH ’09: ACM SIG-
GRAPH 2009 papers (2009).

Nealen A., Miller M., Keiser R., Boxermann E.,
Carlson M.: Physically Based Deformable Mod-
els in Computer Graphics. in Eurographics-STAR
(2005), pp. 71-94.

Otaduy M., Germann D., Redon S., Gross M.:
Adaptive deformations with fast tight bounds.
in Proc. ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (2007), pp. 181-
190.

Samet H.: The Design and Analysis of Spatial
Data Structures (Addison-Wesley series in com-
puter science). Addison-Wesley Pub (Sd), 1989.

Spillmann J., Becker M., Teschner M.. Non-
iterative computation of contact forces for de-
formable objects. Journal of WSCG 15, 1-3
(2007), 33-40.

Steinemann D., Otaduy M. A., Gross M.: Effi-
cient bounds for point-based animations. in Proc.
IEEE/Eurographics Symposium on Point-Based

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

96

Graphics (2007), pp. 57-64.

Sifakis E., Shinar T., Irving G., Fedkiw R.: Hy-
brid simulation of deformable solids. in Proc.
ACM SIGGRAPH/Eurographics symposium on
Computer animation (2007), pp. 81-90.

Spillmann J., Teschner M.: An Adaptive Contact
Model for the Robust Simulation of Knots. Com-
puter Graphics Forum (Proc. Eurographics) 27, 2
(2008), 497-506.

Teschner M., Heidelberger B., Miller M., Pomer-
antes D., Gross M. H.: Optimized spatial hash-
ing for collision detection of deformable objects.
in Proc. Vision, Modeling, Visualization (2003),
pp. 47-54.

Teschner M., Heidelberger B., Muller M., Gross
M.: A versatile and robust model for geometri-
cally complex deformable solids. in Proc. Com-
puter Graphics International (2004), pp. 312-3109.

Wicke M., Botsch M., Gross M.: A finite element
method on convex polyhedra. Computer Graph-
ics Forum (Proc. Eurographics) 26, 3 (2007), 355—
364.

Wu X., Downes M., Goktekin T., Tendick
F.: Adaptive nonlinear finite elements for de-
formable body simulation using dynamic progres-
sive meshes. Computer Graphics Forum 20, 10
(2001), 349-358.

A CUBIC ELEMENT STIFFNESS

In this section, we discuss a way to analytically compute the element
stiffness tensor K, similar in spirit to [22]. For general hexahedra
the usual approach is to use the isoparametric approach and perform a
numerical integration of the resulting integral. For axis-aligned cubes
this is not necessary and a simple parametrization of the integration
domain is straight-forward. From continuum mechanics we know
that a body’s deformation energy is given by

1 Z Y2 X2 1
Ede = / ZoTedv = / / ZeTDedwdydz (7)
Q2 7 Jy Jx 2

with the strain € and the linear elasticity matrix D. To interpolate the
deformation within the element, we employ natural coordinates

Ni(é,n,x):%(1+§i5)(1+nm)(1+xix) 8

where &, ni, and yx; denote the positions of the corners in natu-
ral coordinates. Then the deformation field u within the element is
interpolated by u(&,n,x) = 2?:1 Ni(€,n, x)ui. The Cauchy strain

[30]

[31]

[32]

[33]

[34]

[35]

ec(u) := 3 (Vu+(Vu)T) depends on the spatial derivative
_du du dur . ;. du Ju Ju.r
where
x 9y 9z
9 & %X
X Y 0z
Iy Iy Iy

is the Jacobian matrix. For a general hexahedron, x, y and zare func-
tions of &, n and y, and therefore the partial derivatives are involved
functions in the integration coordinates, requiring a numerical evalua-
tion of the integral in (7). However, since we have cubes as integration
elements, we obtain much simpler functions

X&) 1/2(x —x1)& 11
ym = 1/2(y2—y1)n (12
2x) = 12z-z)x (13)

with a corresponding constant and diagonal Jacobian J. Thus the
integral (7) can be evaluated analytically. The corresponding stiffness
tensor results from basic FE theory [13].

	!_2010_J_WSCG_1-3.pdf
	D71-full.pdf

