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Abstract 

       This thesis focuses on the analysis and methods of implementing Wireless M-Bus on an 

embedded device. The thesis also describes the features and some of the drawbacks in the 

available protocols used for communications in smart grids (SG) today, and shows the procedure 

and the results of implementing the Wireless M-Bus protocol in an embedded device. It also 

analyzes some of the available injection coils used for Power Line Communications (PLC), and 

then it describes the design procedure of an injection coil according to the CENELEC band A 

standard and its features.  

 

 

 

 

 

 

 

 

 

Key words 

 Wireless M-Bus, smart grid, PLC, ZigBee, communication  

 

 

 

 

 

 

 

 



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

 

Declaration 

 I declare that this Bachelor thesis has been written only by myself using the literature 

provided at the references section.  

 I also declare that the software used for writing, preparing and simulating the tasks in this 

Bachelor thesis is legal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         …………………………. 

                                                                                              Signature 

 

 

 

 

 

  



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

 

Acknowledgment  

 I would like to thank everyone who helped, encouraged, advised, supported or inspired 

me to write this work. 

 I would especially like to thank my supervisor Ing. Aleš Krutina, for giving me the 

opportunity to take part in this project. I have learnt a lot from his knowledge and experience. He 

has also instructed me in such a way that required me to properly understand the problematics of 

the work thus, giving me the opportunity to benefit a lot. I also would like to thank him for 

guiding and instructing me all the way until the end of this work, and I am very grateful for all 

the encouragement, advice, comments and suggestions he has been providing me all the way. 

I also would like to thank my teacher and head of department Doc. Dr. Ing. Vjačeslav 

Georgiev for his continuous support during my years of study at the university, and also for 

offering me help and advice whenever I needed.  

My thanks are also extended to my friend Ing. Zidan Buhawa, Ph.D for helping me 

proofread the thesis prior to printing. 

Finally, I would like to thank my family and my parents in particular, they have been 

supporting my education since Kindergarten until today, and without their help, prayers and 

support this all would have been impossible.  

  



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

 

Table of Contents 

List of figures .............................................................................................................................. i 

List of Tables ............................................................................................................................iii 

List of abbreviations ................................................................................................................. iv 

1   Introduction .......................................................................................................................... 1 

2   Wireless protocols used in smart grid communications ...................................................... 4 

2.1   Wireless M-Bus ............................................................................................................... 4 

2.1.1   Principle of operation................................................................................................. 4 

2.1.2   Wireless M-Bus Sub-modes ....................................................................................... 5 

2.1.2.1   S mode (Stationary mode) .................................................................................. 6 

2.1.2.2   T mode (Frequent transmit mode) ....................................................................... 7 

2.1.2.3   R mode (Frequent receive mode) ........................................................................ 7 

2.1.2.4   C,N and F modes ................................................................................................ 7 

2.1.3   Wireless M-Bus Layers.............................................................................................. 7 

2.1.3.1   Physical Layer .................................................................................................... 8 

2.1.3.2   Data Link Layer ................................................................................................. 8 

2.1.3.3   Application Layer ............................................................................................. 11 

2.1.3.3.1   Short header .............................................................................................. 12 

2.1.3.3.2   Long header ............................................................................................... 13 

2.1.3.3.3   No header .................................................................................................. 14 

2.1.3.3.4   Data Block................................................................................................. 15 

2.2   ZigBee vs. Wireless M-Bus and other technologies ........................................................ 15 

2.2.1   Connection topologies ............................................................................................. 16 

2.2.2   IEEE 802.15.4 standard ........................................................................................... 17 

2.2.3   Discussion: To ZigBee or Wireless M-Bus or others ................................................ 17 

3   Practical implementation of Wireless M-Bus on an embedded device ............................. 20 

3.1   Hardware ....................................................................................................................... 20 

3.1.1   STM32W108 ........................................................................................................... 21 

3.1.2   SPIRIT1 .................................................................................................................. 21 



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

 

3.2   Software and coding ....................................................................................................... 22 

3.3   Results ........................................................................................................................... 24 

3.3.1   Register values ........................................................................................................ 24 

3.3.2   Observing the signal using spectrum analyzer .......................................................... 25 

4   Methods of injecting signal to power line .......................................................................... 26 

4.1   Power Line Communication (PLC) ................................................................................ 26 

4.2   Coupling circuits for injecting signals to power line ....................................................... 26 

4.2.1   Transformer coupling .............................................................................................. 27 

4.2.2   Inductive coupling ................................................................................................... 28 

4.3   Designing of injection coil according to CENELEC band A ........................................... 28 

4.3.1   Solenoid as an injection coil .................................................................................... 29 

4.3.1.1   Principle of operation and calculations ............................................................. 29 

4.3.2   Proposal to use Rogowski coil as an injection coil ................................................... 31 

4.3.2.1   Simulation and modeling .................................................................................. 32 

5   Conclusions and future work ............................................................................................. 36 

References ................................................................................................................................ 38 

Appendix A .............................................................................................................................. 40 

Appendix B .............................................................................................................................. 42 

 

  



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

i 

 

List of figures 

Figure 1 System topology…………...………….………..………………………. 2 

Figure 2 Wireless M-Bus connection………………….........…………………… 5 

Figure 3 Wireless M-Bus frame format…….…….……….....…..……………… 9 

Figure 4 1st Block structure…….……………..……...……...………………….. 9 

Figure 5 Structure of C-field………………………………..………….………... 9 

Figure 6 2nd Block structure…………...………………….……………….….… 11 

Figure 7 Optional Block structure………………………….....….……..……..… 11 

Figure 8 Wireless M-Bus layers overview…………………….….…..……….… 12 

Figure 9  Structure of application layer…………………………….…..….……... 12 

Figure 10 Structure of short header….…………………..……..……………….… 12 

Figure 11 Structure of status-field……………….………….……………...…...… 13 

Figure 12 Structure of Long header…..…………..……………...…………..……. 14 

Figure 13 Structure of the data block…………….….………...………........…...... 15 

Figure 14 Structure of ZigBee…………...………………….…………...……....... 16 

Figure 15 Network topologies…………...………………………………………... 16 

Figure 16 PCB board for implementing Wireless M-Bus………………………… 20 

Figure 17 Schematic of the connection of SPIRIT1 transceiver ………………..... 22 

Figure 18 Shows the slightly imprecise centre frequency due to tolerances in the 

analogue circuitry………………………………..…………………....... 

 

24 

Figure 19 Test packet for physical layer implementation …………….........…….. 24 

Figure 20 Results of radio parameters measurement ……………...……………… 25 

Figure 21 Schematic of transformer circuit …………...………..……………....... 28 

Figure 22 Inductive coupling using a single ferrite ……….....…………………… 29 

Figure 23 Construction of Solenoid with secondary winding ..……………….….. 30 

Figure 24 Output of injection coil with and without maximum expected grid 

impedance…………………………………………………………........ 

 

31 

Figure 25 Rogowski coil construction and operation for measurement……...…… 32 

Figure 26 The equivalent circuit of Rogowski coil ………………………………. 33 

Figure 27 Model for simulating Rogowski coil as injection coil………..…........... 33 



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

ii 

 

Figure 28 Simulation showing induced voltage on wire at 3 KHz………………... 34 

Figure 29 Simulation showing induced voltage on wire at 45 KHz……………… 35 

Appendix B Rogowski coil simulations…………………..…………………………. 42 

Figure B1 Input parameters: I = 5A, V = 5V, freq. = 3 KHz, impedance = 20Ω 42 

Figure B2 Input parameters: I = 2A, V = 15V, freq. = 3 KHz, impedance = 5Ω 42 

Figure B3 Input parameters: I = 0.5A, V = 24V, freq. = 3 KHz, impedance = 20Ω 43 

Figure B4 Input parameters: I = 5A, V = 5V, freq. =  96 KHz,   impedance = 20Ω 43 

Figure B5 Input parameters: I = 2A, V = 24V, freq. = 96 KHz,  impedance = 20Ω 44 

Figure B6 Input parameters: I = 5A, V = 24 V, freq. = 96 KHz, impedance = 20Ω 44 

Figure B7 Input parameters: I = 10A, V = 12V, freq. = 45 KHz, impedance= 15Ω 45 

Figure B8 Input parameters: I = 10A, V = 12V, freq.=  45 KHz, impedance =20Ω 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

iii 

 

List of Tables 

Table 1 General requirements for Wireless M-Bus sub-modes…………..…..... 6 

Table 2 OSI model………………………………………………………….…... 8 

Table 3 Wireless M-Bus stack……………………………………………......... 8 

Table 4 Device types binary representations…………………………...…....… 14 

Table 5 Comparison between some wireless technologies……………….......... 19 

Table 6 Registers related to Wireless M-Bus....................................................... 23 

Table 7 Values of components used for Rogowski coil simulation…………….. 34 

 

  



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

iv 

 

List of abbreviations 

4G                               Fourth Generation of cellular networks 

Access No.  Access Number 

ACD   ACcess on Demand 

AES   Advanced Encryption Standard 

BAN   Building Area Network 

Bi.   Bidirectional 

CENELEC   European Committee for Electrotechnical Standardization 

Conf.   Configuration 

CRC   Cyclic Redundancy Check 

DC   Direct Current 

DES   Data Encryption Standard 

DFC   Data Flow Control 

DIF   Data Information Field  

DIFE   Data Information Field Extension  

FCB   Frame Count Bit 

FCV   Frame Count Valid 

FFD   Full Function Device 

FIFO   First In First Out 

Freq.   Frequency 

GPRS              General Radio Packet Service  

HAN   Home Area Network 

Hex.   Hexadecimal 

ID   IDentification  

Ident. No.  Identification Number 

IEEE   Institute of Electrical and Electronics Engineers 

IEEE   Institute of Electrical and Electronics Engineers 

ISM   Industrial Scientific Medical 

ISO   International Organization for Standardization 

Kcs   Kilo chip per second 

KHz   KiloHertz 



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

v 

 

Man. ID  Manufacturer IDentification  

MHz   MegaHertz 

NAN              Neighborhood Area Network   

OSI   Open Systems Interconnection 

p.error    Permanent error 

PAN   Personal Area Network 

PCB   Printed Circuit Board 

PLC   Power Line Communication 

Post.   Postamble 

Pre.   Preamble 

PRM   Primary 

PSpice   Software for circuit simulation 

RES   Reserved 

RFD   Reduced Function Device 

SG    Smart Grid 

Sign.   Signature 

SRD   Short Range devices 

t.error   Temporary error 

Uni.   Unidirectional 

USB   Universal Serial Bus    

VIF   Value Information Field  

VIFE   Value Information Field Extension 

WAN    Wide Area Network 

Wi-Fi   Wireless Local Area Network device 

Wireless M-Bus          Wireless standard for smart grid communication 

WLAN  Wireless Local Area Network 

ZigBee   Wireless standard for smart grid communication 

Z-Wave  Wireless standard for smart grid communication 

 



Smart metering and injection coil implementation for smart grid diagnostics                         Mohamed Abdoon 2014 

 

 

1 

 

1   Introduction 

Ever since the consumption and dependency of users on the power grid started to grow, 

power providers needed to start billing consumers for the amount of energy they were using. In 

early days only mega factories and huge corporations were billed a fixed amount of money, but 

as the demand on electricity supply kept increasing power providers started to charge individual 

consumers for the use of energy. This meant that electricity meters had to be installed and power 

suppliers had to employ a work force to get meter readings from different users around the 

country.  

 The technological advancements in electronics and communications brought the idea of 

the Smart Grid (SG). The SG concept had a huge potential and many applications, it could 

theoretically offer bidirectional communication between all the devices which are connected to 

the network thus, allowing the suppliers to remotely diagnose and monitor the number of devices 

connected to the network. In addition they could also monitor their consumption, peak times and 

duration of operation. However this also means that the consumer can now monitor and adjust his 

power consumption, to be as efficient as possible, this eventually means that with the 

introduction of the SG the user has a bigger role in the determination of the amount of energy 

used.  

The smart grid communication topology is divided into hierarchal groups which are Wide 

Area Network (WAN), Neighborhood Area Network (NAN), Building Area Network (BAN), 

and Home Area Network (HAN). 

The next paragraphs will explain these communicatin topologies, followed by a figure to 

illustrate and summarize the diffirent topologies. 

 Wide Area Network (WAN): Is on the top of the hierarchy of networks, WAN allows the 

long distance communication between the control centers and the NAN. [1] 

 Neighborhood Area Network (NAN): The NAN serves as an administrator network 

which monitors and gives real time readings of power consumption in a particular 

neighborhood or area in a city. It is also able to determine the amount of power received 

from different distributing stations to the area it is connected to. A NAN can be thought 

of as a reporter it gathers information from the several HANs connected to it and reports 

them to the WAN. [1] 
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 Home Area Network (HAN): This sits at the bottom of the hierarchy, and is defined as 

the user’s network, it can be a group of home appliances connected together, or energy 

meters which enable the user to monitor and adjust his power consumption 

accordingly.[1]  

  
 

Figure 1 System topology [2] 

 

 The introduction of SG brings the need to use communication protocols, to insure the 

interoperability of the devices connected to the grid, these protocols should be reliable, secure, 

energy efficient and robust enough to suit the requirements of the devices which will be 

connected to the network.  

It is important to properly choose communication methods that will satisfy the 

requirements of the smart grid. Therefore, standard communication protocols should be 

implemented into the grid, these communication protocols will ensure the interoperability of the 

grid with systems of enormous numbers, and various types that will be connected to the grid. 

A grid which requires a lot of modems and concentrators along the transmission line will 

be impractical, because it increases the demand of its operation on the provider, meaning that it 
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requires more maintenance and an additional work force has to be employed in order to ensure 

that it is operating efficiently. In many cases there is a compromise between the cost of designing 

and running a communication network, and the amount of bandwidth available to handle the data 

sent between the devices in the grid. 

In order to minimize the cost of designing and building the infrastructure for the 

communication in the grid, it is good to utilize some of the existing infrastructure in order 

eliminate the need to construct a physical layer to connect the networks. The following chapter 

will introduce some of the communication protocols used in SGs today. 
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2   Wireless protocols used in smart grid communications 

The rapid advancements in wireless technologies are slowly eliminating the need to 

install wired infrastructure to be used for smart grid communication purposes, wireless networks 

are also less prone to interference and external noises. Today, there are various protocols used in 

smart grid communications, this is due to the fact that the smart grid standards are not yet 

defined. Therefore, users usually choose a communication protocol which suits their limited 

application. The communication technologies range from short range technologies that span a 

distance of a few meters to long distance technologies. Short range technologies include EN 

13757-4 (Wireless M-Bus), IEEE 802.15.4 (ZigBee), IEEE 802.11 (Wi-Fi), Z-Wave and 

Bluetooth. These standards could be used to establish communication between devices within the 

HAN. Long distance technologies include GPRS and 4G these are technologies which utilize the 

existence of cellular networks and their infrastructure, they can be used to connect the HAN with 

NAN. 

In the next sections Wireless M-Bus will be introduced and explained in detail, followed 

by an introduction to ZigBee technology, the rest of the communication technologies namely Wi-

Fi, Z-Wave, Bluetooth and Bluetooth Low Energy will be discussed just briefly. 

2.1   Wireless M-Bus 

M-Bus is a European standard which is specific for meter reading applications. At first 

communication was established and optimized for use in Power line communications (PLC) 

using a pair of twisted wires, this meant that it was very cost effective and easy to realize. Later 

the Wireless M-Bus standard was developed, which is specified to work on the Industrial, 

Scientific and Medical (ISM) radio bands at 169, 433 and 868 MHz. 

2.1.1   Principle of operation 

 The M-Bus protocol simply gathers information from the energy meters and handles 

them to the data concentrators or data collectors. Figure 2 describes the connection between the 

devices when using Wireless M-Bus. Since the M-Bus protocol works on a hierarchical topology 

the energy meters are considered to be “slaves” and their operation is controlled by a data 

concentrator or data collector known as a “master”. Once the information is received by the 
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concentrator or collector, it could then be sent by several means for e.g. PLC, Internet, WLAN, 

ZigBee and many more to any party which is interested in gathering the information.  

 

 

Figure 2 Wireless M-Bus connection [3] 

 

2.1.2   Wireless M-Bus Sub-modes 

Wireless M-Bus has several operation modes the most used are named S, T and R. These 

modes are then split into different configurations S1, S1-m, S2, T1, T2, and R2. The difference 

between these sub-modes is in the configuration of duty cycles, frequencies, preamble and 

postamble lengths. Other sub-modes also exist for example C, N and F they will be explained 

only briefly since they are not commonly used.  

The following table describes some of the differences in configuration of these modes. 
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Mode Freq. 

 

Pre. 

 

Post. 

 

Sync. Duty 

Cycle 

Chip Rate Direction  Notes 

Unit MHz Chips Chips Hex. % kcs - - 

S1 868.25-

868.35 

576 2-8 0x7696 1 32.768 Uni.  

S1-m 868.25-

868.35 

48 2-8 0x7696 1 32.768 Uni.  

S2 868.28-

868.32 

48  2-8 0x7696 1 32.768 Bi.  

T1 868.9-869.0 48 2-8 0x3D 0.1 100 Uni. Meter to 

other 

T2 868.9-

869.0/868.28-

868.32 

48 2-8 0x3D 0.1/1 100/32.768 Bi. Meter to 

other/other 

to meter 

R2 868.330 + 

n×0.006 

96 2-8 0x7696 1 4.8 Bi.  

Table 1 General requirements for Wireless M-Bus sub-modes [4] 

2.1.2.1   S mode (Stationary mode) 

 S1 (long header): Is a unidirectional way of communication from a meter to other device 

using Manchester encoding. Since it is unidirectional the meter has no feedback if the 

data has been sent or not. This mode is most suitable for battery powered receivers 

because of the long header. 

 S1-m (short header): Is a unidirectional way of communication similar to S1, however a 

short header is used and that’s why it requires a continuously enabled receiver. 

 S2 (short or long header): Is a bidirectional way of communication using Manchester 

encoding. The choice between short header or long header means that the receiver can be 

continuously enabled or synchronized to wake up when the meter transmits its data. 
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2.1.2.2   T mode (Frequent transmit mode) 

 T1 (short header): Unidirectional way of communication using 3 to 6 encoding. It 

transmits frequently several times every second, the data is transmitted in very short 

bursts typically < 5 ms. This makes it ideal for use in walk by or drive by read out 

method. 

 T2 (short header): Bidirectional way of communication. Both Manchester and 3 to 6 

encoding could be used. The bidirectional communication allows the receiver to be 

enabled only when transmission occurs. 

2.1.2.3   R mode (Frequent receive mode)  

R2 (medium header): Bidirectional way of communication using Manchester encoding. 

This mode is most optimized for battery saving receivers, therefore it requires an extended 

preamble before the other blocks to wake up the receiver. It uses frequency multiplexing and 

therefore several meters can be read at once, however the center frequency of transmitters must 

be spaced at 60 KHz, some transmission delays must also be taken into account to prevent the 

signals interfering with each other. 

2.1.2.4   C,N and F modes 

 These modes attempt to rectify some of the drawbacks of the other modes by offering 

alternate operating frequencies such as 868 MHz, 433MHz and 169 MHz or faster data rates.  

2.1.3   Wireless M-Bus Layers  

The M-Bus follows the Open Systems Interconnection (OSI) model, which is specified by 

the International Organization for Standardization (ISO) which ensures the interoperability of 

devices made by different manufacturers. This is achieved by defining the communication 

functions of the devices. Table 2 describes the OSI Model [5] 
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7 Application Layer  

6 Presentation Layer Application Oriented Layers 

5 Session Layer  

4 Transport Layer  

3 Network Layer Transport Oriented Layers 

2 Data Link Layer  

1 Physical Layer  

 

 

The M-Bus protocol defines 4 of the 7 layers defined by the (OSI), one of them being an 

optional layer which is the network layer. The reason behind this is that the M-Bus is not a 

network, therefore it does not require a transport layer, session layer and presentation layer. [5] 

Therefore, we can reduce the previous table to be as follows in table 3. In the next sections the 

details of these layers will be explained in detail. 

3 Application Layer 

2 Data Link Layer 

1 Physical Layer 

  

2.1.3.1   Physical Layer  

 The physical layer defines the physical requirements to establish communication between 

a meter to other or other to meter. The physical layer defines parameters such as frequency, 

modulation type, and chip rate. The sub-modes mentioned previously are a part of the physical 

layer configuration. Look into table 1. 

2.1.3.2   Data Link Layer 

 Data link layer defines and organizes the structure and format by which the data packet is 

sent, and by which the data packet is recognized by the receiver. Figure 3 describes the general 

format used for Wireless M-Bus also known as “Frame Format A”. It is also necessary to 

mention that the EN 13757-4:2011 standard also specifies another frame format known as 

Table 2 OSI model  

Table 3 Wireless M-Bus stack 
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“Frame Format B” however, this format is specified to be used optionally by modes C, N and F. 

The aim of introducing frame format B is to reduce the size of the sent data. In the our thesis 

explanation will be restricted to only frame format A, and in the following paragraphs and 

sections frame format A will be described in detail. 

 

 

Preamble 

 

Sync 

 

1
st
 Block 

 

2
nd

 Block 

 

Optional Block 

 

Postamble 

Figure 3 Wireless M-Bus frame format 

 

Please look into table 1 for the description of Preamble, Sync and Postamble. The 

following figure describes the structure of the 1
st
 Block. 

 

 

L-field 

 

C-field 

 

M-field 

 

A-field 

 

CRC-field 

 

1 byte 

 

1 byte 

 

2 bytes 

 

6 bytes 

 

2 bytes 

Figure 4 1st Block structure 

 

 L-field: Is known as the Length field. Defines the total size of the user fields from (0 to 

255) bytes without including the size of the L-field and the CRC-field.  

 C-field: Is known as Control field. It defines the type of the sent data packet, for example 

(send, request, receive, acknowledge). Figure 5 describes the structure of the C-field.  

 
Figure 5 structure of C-field [3] 

 

 

 The total length of this field is 8 bits or 1 byte, where the function code occupies the 

positions from [3:0], the FCV or DFC have position [4] , FCB or ACD have position [5], PRM 

has position [6] and RES has position[7].  

o RES: Stands for the reserved bit, and is usually set to 0. 
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o PRM: Stands for primary, which means that if the data packet is sent from a 

primary source for example a data concentrator or a meter the PRM field is set to 

1. If the data packet is sent from a secondary source then the PRM field is set to 0. 

However, the definition of this bit should be specified by the user in order to 

satisfy his application requirements. If this bit is set to1 then bits [4] and [5] are 

FCB and FCV, otherwise they are considered as ACD and DFC. 

o FCB: Stands for Frame Count Bit. This field monitors the duplication in the sent 

packets from the primary station to the secondary station. The value of this field 

should cycle between 0 and 1. 

o ACD: Stands for ACcess on Demand. When this bit is set to 1, it indicates that the 

secondary station (defined by user) has high priority data available. This high 

priority data however must be first requested by the primary station. 

o FCV: Stands for Frame Count Valid. Briefly if this bit is set to 1, it means that 

FCB is activated or in other words is valid. 

o DFC: Stands for Data Flow Control. If this bit is set to 1 it means that the 

secondary station cannot receive any further packets from the primary station.  

o Function code: These bits define the type of the data packet (send, request, 

receive, acknowledge). 

 M-field: Is known as the Manufacturer field and the manufacturer ID is represented here. 

 A-field: Is known as the Address field. This field represents the device’s unique address 

information. The format of the A-field is as follows: 

o ID number          = 4 bytes 

o Device version   = 1 byte 

o Meter type          = 1 byte 

 CRC field: Is known as Cyclic Redundancy Check field. The CRC polynomial used is: 

   +                             . 

All the information above was describing the structure of the 1
st
 Block. The following 

figure describes the structure of the 2
nd

 Block. 
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CI-field 

 

Data-field 

 

CRC-field 

 

1 byte 

 

15 bytes 

 

2 bytes 

Figure 6 2
nd

 Block Structure 

 

 CI-field: Is known as the Control Information field. This field gives information about 

the following data using predefined hexadecimal definitions. The information present 

here can be alarm message, data from meter, short header, long header, etc. 

After the CI-field follows the data field, which can be up to 15 bytes, however if more 

than 15 bytes are required then multiple Optional Blocks may follow. The next figure describes 

the structure of the Optional Block. 

 

 

Data-field 

 

CRC-field 

 

16 bytes 

 

2 bytes 

Figure 7 Optional Block Structure 

 

2.1.3.3   Application Layer 

 Strictly speaking, a data payload could be sent as a lump of data in the Data-field of the 

2
nd

 Block. However, sending data this way does not fully satisfy the Wireless M-Bus standards 

especially, when the task is to integrate a network of different types of meters e.g. (water, heat 

gas etc).  

In this final section of the description of Wireless M-Bus layers, the complete overview 

of the layers will be shown and their arrangement within one another will be described. In simple 

words the application layer organizes the structure of the Data-field. The next figure shows 

where the application layer plays its role, as well as showing an overview of the whole packet. 
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Pre. Sync 1
st
 Block 

 

L 

 

C 

 

M 

 

A 

 

CRC 

 

2
nd

 Block 

CI Data 

Application 

Layer 

CRC 

 

Optional 

Block 

 

Data 

 

CRC 

 

Post. 

Figure 8 Wireless M-Bus layers overview 

 

 In the figure above the inner structure of every Block of the Wireless M-Bus frame 

format is shown. L,C,M,A and CRC represent the Length, Control, Manufacture, Address and 

Cyclic Redundancy Check fields respectively, all of which are present within the 1
st
 Block itself. 

CI represents the Control Information field, while the application Layer’s position can be seen 

within the Data Block inside the 2
nd

 Block. The following figure describes the structure of the 

application layer. 

 

Data header 

 

Data Block  

 

Optional 

Block 

 

Optional 

Block 

Figure 9 Structure of application layer 

 

According to Wireless M-Bus there are three formats which can be used to configure the 

Data header, these formats are known as Long header, Short header and No header. 

2.1.3.3.1   Short header 

 The short header has a total of 4 bytes and it contains three blocks Access number, Status 

and Configuration word or Signature. Figure 10 describes the structure of the short header. 

 

 

Access No. 

 

Status 

 

Sign./conf. 

 

1 byte 

 

1 byte 

 

2 bytes 

Figure 10 Structure of short header 
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 Access number: This field is intended to detect the repetition of data frames, or 

requests from other Wireless M-bus devices to read data, so if the same Access 

number is repeated then the data should be denied. According to the standard this 

field could also be used to detect any unwanted or multiple attempts to read the data 

of the consumer. The field uses binary coding and it is incremented by one after every 

request from a device. [5] 

 Status: This field indicates the status of the device according to the standard. The bit 

positions from 0 to 8 can be configured to indicate the status as shown in figure 11.  

 

user user user t.error p.error power 

low 

error error 

 

Figure 11 Structure of status-field 

 

Bits 0 and 1 should be set together to define a specific error for example: 00 = no error, 

01 = Application busy etc. Bit 2 indicates power low. Bit 3 indicates an availability of a 

permanent error or not. Bit 4 indicates the availability of a temporary error while bits 5, 6 and 7 

can be defined by the user. 

 Signature or Configuration word: This field is specific for the encryption settings. If no 

encryption is available then the field is set as zeros. The user can choose DES or AES 

encryption. 

The short header is advised to be used with wireless to wireless or wired to wired devices, 

while the more complex long header could be used to link wired to wireless or vise versa. 

2.1.3.3.2   Long header 

 The long header includes in its format the short header as well. It consists of 12 bytes 

instead of 4 bytes for the short header. The next figure describes the structure of the long header. 
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Ident. No. 

 

Man. ID 

 

Version 

 

Device type 

 

Access No. 

 

Status 

Sign. / 

conf. 

 

4 bytes 

 

2 bytes 

 

1 byte 

 

1 byte 

 

1 byte 

 

1 byte 

 

2 bytes 

Figure 12 Structure of Long header 

 

 Identification number: Is a number that can be fixed by the user or can be 

specified during the manufacture of the device itself. 

 Manufacturer Identification: Manufacturer ID according to EN 61107. 

 Version: This field represents the version of the device i.e. old version or a later 

version of the device. 

 Device type: This field indicates the type of the meter readout for example water, 

oil, gas, etc. look into table 4.  

 

 

 

 

  

 

 

 

2.1.3.3.3   No header 

 No header simply means that no header will be available and, thus no encryption for the 

data will be available. It is not recommended to use this format especially when running a 

network of consumer devices, since this makes the consumer data vulnerable to hackers and 

eavesdroppers.  

Type Binary code 

Oil 0000 0001 

Electricity 0000 0010 

Gas 0000 0011 

Water 0000 0111 

Compressed Air 0000 1001 

Other 0000 0000 

Table 4 Device types binary representations [5] 
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2.1.3.3.4   Data Block 

 This section shows how the data block should be structured, it is required to provide some 

sort of data header before transmitting the actual records acquired from the meter. The next 

figure shows the structure of the data block. 

 

 

DIF 

 

DIFE 

 

VIF 

 

VIFE  

 

Data 

 

1 byte 

 

(0-10) × 1 byte 

 

1 byte 

 

(0-10) × 1 byte 

 

0-n  bytes  

Figure 13 Structure of the data block 

 

 DIF: Is known as the Data Information Field, this field shows how the upcoming data 

should be decoded according to predefined codes. 

 DIFE: Is known as the Data Information Field Extension, this field is an optional field 

and contains information such as the tariff and the device unit. 

 VIF: Is known as the Value Information Field. This field refers to the values of the 

acquired data, meaning that it contains information such as the units and range of the data 

for example (0.001 V to 1000 V). 

 VIFE: Is known as the Value Information Field Extension. Similar to the DIFE field this 

is also an optional field, it contains additional information such as units description, tariff 

description, storage of the device and data and time. 

 Data: The data acquired by the meter should be present here. The length of the data here 

is limited to a maximum of 234 bytes in order not to exceed the maximum size of the 

whole packet which is 255 bytes. 

2.2   ZigBee vs. Wireless M-Bus and other technologies 

 The main purpose of introducing ZigBee here is to compare its features and capabilities to 

Wireless M-Bus, since ZigBee is considered one of the most popular and main rivals or 

alternatives to Wireless M-Bus. Therefore, an introduction to the ZigBee technology and IEEE 

802.15.4 standard will be reviewed, while other technologies such as IEEE 802.11 (Wi-Fi),       
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Z-Wave and Bluetooth will be discussed just briefly.  

  While Wireless M-Bus was originally specified to work with energy meters, ZigBee has a 

more general approach, it is not only specific to energy meters but could be used in many other 

applications. ZigBee is based on the IEEE 802.15.4 standard. This standard defines the data rates, 

the operation frequencies and bandwidth of ZigBee. The ZigBee could be optimized to work on 

different bands, these bands are (SRD) band 868.0 - 868.6 MHz in Europe, (ISM) 902 – 928 

MHz in North America and 2.4 – 2.483 GHz Worldwide.   

 

Figure 14 Structure of ZigBee [6] 

 

2.2.1   Connection topologies  

 The ZigBee protocol has three possible connection topologies which are defined by the 

IEEE 802.15.4 standard. These topologies are star, cluster tree and peer to peer. Figure 15 shows 

the different ZigBee network topologies. 

 

 

Figure 15 Network topologies [6] 
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In the star connection every device whether an (FFD) or and (RFD) can only 

communicate with the (PAN) coordinator. Star topology offers easy connectivity with the PAN 

coordinator, however star topology is very PAN coordinator dependant, meaning that if the PAN 

coordinator fails or slows down, it slows or shuts down the whole network. Peer to peer topology 

sometimes called mesh topology, could be thought of as an open connection because all of the 

devices whether FFD or RFD could connect together or independently in order to reach the PAN 

coordinator. This means that the devices will find the easiest and shortest way to transfer the 

information from the source to the end point. Tree or Cluster tree topology consists of a main 

PAN coordinator and FFD devices both of them act like parents which means that RFD devices 

in this case children could be connected to them. RFD devices cannot act as parents which means 

they can only send the information but they cannot act as a bridge between the coordinator and 

the source. Cluster tree differs from normal tree by having a unique ID for every parent and its 

children hence, creating a cluster. [7] 

2.2.2   IEEE 802.15.4 standard  

 As mentioned above the ZigBee protocol is based on the IEEE 802.15.4 standard, this 

standard defines the physical layer which includes the data packets, operating frequencies 

connection topologies which were mentioned above and also the data link layer known as the 

MAC layer. 

2.2.3   Discussion: To ZigBee or Wireless M-Bus or others 

The ZigBee protocol is oriented towards being used in applications where low power, and 

low data rates are being used with a requirement for long battery life. ZigBee technology is used 

mainly in small areas as it can be an ideal solution for HAN communication and unlike Wireless 

M-Bus, ZigBee protocol is not only limited to being used for energy meters, but it can be used in 

home automation to control a variety of consumer appliances, it could also be used to control 

lights, doors, alarms and many more. Today there is a big movement from manufacturers to 

produce appliances supporting the ZigBee technology.[8]  

These big movements from manufactures to provide more and more devices supporting 

the ZigBee technology, pushes more users and consumers to use this technology because, ZigBee 

devices offer quite a high degree of interoperability compared to Wireless M-Bus. However one 

of the biggest drawbacks of the ZigBee technology compared to Wireless M-Bus is that the 
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ZigBee technology has a large stack, meaning that the requirements to fulfill the ZigBee protocol 

are quite high in comparison to Wireless M-Bus and this means that it is also demanding on the 

devices. This is one of the main reasons why Wireless M-Bus finds its way easily through energy 

meters since these devices have generally low processing power and memories, so a less 

demanding protocol is always favored.  

On the other hand as we previously mentioned in section 3.2.1 the ZigBee technology 

excels by providing the ability to connect in different topologies. The possibility of creating a 

mesh or peer to peer network opens huge possibilities to manipulate and use the existing devices 

for example sensors or meters to route the data between the devices in the network. This method 

might be difficult to realize using Wireless M-Bus, since it uses what is known as a bus topology 

where the data from the meters has to be directly sent to the data concentrator. In the end the user 

must choose which ever topology that proves the most efficient to transfer the data through the 

network as reliable and as fast as possible.  

Another obvious comparison is between ZigBee and Bluetooth. There are several home 

automation devices today which support the Bluetooth technology mainly for communication 

between an electrical appliance and a portable device for example, communication between a 

tablet or a smartphone to a washing machine, light bulb, TV, etc. however, Bluetooth technology 

is much more sophisticated and advanced if compared with ZigBee. The Bluetooth technology 

has a higher data rate, faster respond time and has a protocol allowing it to carry various types of 

media formats. However the Bluetooth devices have batteries that last for days and at the best 

months, this is because the Bluetooth technology maintains a constant connection between the 

devices thus, the devices have to be working continuously all time, so it is safe to say that 

Bluetooth technology is less energy efficient if compared with ZigBee.  

 An important factor when considering which technology to use, is the availability of 

devices that support the technology on the market. It is apparent that the Wireless M-Bus is more 

common in Europe, while ZigBee being a more dominant technology in the United States. 

Another fact is, that users can now buy so called “single purpose devices” supporting Bluetooth, 

Wi-Fi or Z-wave and partly automate their living room or kitchen for example.  

On the other hand, a new technology has been developed named Bluetooth Low Energy, 

it is aimed at being used at applications where battery life is a priority, and it succeeds at that by 

allowing the devices to sleep, just like ZigBee or Wireless M-Bus. All of this means that if we 
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compare Zigbee to Bluetooth Low Energy instead of standard Bluetooth we start to see good 

reasons to use Bluetooth Low Energy. [9] is a study that proves that Bluetooth Low Energy 

consumes less energy than ZigBee during a cyclic sleep scenario. However, Bluetooth Low 

Energy has a less sophisticated network topology if compared with ZigBee as mentioned above 

ZigBee gives us the possibility to connected in different topologies for example star, peer to peer 

or cluster tree, while Bluetooth Low Energy has only the possibility to be connected only in star 

topology, for example a sensor connected directly to a tablet or a smartphone. 

As mentioned several times in the thesis which technology to use depends solely on the 

type of the application, our suggestion would be to create a network composed of several 

protocols and technologies working together thus, making best use of the upsides of every 

technology to its highest potential. An example of such a network would be to use Wireless M-

Bus for energy meters and data collection and then to use Zigbee or Wi-Fi for home automation.  

A very short summary for the sake of comparison showing the key differences and ups 

and downs of every technology discussed above will be demonstrated in the following table. 

 

Technology Advantages  Disadvantages 

Wireless M-Bus Low processing power and 

Power consumption 

Low data rate and simple 

protocol 

ZigBee Several connection topologies 

Low power consumption 

Limitations due to ZigBee 

profile and overhead 

Wi-Fi High data rate 

 

Very high power consumption 

relative to others 

Bluetooth High interoperability with 

personal devices  

High power consumption and 

short range 

Bluetooth Low 

Energy 

Very low power consumption Limited connection topology 

Z-Wave Huge market for single 

purpose devices  

Restricted to home automation 

and high price 

Table 5 Comparison between some wireless technologies 
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3   Practical implementation of Wireless M-Bus on an embedded 

device 

 The objective of this chapter of the thesis is to apply the theoretical knowledge and 

background of Wireless M-Bus on real hardware, and attempt to transmit data according to the 

Wireless M-Bus standard. The focus will be on properly implementing and obtaining results from 

configuring the physical layer of the protocol, which means that most of the work will be focused 

on defining radio parameters, Preamble sequences, Postamble sequences etc. for all of the 

different sub-modes, all of which have been explained previously in chapter 2.  

3.1   Hardware  

 The hardware solution to implement Wireless M-Bus consists of two devices. The 

SPIRIT1 transceiver by STMicroelectronics, and the STM32W108 microprocessor by 

STMicroelectronics. These devices were chosen due to their simplicity and user friendliness in 

comparison with their rivals like Texas instruments or Semtech. Therefore, the STM32W108 and 

SPIRIT1 transceiver were teamed together on a PCB board to create the hardware for 

implementing the Wireless M-Bus. The next figure will show the PCB boards. 

 

 

Figure 16 PCB board for implementing Wireless M-Bus 
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The PCB board has been designed in this shape in order to be able to fit it behind a three 

phase wall socket in order to perform and provide measurement results for different parameters. 

Its dimensions and size allow it to fit perfectly behind the socket and screw into the wall in a safe 

and unobtrusive way. The boards are supplied by means of a DC supply through a USB port. The 

boards are also prepared to connect through RS485 to perform various functionalities.  

In order to simulate a real world application for example a meter and a data collector, two 

identical PCB boards were used, one configured as a transmitter (meter) and the other configured 

as a receiver (data collector).  

3.1.1   STM32W108 

 The role of this microprocessor is to program the SPIRIT1 transceiver. This 

microprocessor should also be able to handle the upper layers of the Wireless M-Bus protocol i.e. 

the data link layer and the application layer, since the upper layers are not supported by the 

SPIRIT1 transceiver, instead the upper layers must be programmed and defined by the 

microprocessor. The microprocessor also controls the power consumption of the transceiver since 

the duty cycle and power on timing are determined by the microprocessor. 

3.1.2   SPIRIT1  

 The role of the SPIRIT1 transceiver is to provide and fulfill the requirements of the 

physical layer of the Wireless M-Bus protocol i.e. defining the Preamble, Postamble, Sync word, 

sub-modes and the radio parameters, which include also the frequency band, centre frequency, 

channel spacing and output power. The SPIRIT1 transceiver offers an easy starting point to 

implement Wireless M-Bus, because it comes preprogrammed with 3 different packet structures 

these packet structures are Stack packet, Wireless M-Bus packet and Basic packet. The SPIRIT1 

transceiver also supports several sub-modes of the Wireless M-Bus protocol, and it offers very 

easy and simple switching between different the sub-modes which are S1, S2, S1-m, S2, T2, R2, 

N1 and N2. Figure 17 shows the schematic of the connection of the SPIRIT1 transceiver. 
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Figure 17 Schematic of the connection of SPIRIT1 transceiver 

 

 Naturally the chosen packet was the Wireless M-Bus packet which is shown in figure 

number 3 page number 9. After choosing the appropriate packet attention was then directed 

towards defining the Preamble, Postamble, Sync. words according to the standard using the 

information described in table 1 page number 6. The next step was to set and tune the radio 

parameters of the SPIRIT1 transceiver in order to transmit exactly at the defined frequencies by 

the standard according to the different sub-modes as mentioned in table 1. 

3.2   Software and coding 

 Creating the software for programming the embedded devices was coded using the 

Atollic environment, which is intended for programming ARM devices. In the following table a 

list of some of the registers related to Wireless M-Bus configuration that were programmed on 

the SPIRIT1 chip will be shown, in addition to the original code that corresponds to a 

hexadecimal value intended to be programmed into the registers. 
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Theoretically the radio parameters could be programmed using 3 equations: 

 
                  

   
   

                
                      (1) 

Where:    is the centre frequency 

        is the base frequency 

          is the frequency offset  

      is the crystal oscillator frequency 

The base and offset could be calculated using the following equations: 

 
      

   
     

 

 
    

   
 

                      (2) 

 
        

   
   

           
                      (3) 

Where:   represents the frequency band 

    represents the internal reference divider 

However, programming the result of these equations together into the registers, gives a 

slightly imprecise frequency. This is due to the slight tolerances present in the analogue circuitry 

of the antenna. Therefore, the best method to precisely set the frequency was to use a spectrum 

analyzer and manually tune the values of the radio Registers. Appendix A shows a part of the 

Register  Description Value in hex.  

PCKTCTRL3 Packet format, Receiver mode 0x50 

MBUS_PRMBL Preamble length 0x117 

MBUS_PSTMBL Postamble length 0x02 

MBUS_CTRL M-bus sub-modes 0x01 

CHNUM Channel number 0x04 

CHSPACE Channel space 0x1F4 

FC_OFFSET[1,2] Frequency offset 0x7D0 

MOD[0,1] Modulation type 0 

SYNT Base band - 

Table 6 Registers related to Wireless M-Bus 
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actual code used to program the SPIRIT1 transceiver, while figure 18 shows the actual measured 

radio parameters when the theoretical result of calculating the centre frequency at 868.30 MHz is 

applied to the registers. 

 

 

Figure 18 shows the slightly imprecise centre frequency due to tolerances in the analogue circuitry 

3.3   Results  

 The results of the implementation will be observed using two methods. First observing 

the RX_FIFO register using the code to see if the data has been successfully transmitted from 

point A to B (transmitter to receiver) without any errors. The second method will be using a 

spectrum analyzer to carefully observe the spectrum of the signal and check if the radio 

parameters are equivalent to the Wireless M-Bus standard. However, since we attempt to only 

implement the physical layer, the data will be sent just as a lump of data (payload). Figure 19 

shows how the packet will look like. 

 

 

Preamble 

 

Sync  

 

Data 

 

Postamble 

Figure 19 Test packet for physical layer implementation 

 

3.3.1   Register values 

 The register values were observed while the boards were running during debug mode. 

Several input values were inputted for example (0x01 and 0xD0) into the SPIRIT1’s FIFO data 
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register. The data which was inputted was in fact transmitted and received on the receiver with 

no errors. An array for incoming data was prepared to store these values. Therefore, we can 

conclude that by observing the register values we are able to successfully identify and receive the 

data that we intended to transmit.  

3.3.2   Observing the signal using spectrum analyzer 

A spectrum analyzer was used in order to verify if the signal is transmitted according to 

Wireless M-Bus. In our implementation we configured three different sub-modes (S, T and R) 

therefore, we need to make sure that the signal will match the parameters mentioned in table 1. 

The next figure shows the result of these measurements. 

 

 

Figure 20 Results of radio parameters measurement 

 

 The unclarity in the figures above is due to the fact that they were taken by a camera. The 

figures show two different centre frequencies, one at 868.30 MHz and the other at 868.95 MHz. 

In our opinion these two frequencies are the most common and most used frequencies by the sub-

modes. 868.30 MHz is used for all the S sub-modes which includes (S1, S1-m and S2), and also 

for T2 sub-mode in the case of other to meter. while the 868.95 MHz is used for T1 and T2 sub-

mode.  
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4   Methods of injecting signal to power line 

In the previous sections of this thesis, we focused on analyzing and implementing some 

of the wireless communication protocols used to establish smart grids today. In this chapter of the 

thesis we look into the possibilities of Power Line communication (PLC), and we attempt to 

design an injection coil that will comply with the CENELEC band A standard, followed by a 

proposal to use Rogowski coil as an injection coil. 

4.1   Power Line Communication (PLC) 

 The idea behind PLC is to utilize the existing power line infrastructure to establish 

communication between the devices connected to the grid. This could be achieved by sending a 

modulated signal through the power line medium itself. PLC is today by far the most 

implemented type of smart grid communications which is due to several factors which include 

cost effectiveness in comparison to wireless solutions, speed and security. However, PLC is not 

without its disadvantages these disadvantages or challenges result from the power line medium 

itself, since power lines are designed with power delivery in mind instead of communications, 

they are noisy, unstable and are easily affected by the surrounding environment.  

 There are standards which govern the operation of PLC Worldwide. In Europe the 

standard is governed by the European Committee For Electrotechnical Standardization 

(CENELEC). CENELEC defines four different bands for PLC devices to operate.  

 Band A: Is a band reserved for power providers and suppliers with frequencies ranging 

between 3 – 95 KHz. 

 Band B: Is a band reserved for a consumer application with frequencies ranging from 95 - 

125 KHz.  

 Band C: Is also reserved for consumer applications however, the applications are 

restricted to networking application and the frequencies range from 125 – 140 KHz. 

 Band D: Is also reserved for consumer applications but applications are restricted to alerts 

and reports, frequencies range from 140 – 148.5 KHz. [10] 

4.2   Coupling circuits for injecting signals to power line  

One of the most important things to consider with PLC is how to couple the 

communication signals, into the power line. There are a few techniques used for coupling PLC 
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signals to the power line, for example transformer coupling and inductive coupling. A coupling 

circuit should be able to couple the transmitted signal into the power mains and also receive a 

modulated PLC signal, whilst also removing low frequency signals mainly 50 Hz and 60 Hz so in 

other words a coupling circuit should also perform as a high pass filter to allow the 

communication signal to pass to the power mains. [11] 

In the next sections of the thesis a brief description of the existing coupling methods will 

be presented, followed by a design of a solenoid to inject the signal into the power line, that will 

comply with CENELEC band A, then followed by a proposal to use Rogowski coil as a coupling 

device for injecting communication signals into the power line.  

4.2.1   Transformer coupling 

A widely used type of coupling is known as transformer coupling. One of the main 

advantages of using transformer coupling is the galvanic isolation provided by the transformer, 

so any low voltage circuitry or devices would not be affected by the mains voltage. The next 

figure shows the general schematic of transformer coupling. 

 

Figure 21 Schematic of transformer circuit 

 

 The capacitor C1 doesn’t allow the DC offset to be shorted by the transformer. Capacitor 

C2 and the internal inductance of the transformer act as a high pass filter allowing the 

communication signal to pass and are essentially blocking the 50 Hz and 60 Hz signal, therefore 

the value of the capacitance has to be chosen to fulfill these requirements. It is also worth to 

mention that additional protection components may be added before connecting to the circuit to 

the main for example a fuse. 

C2

AC MAINTRANSMITER

TX1
C1
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4.2.2   Inductive coupling  

 Is a coupling method suitable for frequencies between 2 MHz and 30 MHz. It uses a 

ferrite that works according to the electromagnetic induction principle, as a coupling device.  The 

coupling device is suitable to be used when the main has a low value of impedance. The next 

figure shows the connection of an inductive coupled modem. The inductive coupling has several 

advantages over other methods of coupling these advantages include increased efficiency, and 

the ability to connect the ferrite easily anywhere along the power line cable, but most of all, the 

inductive coupling reduces the hazards related to high voltage since it is not directly connected 

by a physical medium to the power line. The ferrite consists of two gaps, one for accommodating 

the mains wire and the other for accommodating the modem wires.  

 

Figure 22 Inductive coupling using a single ferrite 

 

4.3   Designing of injection coil according to CENELEC band A 

 In this section we will attempt to design an injection coil in order to satisfy the 

requirements of CENELEC band A. The general requirement of band A was previously 

described in section 4.1. Two types of injection coils will be introduced, the first injection 

method will be achieved by using a solenoid to inject the signal and the second will be using a 

Rogowski coil. 
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4.3.1   Solenoid as an injection coil 

 A solenoid is a coil, where the wire turns are wound around an air core. The key 

characteristic of our approach is that we use an air core instead of a ferromagnetic core. This 

gives us the possibility to avoid problems related to saturation, when the ferromagnetic core 

starts to lose its inductive character as the current increases.  

 In our case a solenoid with two windings was created, a primary winding and a secondary 

winding, the idea being to inject a signal between 3 – 95 KHz into the primary winding and 

observe an output voltage in the range of 50 – 500 mV at the secondary winding. Measurements 

will later be carried out to simulate the grid impedance at approximately 20 Ω. 

4.3.1.1   Principle of operation and calculations 

 As mentioned above our solenoid, was constructed using two windings a primary and 

secondary. The primary winding is an uninsulated copper wire, while the secondary winding is 

an insulated copper wire with significantly less number of turns than the primary winding. The 

next figure shows the construction of the solenoid with secondary winding. 

 

 

Figure 23 Construction of Solenoid with secondary winding [12] 

  

 The function of this solenoid depends on the principle of mutual inductance. Simply when 

varying current flows through the primary winding    it creates a magnetic field around the 

primary winding itself, this magnetic field then encircles the secondary winding    as well thus, 
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inducing an emf (Electromagnetic force) which can then be measured by means of a Voltmeter or 

an Oscilloscope for example.  

The mutual inductance can be calculated using the formulae: 

 
  

       

  
 

                      (4) 

 

 Where: M is the mutual inductance in Henry 

      is the flux induced by primary coil    on secondary coil    

        is the current through the primary coil    

Now that we know the mutual inductance M we can deduce that the emf force will be  

 
     

   
  

 
                      (5) 

Where:    is the induced emf on the secondary coil    

An interesting question arises which is, why is the resultant induced emf in negative 

value? The answer is visible in Lenz law as it states that the resultant emf will produce a current 

that creates a magnetic field going in an opposite direction to the direction of the flux lines. 

It is then necessary to calculate the flux through the primary coil using the following 

formulae: 

 
        

      
 

   
                      (6) 

Where:    is the permeability of vacum 

      is the length of the solenoid visible in figure 23 

     is the cross-sectional area of the solenoid 

 Using the knowledge mentioned above a solenoid with two windings was created. The 

inductance of the primary coil was 4.659 mH, while the inductance of the secondary coil is 8.48 

µH. Knowing these values we can compute the mutual inductance using the following formulae: 

                                (7) 

 Where:   is the coupling coefficient in other words if we assume all the flux from    goes 

to    we can say that   is 1.   values range from 0 – 1. 

     is the inductance of the primary coil    

     is the inductance of the secondary coil    
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The input voltage and current into the primary winding were 10 V peak to peak and 

approximately 165 mA respectively. The solenoid was able to inject a peak to peak signal of 

343.8 mV i.e. the amplitude was 171.9 mV with a frequency of 96 KHz when the secondary coil 

is not loaded. When we attempt to load the secondary coil i.e. when we try to simulate the grid 

impedance, we are able to inject a peak to peak signal of 115 mV in the worst case scenario as 

shown in figure 24. 

               

Figure 24 Output of injection coil with and without maximum expected grid impedance 

 

 The results show that the solenoid is able to inject reasonable and usable output values 

that could later be used for PLC and that also comply with CENELEC band A. 

4.3.2   Proposal to use Rogowski coil as an injection coil  

 Rogowski coils offer intriguing reasons to investigate them, since unlike the traditional 

induction couplers which because of the use of ferromagnetic cores exhibit saturation, the 

Rogowski coil uses an air core. This means that we have a possibility to reduce the mass of the 

coupling device, whilst avoiding the ferromagnetic core related problems such as saturation. We 

also have the possibility to achieve galvanic isolation by using Rogowski coils for coupling.  

 Rogowski coils also promise us in theory a very wide range of frequencies to operate at, 

meaning that we are able to create one hardware and then we are able to use it to comply with 

CENELEC bands A, B, C and D which as mentioned previously operate between the ranges of 3 

KHz to about 150 KHz. In addition we are also able to achieve Broadband Power Line 

Communication (BPLC) which operates in the ranges of MHz. 
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 The principle of operation of Rogowski coil is quite similar to the principle of operation 

of the solenoid, the similarity exists in the fact that both Rogowski coil and a solenoid use an air 

core. The next figure shows how the Rogowski coil is constructed and how it is placed.  

 

Figure 25 Rogowski coil construction and operation for measurement [13] 

  

As seen in the figure above a wire is placed within the toroid itself and when a varying 

current      passes through a wire it creates a magnetic field that is then picked by the Rogowski 

coil and it then generates an emf. The general problem with Rogowski coils is that they produce 

weak outputs i.e. the signal that is produced as a result of the changing current through the wire 

needs to be amplified in order to be used for an application. Rogowski coils are mostly used to 

measure currents. 

4.3.2.1   Simulation and modeling 

 In this section we attempt to investigate the possibilities of using a Rogowski coil as an 

injection coil. An equivalent circuit will be presented followed by a simulation for a model 

containing a Rogowski coil coupled to the mains.  

 The equivalent circuit of the Rogowski coil will be shown in the following figure. 
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Figure 26 The equivalent circuit of Rogowski coil [14] 

 

 The components L1, R1, C1 and R2 simulate the self inductance, resistance and 

capacitance while R2 simulates the terminal resistance of the coil. 

 Our idea was simply to try to simulate what happens if we attempt to inject a signal on the 

terminal end of the Rogowski coil and observe the effect of the injected signal on the wire. The 

next figure shows the model and the simulation’s circuit.  

 

Figure 27 Model for simulating Rogowski coil as injection coil 

 

The simulations will be carried out using the PSpice software. In the above figure the grid 

impedance is simulated by the resistance R4, while we inject a varying voltage on the terminal 

side of the Rogowski coil. The value of R4 is supposed to mimic the impedance of the grid so the 

chosen values were between 0.5 - 20 Ω, the resistor R3 represents the self resistance of the source 

itself, whilst M is the mutual inductance of the Rogowski coil. The next table will show the 

chosen values of the components that represent the Rogowski coil’s parameters, these values will 

be fixed while values of V(t), R3 and R4 will be changed in order to simulate different operating 

scenarios. 
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Components Value 

R1 0.11 Ω 

R2 2000 Ω 

C1 50 pF 

L1 0.6 µH 

M 1.5 ×      

Table 7 Values of components used for Rogowski coil simulation [15] 

 

The following figures will show the induced voltage on the wire when carrying out the 

simulation at several frequencies which are within the CENELEC band A, and with an input 

voltage with amplitude of 24 V while limiting the maximum current to 2 A. The simulations 

shown below show that in theory we are able to induce some voltage that could actually be used 

for PLC, while more scenarios will be shown in Appendix B at the end of the work. 

 

 

Figure 28 simulation showing induced voltage on wire at 3 KHz 
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Figure 29 simulation showing induced voltage on wire at 45 KHz 
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5   Conclusions and future work 

 In this Bachelor thesis we reviewed the Wireless M-Bus protocol in detail. We attempted 

to create a document that could function as a simple and intuitive guide to explain Wireless M-

Bus protocol. 

 In Chapter 1 we presented the biggest motivation towards the development of such 

protocols and technologies like Wireless M-Bus and ZigBee which is the Smart Grid (SG). We 

gave an introduction to smart grids and their problematics and demands then we explained and 

illustrated the different topologies and hierarchies in the smart grid communication networks.  

Chapter 2 is where we introduced Wireless M-Bus and where we then compared Wireless 

M-Bus to rival technologies and protocols such as Zigbee and Bluetooth. We concluded chapter 

2 with a comparison between the technologies used in smart grid communications and have 

chosen Wireless M-Bus as the preferred protocol for metering purposes while recommending 

using more sophisticated technologies such as ZigBee and Bluetooth for establishing 

communication between devices in a home network. 

In chapter 3 we implemented the physical layer of Wireless M-Bus on an embedded 

device, and successfully transmitted a data payload according to the correct parameters stated by 

the Wireless M-Bus protocol. Measurements showed that the most effective way to set the radio 

parameters is by attempting to manually tune the values of the SPIRIT1’s registers in order to 

obtain correct and precise operating frequencies.   

 Chapter 4 starts by giving an introduction to another type of smart grid communication 

i.e. Power Line Communication (PLC). We then described some of the methods of coupling or 

injecting signals to the power line in order to achieve PLC. The chapter then demonstrates the 

possibility of using a solenoid as an injection coil to inject the signal into the power line, 

followed by a simulation of Rogowski coil as an injection coil. 

 Results from chapter 4 show that the solenoid that was created did in fact achieve the 

target parameters that we were aiming at, and that it can be used to inject signals into the power 

line. Measurements were then carried out to simulate grid loads.  

On the other hand the simulations for using Rogowski coil as an injection coil show a 

promising start, as the induced voltages and frequencies seem sufficient for use in PLC 

communications, and comply with CENELEC standards.  
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 This bachelor thesis gives several topics for further investigation and study for example: 

 Fully implementing Wireless M-Bus protocol on an embedded device and compare its 

energy consumption to ZigBee. 

 Investigating the security of Wireless M-Bus protocol and testing the effectiveness of the 

used encryption algorithms against eavesdroppers. 

 Implementing the Rogowski coil as an injection coil on hardware and carrying out 

measurements to obtain results and compare them to simulations presented in this thesis. 
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Appendix A 

#ifdef WM_WMBUS 

// Defining the sub-mode (sub-mode=0) for S1&S2. 

  WM_SpiSpiritWriteReg(SP_REG_MBUS_CTRL, 0x00u<<1);  

// Defines the packet WM-BUS=2 RX_MODE&LENGTH WIDTH 

WM_SpiSpiritWriteReg(SP_REG_PCKTCTRL3, (0x02u<<7) | (0x00<<5) | (0x10u<<3); 

// According to the standard preamble must have n>278 in chip sequence 

WM_SpiSpiritWriteReg(MBUS_PRMBL, 0x117u);      

// According to standard postamble must have n=1 to 4 chip sequence 

  WM_SpiSpiritWriteReg(MBUS_PSTMBL, 0x01u);         

//Radio Configuration 

// Calculated with synt register to set the frequency at 868.3 

    WM_SpiSpiritWriteReg(SP_REG_CHSPACE, 0x03u);      

// Choosing FSK Modulation 

   WM_SpiSpiritWriteReg(SP_REG_MOD0, 0x00u<<5);       

// Calculated to set frequency at 868.3 

WM_SpiSpiritWriteReg(SP_REG_CHNUM, 2u);            

#elif WM_MBUS_T2 

// Defines the sub-mode according to spirit (sub-mode=1) for S1-m&S2,T2 

WM_SpiSpiritWriteReg(SP_REG_MBUS_CTRL, 0x01u<<1);      

// Defines the packet WM-BUS=2 RX_MODE&LENGTH WIDTH 

WM_SpiSpiritWriteReg(SP_REG_PCKTCTRL3, (0x02u<<7) | (0x00<<5) | (0x10u<<3) );      

// According to standard preamble must have n>278 in chip sequence 

WM_SpiSpiritWriteReg(MBUS_PRMBL, 0x117u);        

// According to standard postamble must have n=2 to 4 chip sequence 

WM_SpiSpiritWriteReg(MBUS_PSTMBL, 0x02u);       

//Radio Configuration 

// Choosing FSK Modulation 

  WM_SpiSpiritWriteReg(SP_REG_MOD0, 0x00u<<5);       

// Calculated to set frequency at 868.995 

WM_SpiSpiritWriteReg(SP_REG_CHNUM,4u);               
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// Calculated to set frequency at 868.95 

  WM_SpiSpiritWriteReg(SP_REG_FC_OFFSET1, 0X7D0u<<11);      

// Frequency offset   

  WM_SpiSpiritWriteReg(SP_REG_FC_OFFSET0, 0X7D0u<<7);     

// Calculated to set frequency at 868.95 

  WM_SpiSpiritWriteReg(SP_REG_CHSPACE, 0x1F4u);            

#elif WM_Mbus_R 

// Defines the sub-mode according to spirit (sub-mode=5) for R 

  WM_SpiSpiritWriteReg(SP_REG_MBUS_CTRL, 0x05u<<1);   

// Defines the packet WM-BUS=2 RX_MODE&LENGTH WIDTH 

WM_SpiSpiritWriteReg(SP_REG_PCKTCTRL3, (0x02u<<7) | (0x00<<5) | (0x10u<<3) );      

// Choosing variable length for payload from transmitter 

  WM_SpiSpiritWriteReg(SP_REG_PCKTCTRL2, 0x01u);       

// According to standard preamble n=96 chips 

  WM_SpiSpiritWriteReg(MBUS_PRMBL, 0x192u);          

// According to standard postamble must have n=1 to 4 chip sequence 

  WM_SpiSpiritWriteReg(MBUS_PSTMBL, 0x02u); 

//Radio Configuration 

// Calculated with synt to set the frequency at 868.3 

 WM_SpiSpiritWriteReg(SP_REG_CHSPACE, 0x03u);       

// Choosing FSK Modulation 

WM_SpiSpiritWriteReg(SP_REG_MOD0, 0x00u<<5);      

// Calculated with synt to set the frequency at 868.3 

WM_SpiSpiritWriteReg(SP_REG_CHNUM, 2u);           
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Appendix B 

 

 

Figure B1 Parameters: input current = 5A, input voltage = 5V, frequency = 3 KHz, grid impedance = 20 Ω 

 

 

 

Figure B2 Parameters: input current = 2A, input voltage = 15V, frequency = 3 KHz, grid impedance = 5 Ω 
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Figure B3 Parameters: input current = 0.5A, input voltage = 24V, frequency = 3 KHz, grid impedance = 20 Ω 

 

 

 

Figure B4 Parameters: input current = 5A, input voltage = 5V, frequency = 96 KHz, grid impedance = 20 Ω 
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Figure B5 Parameters: input current = 2A, input voltage = 24V, frequency = 96 KHz, grid impedance = 20 Ω 

 

 

 

Figure B6 Parameters: input current = 5A, input voltage = 24V, frequency = 96 KHz, grid impedance = 20 Ω 
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Figure B7 Parameters: input current = 10A, input voltage = 12V, frequency = 45 KHz, grid impedance = 15 Ω 

 

 

 

Figure B8 Parameters: input current = 10A, input voltage = 12V, frequency = 45 KHz, grid impedance = 0.9 Ω 

 


