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ABSTRACT

The quality of images generated by volume rendering strongly depends on the applied continuous reconstruction method.
Recently, it has been shown that the reconstruction of the underlying function can be improved by a discrete prefiltering. In
volume rendering, however, an accurate gradient reconstruction also plays an important role as it provides the surface normals
for the shading computations. Therefore, in this paper, we propose prefiltering schemes in order to increase the accuracy of the
estimated gradients yielding higher image quality. We search for discrete prefilters of minimal support which can be efficiently
used in a preprocessing as well as on the fly.
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1 INTRODUCTION

An accurate reconstruction of a continuous function from its
evenly located discrete samples is an important issue in many
computer graphics applications. Although the reconstruction
is usually performed as a convolution-based filtering, it is of-
ten not obvious which filter to use for a specific data or re-
sampling task. Generally, an appropriate filter is chosen by
making a compromise between quality and efficiency. The
efficiency directly depends on the support of the given filter,
whereas the quality can be analyzed from different aspects.

According to the signal-processing theory, the sinc filter is
considered to be ideal as it can perfectly reconstruct a band-
limited signal sampled above the Nyquist limit [19]. Nev-
ertheless, the sinc filter is impractical since it has an infinite
support. Although there exist frequency-domain techniques
for ideal reconstruction [6, 8, 24, 25, 1, 10], all of them are
global methods mainly used for resampling the original dis-
crete representation on a transformed grid. On the other hand,
they do not support efficient local resampling. Therefore, in
practical applications requiring fast local resampling, the sinc
filter is either approximated by a filter of finite support or trun-
cated by an appropriate windowing function [14, 22] and the
convolution is performed in the spatial domain.

The quality of the reconstruction is mainly influenced by
the global frequency-domain behavior of the applied filter,
especially if the original signal is sampled near the Nyquist
limit. Therefore a filter is usually characterized by a fre-
quency plot and its quality is quantitatively evaluated as the
deviation from the ideal pass-band and stop-band behavior
[14, 2]. The main drawback of this approach is that practical
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signals can hardly be considered band-limited. Thus even the
sinc filter produces ringing artifacts due to the drastic cut-off
in the frequency domain [1].

A reconstruction filter can also be analyzed based on the
approximation theory. Here the major aspect is how fast the
approximate signal converges to the original one by decreas-
ing the sampling distance. This mainly depends on the ap-
proximation power of the reconstruction filter. The order of
approximation is L if the frequency response equals to zero
at the centers of all the aliasing spectra with a multiplicity of
L [21]. However, in order to fully exploit the approximation
power of a given filter, usually an appropriate discrete pre-
filtering is necessary (see Figure 1). Such a prefiltering can
ensure that a polynomial of L−1 or lower degree is perfectly
reconstructed. If this condition is satisfied, the reconstruction
scheme is quasi-interpolating of order L [7].

The prefiltering can improve the reconstruction from other
aspects as well. For example, depending on the applied
discrete prefilter, it can optimize the pass-band behavior of
the reconstruction [13], make a non-interpolating continuous
postfilter interpolating [3, 23, 4], or increase the accuracy of
the reconstruction in a sense of minimal approximation error
[7]. All these prefiltering techniques are of infinite impulse
response (IIR) and proven to yield k-EF (error function of or-
der k) reconstruction if the approximation order of the con-
tinuous postfilter is L = k [9]. This implies that the result
is a quasi-interpolation of order k. Practically, the order of
accuracy becomes important if the original signal is at least
relatively oversampled, that is, most of its energy is concen-
trated around the origin in the frequency domain and the over-
lapping between the replicas is minimal. This assumption is
valid for medical volume rendering as the resolution of CT
and MRI scanners has been significantly increased in the last
two decades.

In this paper, we demonstrate that prefiltering can be
optimized also for a gradient estimation of higher ac-
curacy. In volume-rendering applications the following
gradient-estimation scenarios can be distinguished:
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1. Precalculated gradients for semitransparent volume
rendering: The gradients are precalculated for each voxel
position. At an arbitrary sample location along a view-
ing ray the gradient is interpolated from the precalculated
ones. Although this approach requires additional memory
for storing the gradient components, the SIMD instruc-
tions of either the CPU or the GPU can be well exploited
for interpolating the components in one step.

2. On-the-fly gradient estimation for semitransparent
volume rendering: The gradients are calculated on
the fly for each sample location along a viewing ray by
applying a derivative filter. Although this approach does
not require additional memory, the gradient estimation is
more expensive computationally as the components are
calculated separately.

3. First-hit ray casting: Rays are cast into the volume and
the first intersection points between the rays and a prede-
fined isosurface are determined. At each intersection point
a gradient calculation is performed. The cost of the gra-
dient calculation, which is proportional to the number of
pixels, is negligible compared to that of the ray casting.

To support not just the first scenario, but the second and the
third ones as well, we search for discrete prefilters of finite
impulse response (FIR). Furthermore, we try to find filters of
minimal support which maximize the order of accuracy. Such
filters can be efficiently evaluated either in a preprocessing or
on the fly, and unlike the IIR filters, do not lead to unexpected
boundary effects.

Möller et al. classified the normal estimation schemes [16]
as follows (F denotes the original discrete function, whereas
symbols D and H denote the derivative and interpolation op-
erators respectively):

1. (FD)H Derivative first: The derivatives are first calcu-
lated for the discrete samples, and interpolated afterwards.
This scheme fits to the first scenario.

2. (FH )D Interpolation first: The derivative operator is
applied on the reconstructed function. This scheme fits
onto the second and third scenarios.

3. F (DH ) Continuous derivative: A continuous deriva-
tive filter is constructed by applying the derivative oper-
ator on the interpolation operator. This scheme is rather
theoretical and equivalent to the first two schemes.

4. FH ′ Analytical derivative: The analytical derivative of
the interpolation operator is used for calculating the gra-
dient components. This scheme fits onto the second and
third scenarios.

In practical volume-rendering applications, usually the tri-
linear interpolation and the central differences are used as the
interpolation and derivative operators respectively, since these
operators can be efficiently evaluated on the GPU. Sigg and
Hadwiger [20], however, demonstrated that current GPUs can
provide interactive frame rates even if tricubic filtering is ap-
plied for resampling. They efficiently implemented the tricu-
bic B-spline filtering in the fragment shader using the ana-
lytical derivative filter for the gradient estimation. Neverthe-
less, as it will be shown in this paper, nor the central dif-
ferences neither the analytical derivative filter can fully uti-
lize the higher approximation power of the tricubic B-spline.

Therefore, we propose to use either a slightly more expensive
discrete derivative filter instead of the central differences or
to use the analytical derivative filter on prefiltered data rather
than on the original data.

2 SPATIAL-DOMAIN FILTER DESIGN
In order to increase the accuracy of gradient estimation, we
slightly modify the framework of Möller et al. [17], which is
briefly summarized here.

The reconstruction of a continuous function f (t) from its
known samples fk is formulated as a convolution with the im-
pulse response w(t) of the applied filter:

f (t) ≈ f̃ (t) =
∞

∑
k=−∞

fk ·w(
t
T
− k), (1)

where T is the sampling distance. By the Taylor series expan-
sion of fk = f (kT ) about t, we obtain:

fk =
N

∑
n=0

f (n)(t)
n!

(kT − t)n +
f (N+1)(ξk)

(N +1)!
(kT − t)(N+1), (2)

where f (n)(t) is the nth derivative of f (t) and ξk ∈ [t,kT ].
Substituting the Taylor series expansion into the convolution
sum in Equation 1, leads to an alternative representation for
the reconstructed value at point t:

f̃ (t) =
N

∑
n=0

aw
n (τ) f (n)(t)+ rw

N(τ), (3)

aw
n (τ) =

T n

n!

∞

∑
k=−∞

(k− τ)nw(τ − k),

rw
N(τ) ≤

(
max
ξ∈R

( f (N+1)(ξ ))

)
|aw

N+1(τ)|,

or rw
N(τ) ≈ aw

N+1(τ) f (N+1)(t),

where τ is chosen such that t = (i+ τ)T , with 0 ≤ τ < 1 and
i ∈ Z. The error coefficients a only depend on the offset τ
to the nearest sampling point, that is, they are periodic in the
sampling distance T . Additionally, they characterize the as-
ymptotic error behavior of the given filter for decreasing sam-
pling distance T . Assume that N is the largest number such
that an = 0 for 0 < n ≤ N. In this case, the error function is
of order O(T N+1), and the reconstruction filter is classified as
k-EF, where k = N +1. Such a filter can perfectly reconstruct
a polynomial of Nth or lower degree, or in other words, it is
quasi-interpolating of order k.

discrete prefilter continuous postfilter

fk pk h(t)
f(t)

prefiltered reconstruction

w(t)

~

Figure 1: Prefiltered reconstruction: Input samples fk are
first convolved with a discrete prefilter pk and afterwards with
a continuous postfilter h(t). The resultant impulse response
is denoted by w(t).

Using the filter design approach of Möller et al. [18], the
parameters of piecewise polynomial filters are determined by
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solving a linear equation system such that the required ac-
curacy and smoothness criteria are satisfied. In this origi-
nal framework the option of prefiltering has not been consid-
ered. However, it can be exploited that the order of the error
function belonging to a prefiltered reconstruction can poten-
tially be higher than that of the non-prefiltered one. Using
prefiltered reconstruction, the original data is first convolved
with a discrete prefilter pk and afterwards with a continuous
postfilter h(t) (see Figure 1). Therefore, the resultant impulse
response w(t) is the convolution of p with h(t):

w(t) =
∞

∑
k=−∞

pk ·h(t − k). (4)

The error coefficients for the prefiltered reconstruction can be
derived as follows:

aph
n (τ) =

T n

n!

∞

∑
k=−∞

(k− τ)n

(
∞

∑
l=−∞

pl ·h(τ − k− l)

)
(5)

=
T n

n!

∞

∑
l=−∞

pl ·
(

∞

∑
k=−∞

(k− τ)nh(τ − k− l)

)
.

Substituting m for k + l in the inner sum, we get (note that
the sums are just formally infinite, as the filters p and h are
assumed to be FIR filters):

aph
n (τ) =

T n

n!

∞

∑
l=−∞

pl ·
(

∞

∑
m=−∞

(m− τ − l)nh(τ −m)

)

=
T n

n!

∞

∑
l=−∞

pl

[
∞

∑
m=−∞

(
n

∑
i=0

(
n
i

)
(m− τ)i(−l)n−i

)
h(τ −m)

]
,

which resolves to
aph

n (τ) = (6)

T n

n!

n

∑
i=0

(
n
i

)( ∞

∑
l=−∞

(−l)n−i pl

)(
∞

∑
m=−∞

(m− τ)ih(τ −m)

)

=
n

∑
i=0

ap
n−i(0)ah

i (τ).

Thus an error coefficient of the prefiltered reconstruction is
simply the convolution of the error coefficients belonging to
the discrete prefilter p and the continuous postfilter h. This
derivation was originally published by Möller et al. [16] but
in a different context, analyzing the numerical accuracy of
the normal estimation scheme F (DH ). In this scheme, the
discrete prefilter p and the continuous filter h play the roles of
the derivative operator D and the interpolation operator H
respectively.

In contrast, we use the discrete prefiltering in a more gen-
eral manner. To improve the accuracy of both function and
derivative reconstruction, we apply different prefilters com-
bined with either the continuous postfilter h or its analytical
derivative h′. In the following sections we illustrate our fil-
ter design approach with a concrete example, where h is the
cubic B-spline defined as follows:

β 3(t) =




1
2 |t|3 −|t|2 + 2

3 if |t| ≤ 1
− 1

6 |t|3 + |t|2 −2|t|+ 4
3 if 1 < |t| ≤ 2

0 otherwise.

(7)

The cubic B-spline has several advantageous properties. For
example, it provides an approximation order L = 4 with a

minimal support, and yields a C2 continuous reconstruction.
Furthermore, its 3D tensor-product extension can be effi-
ciently evaluated on the recent graphics cards by only eight
trilinear texture fetches per sample [20].

3 PREFILTERED FUNCTION RECON-
STRUCTION

It is easy to verify that the error coefficients of the cubic B-
spline are the following 1:

aβ 3

0 (τ) = 1, aβ 3

1 (τ) = 0, (8)

aβ 3

2 (τ) =
T 2

6
, aβ 3

3 (τ) = 0.

Since aβ 3

2 is non-zero, the cubic B-spline is a 2-EF filter. Nev-
ertheless, its approximation order is four, which can be ex-
ploited by a discrete prefiltering.

Let us assume that the discrete prefilter p has only three
non-zero weights, which are p−1, p0, p1 at grid points −T , 0,
and T respectively. Additionally, we search for a symmetric
filter, that is, p−1 = p1. Thus there are just two free parame-
ters to be determined. The error coefficients for the prefilter p
are the following:

ap
0(0) = p0 +2p1, ap

1(0) = 0, (9)

ap
2(0) = T 2 p1, ap

3(0) = 0.

The error coefficients for the prefiltered reconstruction can
be evaluated according to Equation 6:

apβ 3

0 (τ) = p0 +2p1, apβ 3

1 (τ) = 0, (10)

apβ 3

2 (τ) = T 2 p0 +8p1

6
, apβ 3

3 (τ) = 0.

To guarantee a 4-EF reconstruction, apβ 3

0 has to be equal to

one, while coefficient apβ 3

2 has to be equal to zero. Solv-
ing Equation 10 with these constraints, the following filter
weights are obtained: p−1 = p1 =− 1

6 , p0 = 8
6 (see Figure 2).

Note that, the resultant impulse response w = p∗h is exactly
the same as that of the C2 4-EF reconstruction filter designed
in [18]. However, there is a significant difference in the com-
putational costs. In our case, the discrete prefiltering with p is
performed in a preprocessing, while the continuous postfilter-
ing with h is evaluated on the fly from the nearest 64 voxels.
In contrast, a direct convolution with w would take the nearest
216 voxels into account. The discrete prefilter p can also be
obtained by a different derivation proposed by Blu and Unser
[5], therefore we do not consider it as a new result.

4 PREFILTERED DERIVATIVE RE-
CONSTRUCTION

In this section we show that using a simple discrete prefilter
not just the accuracy of function reconstruction can be im-
proved, but the accuracy of normal estimation as well. In
previous volume-rendering applications, when the cubic B-
spline is used for function reconstruction, the derivatives are

1 The cubic B-spline is the special case of the BC-splines [15]. The
asymptotic error behavior of this general family of cubic filters has
been analyzed in detail by Möller et al. [17].

Journal of WSCG 51 ISSN 1213 – 6972 



computed by either the central differences or taking the ana-
lytical derivative of the cubic B-spline as a continuous deriva-
tive filter [16, 20, 12, 11]. These techniques, however, do not
exploit the approximation power of the cubic B-spline.

The calculation of central differences on the reconstructed
function is equivalent to a filtering by a discrete derivative fil-
ter c, where the non-zero weights are c−1 = 1

2T and c1 =− 1
2T

at positions −T and T respectively. The error coefficients for
this discrete derivative filter are the following:

ac
0(0) = 0, ac

1(0) = 1, (11)

ac
2(0) = 0, ac

3(0) =
T 2

6
.

If the central differences are calculated on a function recon-
structed by the cubic B-spline, it is equivalent by a filtering
with a continuous derivative filter c∗β 3. According to Equa-
tion 6, the corresponding error coefficients are obtained as:

acβ 3

0 (τ) = 0, acβ 3

1 (τ) = 1, (12)

acβ 3

2 (τ) = 0, acβ 3

3 (τ) =
T 2

3
.

Thus the central differences combined with the cubic B-spline
yield just a 2-EF derivative filtering. This order of accuracy is
not improved even if the analytical derivative of the cubic B-
spline is used, which also leads to a 2-EF derivative filtering
[18].

One possibility for increasing the accuracy of the deriva-
tive filtering is to apply the analytical derivative of the cubic
B-spline on data prefiltered by the discrete filter p. The er-
ror coefficients corresponding to the analytical derivative fil-
ter β 3′ are as follows [17]:

aβ 3′
0 (τ) = 0, aβ 3′

1 (τ) = T, (13)

aβ 3′
2 (τ) = 0, aβ 3′

3 (τ) =
T 3

6
,

aβ 3′
4 (τ) =

T 4

12
τ(1− τ)(2τ −1).

If β 3′ is combined with the discrete filter p, the error coeffi-
cients are obtained from Equation 6:

apβ 3′
0 (τ) = 0, apβ 3′

1 (τ) = T, (14)

apβ 3′
2 (τ) = 0, apβ 3′

3 (τ) = 0,

apβ 3′
4 (τ) =

T 4

12
τ(1− τ)(2τ −1).

Thus, after the normalization by T , the combination of β 3′
and p results in a 3-EF derivative filtering.

In order to fully exploit the approximation power of the
cubic B-spline, we search for a discrete prefilter d with a sup-
port of 2, where the non-zero weights are d−2 = −d2 and
d−1 = −d1. The error coefficients for this discrete derivative
filter are the following:

ad
0(0) = 0, ad

1(0) = −2T (d1 +2d2), (15)

ad
2(0) = 0, ad

3(0) = −T 3 d1 +8d2

3
.

If the discrete derivative filter d is combined with the cubic B-
spline then the error coefficients of the equivalent continuous
filtering are obtained as (see Equation 6):

adβ 3

0 (τ) = 0, adβ 3

1 (τ) = −2T (d1 +2d2), (16)

adβ 3

2 (τ) = 0, adβ 3

3 (τ) = −2T 3 d1 +5d2

3
.

To reconstruct the first derivative instead of some multiple of

it, the error coefficient adβ 3

1 (τ) has to be equal to one. Addi-
tionally, to maximize the order of accuracy, the error coeffi-

cient adβ 3

3 (τ) has to be equal to zero. By solving Equation 16
for these constraints we obtain: d1 = − 5

6T and d2 = 1
6T (see

Figure 2). It is easy to see that the error coefficient adβ 3

4 (τ)
is also zero for the combined filter d ∗ β 3. The error coef-

ficient adβ 3

5 (τ), however, is clearly non-zero. Therefore the
error function contains at least fourth-degree powers of T due
to the normalization. As a consequence, the combined filter
is a 4-EF derivative filter.

-T T T 2T-T-2T

8/6

-1/6

5/6T

-1/6T

(a) (b)

Figure 2: Discrete prefilters for a cubic B-spline reconstruc-
tion. (a): Prefilter p for 4-EF function reconstruction. (b):
Prefilter d for 4-EF derivative reconstruction.

5 FREQUENCY-DOMAIN ANALYSIS
The cubic B-spline can be obtained by successively convolv-
ing a symmetric box filter (the B-spline of order zero) three
times with itself. Since the Fourier transform of the symmet-
ric box filter is sinc(ω/2) = sin(ω/2)/(ω/2) and the consec-
utive convolutions in the spatial domain correspond to con-
secutive multiplications in the frequency domain, the Fourier
transform of the cubic B-spline is sinc4(ω/2). When the
cubic B-spline is combined with the discrete prefilter p, the
frequency response of the equivalent filter w(t) is W (ω) =
sinc4(ω/2) · P(ω), where the Fourier transform of the pre-
filter p is P(ω) = (4− cos(ω))/3. Figure 5 shows that the
combined filter represents a kind of compromise, as its pass-
band behavior is better than that of the non-prefiltered cubic
B-spline but worse than that of the Catmull-Rom spline. On
the other hand, the Catmull-Rom spline improves the pass-
band behavior at the cost of a much higher postaliasing.

The Fourier transform of our discrete derivative filter d is
D(ω) = i(5sin(ω)− sin(2ω))/3. Combining it with the cu-
bic B-spline, the frequency response of the equivalent contin-
uous derivative filter is W (ω) = sinc4(ω/2) ·D(ω), which is
shown in Figure 6. The derivative filter d ensures much bet-
ter pass-band behavior than the central differences. Although
the analytical derivative of the cubic B-spline performs even
better in the pass-band, its postaliasing effect is significantly
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(a) (d)

(b) (e)

(c) (f)

Figure 3: Reconstruction of the Marschner-Lobb signal from
40× 40× 40 (a-c) and from 60× 60× 60 (d-f) samples. (a,
d): Cubic B-spline. (b, e): Catmull-Rom spline. (c, f): Cubic
B-spline prefiltered by the discrete filter p. The isosurface is
shaded based on the analytical gradient of the reconstructed
function.

higher. The best pass-band behavior is achieved if the ana-
lytical derivative of the cubic B-spline is applied on data pre-
filtered by p (the frequency response of the equivalent con-
tinuous derivative filter is W (ω) = iωsinc4(ω/2) ·P(ω)), but
this technique causes also the highest postaliasing.

6 EXPERIMENTAL EVALUATION
In order to empirically analyze our discrete prefilters, we im-
plemented a high-quality ray caster and rendered artificial and
real-world data sets. We used the classical Marschner-Lobb
signal to separately evaluate the effects of the prefilter p and
the discrete derivative filter d. Figure 3 shows the shaded iso-
surface of the test signal reconstructed by the cubic B-spline
(a, d), the Catmull-Rom spline (b, e), and the cubic B-spline
prefiltered by the discrete filter p (c, f). Here the gradients
used for the shading computation are the exact analytical gra-
dients of the reconstructed function. Note that the highest
quality is ensured by the prefiltered cubic B-spline recon-
struction even for the low-resolution volume representation,
but its superiority is much more apparent if the resolution is
increased by a factor of 1.5. Theoretically, the C2 4-EF pre-
filtered cubic-B-spline is superior over the C1 3-EF Catmull-

Rom spline considering the order of both continuity and ac-
curacy. This is completely confirmed by our test results.

To fairly test our prefiltered derivative reconstruction
schemes independently from the effect of the prefiltered
function reconstruction, we calculated the exact intersection
points between the rays and the original test signal, but at
these hit points we evaluated the gradients using different
derivative filters. Figure 4 shows the angular errors of the
gradients reconstructed by the cubic B-spline combined with
central differences (first column) and our discrete derivative
filter d (second column). The third and fourth columns show
the angular error for the analytical derivative of the cubic
B-spline applied on non-prefiltered data, and data prefiltered
by the discrete filter p respectively.

The worst results are obtained by using the central differ-
ences combined with the cubic B-spline. The angular error is
significantly reduced if our discrete derivative filter d is ap-
plied instead of the central differences. It is interesting to
note, that the analytical derivative filter performs even bet-
ter for the the lower-resolution volumes, although it provides
slower convergence (2-EF) to the original signal if the resolu-
tion is increased. The best results, however, are achieved by
the analytical derivative filter applied on data prefiltered by
the discrete filter p.

Reconstruction and derivative filters that perform well for
synthetic data might not provide good results for real-world
measured data sets, which are usually corrupted by measure-
ment and quantization noise. Therefore, we tested the pre-
filtered derivative filtering schemes also on CT and MRI data.
The results are shown in Figure 7. The fine details are best
captured if the underlying signal is reconstructed from data
prefiltered by the discrete filter p. The benefit of prefilter-
ing in terms of gradient accuracy, however, is not so obvious.
For example, the analytical derivative of the cubic B-spline
applied on prefiltered data even emphasizes the quantization
noise, which leads to severe staircase artifacts. In contrast,
our discrete derivative filter represents a good compromise.
On one hand, it does not blur the gradients as much as the
central differences, thus it preserves the contrast and sharp-
ness of the contours. On the other hand, it does not introduce
so strong staircase aliasing as the analytical derivative of the
cubic B-spline applied on either prefiltered or non-prefiltered
data.

7 EFFICIENCY CONSIDERATIONS
The evaluation of our discrete prefilter d is twice as expen-
sive computationally as that of central differences. Therefore
we propose using it mainly for the first and the third volume-
rendering scenarios. In first-hit ray casting the cost of the
gradient estimation is negligible compared to that of the ray
casting, while in case of precalculated gradients the more ex-
pensive preprocessing is acceptable as it has to be performed
just once. Nevertheless, using the derivative filter d for on-
the-fly gradient computation significantly reduces the render-
ing performance.

Due to its good pass-band behavior, we propose to use
the analytical derivative of the cubic B-spline combined with
the discrete prefilter p especially for rendering synthetic data
which is not corrupted by prealiasing or quantization noise.
This gradient computation scheme can be efficiently applied
also for the second volume-rendering scenario, where only the
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c∗β 3, 2-EF d ∗β 3, 4-EF β 3′, 2-EF p∗β 3′, 3-EF

Gradient reconstruction from 40×40×40 samples.

Gradient reconstruction from 60×60×60 samples.

Gradient reconstruction from 80×80×80 samples.

Figure 4: Angular errors of the gradients reconstructed from the Marschner-Lobb test data sets of different resolutions.
Angular error of zero degree is mapped to black, whereas angular error of 30 degrees is mapped to white. First column:
central differences combined with the cubic B-spline. Second column: cubic B-spline combined with our discrete derivative
filter d. Third column: analytical derivative of the cubic B-spline. Fourth column: analytical derivative of the cubic B-spline
combined with the discrete prefilter p.

prefiltered function values have to be stored without precalcu-
lated gradient components. The drawback of this approach is
that the prefiltered data still requires at least a 16-bit floating-
point number per voxel to store. Note that, the computational
cost of the on-the-fly gradient computation is exactly the same
as if the analytical derivative of the cubic B-spline was used
on non-prefiltered data.

8 CONCLUSION
In this paper, different prefiltered gradient reconstruction
schemes have been evaluated both in the spatial domain and
in the frequency domain. We have shown that, applying a
tricubic B-spline reconstruction filter, the accuracy of the
gradients can be significantly increased if either our discrete
derivetive filter d is used instead of the central differences
or the analytical derivative of the tricubic B-spline is used
on data prefiltered by the discrete filter p. According to our
experiments, the former approach is more appropriate for
rendering real-world measured data sets, whereas the latter

approach performs better for synthetic data. It is interesting
to note that filters which are theoretically more accurate do
not necessarily provide the expected higher reconstruction
quality in practice. The well-known spatial-domain and
frequency-domain filter design criteria assume that the voxels
represent accurate samples of the underlying signal and the
sampling frequency is sufficiently high. These assumptions,
however, are usually not valid for practical data. Therefore,
in our future work, we plan to extend the classical filter
design approach by practical criteria like sensitivity to the
quantization noise.
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(a): c∗β 3, 2-EF (b): d ∗β 3, 4-EF (c): β 3′, 2-EF (d): p∗β 3′, 3-EF

Figure 7: Real-world test data sets rendered by first-hit ray casting. The data is resampled along the rays by using the
cubic B-spline filter to find the first intersection points ((a-c): The data is not prefiltered. (d): The data is prefiltered by p.).
The derivatives at these hit points are calculated by different gradient estimation schemes: (a): Central differences. (b): Our
discrete derivative filter d. (c): Analytical derivative of the cubic B-spline. (d): Analytical derivative of the cubic B-spline applied
on data prefiltered by p.
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