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Abstract

The ring-core method is the semi-destructive experimental method used for evaluation of the homogeneous and

non-homogeneous residual stresses, acting over depth of drilled core. By using incremental strain method (ISM)

for the residual state of stress determination, this article describes procedure how unknown directions and mag-

nitudes of principal residual stresses can be determined. Finite element method (FEM) is used for the numerical

simulation of homogenous residual state of stress and for subsequent strain determination. Relieved strains on the

top of the model’s core are measured by simulated three-element strain gauge, turned by the axis of strain gauge

“a” from the direction of the principal stress σ1 about unknown angle α. Depth dependent magnitudes of relieved

strains, their differences and set of known values of calibration coefficients K1 and K2 or relaxation coefficients

A and B are used together for determination of the angle α and for re-calculation of principal stresses.
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1. Introduction

The ring-core method (RCM) is a semi-destructive experimental method used for the evaluation

of homogeneous and non-homogeneous residual stresses, acting over depth of drilled core.

Therefore, the specimen is not totally destroyed during measurement and it could be used for

further application in many cases.

One of the applicable theories, based on the procedure of evaluating magnitude of the resid-

ual stress, is called the incremental strain method (ISM). It is still used quite often, despite its

numerous theoretical shortcomings. On the one hand, ISM assumes that the measured defor-

mations dεa, dεb and dεc are functions only of the residual stresses acting in the current depth

“z” of the drilled hole and they do not depend on the previous increments “dz” including an-

other residual stresses, see Fig. 1. On the other hand, relieved strains do not depend only on the

stress acting within the drilled layer, but also on the geometric changes of the ring groove dur-

ing deepening. Consequently, strain relaxations are still continuing and grooving with drilled

depth, even though the next step’s increment is stress free. Therefore, the proposed theory pur-

veys only approximate information about the real state of stress and RCM method is not suitable

for the types of measurements with a steep gradient of residual state of stress.

By using incremental strain method for the residual state of stress determination and FEM,

this article describes procedure how directions of the principal residual stresses can be deter-

mined. Finite element method is used for the numerical simulation of homogenous residual

state of stress and relieved strains on the top of the model’s core are measured by simulated
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Fig. 1. Principle of ISM with known directions of principal stresses (α = 0◦)

Fig. 2. Strain gauges “a, b, c” placed in principal

stress directions

Fig. 3. Strain gauges “a, b, c” placed in general

direction

three-element strain gauge rosette, turned by the axis of the strain gauge “a” from the direction

of the principal stress σ1 about unknown angle α (Fig. 3).

2. Problem description

Like the integral method, the incremental strain method requires a set of depth-dependent coeffi-

cients, which are necessary for further residual stress determination, carried out by the ring-core

method in this case. Values of calibration coefficients K1 and K2 have been already determined

by the simulation under various types of uniaxial and biaxial state of stress conditions and pub-

lished in articles [2, 3] and [1, 7]. Their dependence on the depth of drilled hole and on the

disposition of the homogenous residual state of stress as well as geometry changes of the annu-

lar groove and finite element model’s dimensions have been considered too. Another way, how

to determine residual state of stress between two specifics depths of drilled groove, is possible

by calculation of relaxation coefficients A and B.

This paper deals with results obtained by the FE-measurement of relieved strains εa, εb and

εc, by generally placed strain gauge rosette on the top of the core, where their differences and

set of known values of calibration coefficients K1 and K2 or relaxation coefficients A and B
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is used for the proper determination of the principal stresses σ1 and σ2. Placing of the three-

element strain gauge rosette on the top of the ring-core is shown in case of known direction of

principal residual stress (Fig. 2) and in case of general direction (Fig. 3).

3. Basic equations

Like each method, incremental strain method has its own theoretical background to define cer-

tain relations between known and unknown parameters. Residual state of stress can be deter-

mined either by differentials or differences of relieved strains.

3.1. Using calibration coefficients K1 and K2

Equations (2)–(4) describe strain differentials, used to express determination of the principal

stress σ1 and σ2 by the known set of calibration coefficients K1, K2, calculated from principal

strains ε1 and ε2 on the top surface of the core, where the three-element ring-core rosette is

placed ([1–3] and [5]).

Relieved general strains εa, εb and εc are measured every i-th step of drilled depth zi and

size of step’s difference ∆z is always referred to the previous step’s size (zi−1). Magnitude of

each step used in FEM simulation (1) is ∆z = const. = 0.2 mm

∆z = zi − zi−1 = 0.2 mm, for i = 1 ÷ 40. (1)

With known magnitude of the calibration coefficient K1, K2 (Fig. 4 and 5, Table 1) and

relevant derivation of principal strains dε1/dz and dε2/dz in dependence on the specific mag-

nitude of step’s increment dz could by principal stresses of homogenous residual state of stress

obtained by following equations:

σ1 =
E

K2
1 − µ2K2

2

·

(

K1
dε1

dz
+ µK2

dε2

dz

)

, (2)

σ2 =
E

K2
1 − µ2K2

2

·

(

K1
dε2

dz
+ µK2

dε1

dz

)

, (3)

dε1

dz
= ε′1,

dε2

dz
= ε′2, (4)

where E is Young’s modulus, µ is Poisson’s ratio and ε′1, ε′2 are numerical derivations of relieved

strains.

Attention should be paid to formulations suggested in (2), (3). If the denominator K2
1−µ2K2

2

becomes zero for certain values of K1 and K2, the stress will become infinite, i.e. for steel

material with 0.3 ∼= µ = K1/K2. Further, expressions of (2)–(4) could be modified into

equations used for determination of calibration coefficients under uniaxial and biaxial state of

stress conditions.

In case of the uniaxial state of stress, (σ1 �= 0, σ2 = 0), equations for the calibration

coefficients K1, K2 are described by:

K1 =
E

σ1
· ε′1, K2 = −

E

µσ1
· ε′2. (5)

In case of the biaxial state of stress (σ1 �= 0, σ2 �= 0), equations for calibration coefficients

K1 and K2 are described by:
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K1 =
E

σ1(1 − κ2)
· (ε′1 − κ · ε′2), (6)

K2 =
E

µσ1(1 − κ2)
· (κ · ε′1 − ε′2), (7)

κ =
σ2

σ1
. (8)

Formulations suggested by (6) and (7) have a problem with the denominator too. If σ1 = σ2

or σ1 = −σ2, then (1− κ2) becomes zero and magnitude of calibration coefficient will become

infinite.

Fig. 4. Calibration coefficients determined under

uniaxial residual state of stress simulation

Fig. 5. Calibration coefficients determined under

biaxial residual state of stress simulation

Calculated points of calibration coefficients K1, K2 in dependence on the drilled depth of

the ring-groove are plotted in Figs. 4 and 5. Appropriate polynomial functions of the sixth

degree with constants reproduced by (9) are written in Table 1.

Table 1. Coefficients of polynomial functions

Polyno- Coefficients [–]

mial No.: a0 a1 a2 a3 a4 a5 a6

1 −0,010 670 4 −0,314 649 7 0,111 879 8 −0,011 659 6 −0,000 084 8 0,000 075 7 −0,000 003 0
2 −0,010 055 6 0,173 809 1 −0,205 010 2 0,057 055 6 −0,005 849 3 0,000 150 4 0,000 005 7
3 −0,010 676 9 −0,314 756 6 0,112 016 7 −0,011 715 9 −0,000 074 6 0,000 074 8 −0,000 003 0
4 −0,010 161 6 0,173 977 5 −0,204 814 0 0,056 843 4 −0,005 784 4 0,000 142 2 0,000 006 1

Entire hole was made by 40 increments of step’s size ∆z = 0.2 mm. In Figs. 4 and 5 is

obvious, that behavior of K1 and K2 polynomial functions still remains the same for various

magnitudes of simulated uniaxial and biaxial states of stress [3]. Therefore, no change in the

numerical evaluation of calibration coefficients K1 and K2 is observed, because modification

of homogenous state of stress have no influence on calibration coefficients determination. For

this reason, only one universal set of calibration coefficients K1 and K2 is applicable.

Ki = a0 + a1z
1 + a2z

2 + a3z
3 + a4z

4 + a5z
5 + a6z

6. (9)

Polynomial constants in Table 1 prove the fact that the functions of calibration coefficients

K1 and K2 are the same for various types of simulated homogenous residual states of stress, i.e.

only one universal set of calibration coefficients K1 and K2 is applicable.

Dependence of the calibration coefficient K2 on type of the residual state of stress was

published by Hwang [4], but this contention was disproved.
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Fig. 6. Modified Mohr’s circle for strain Fig. 7. Mohr’s circle for stress

3.2. Determination of principal stresses with unknown principal directions

Relationship between principal strains ε′1, ε
′

2 and general strains ε′a, ε
′

b, ε
′

c measured in unknown

angle α between direction of principal stress σ1 and axis of the strain gauge’s measuring grid:

ε′a = G + H · cos 2α =
ε′1 + ε′2

2
+

ε′1 − ε′2
2

· cos 2α, (10)

ε′b = G + H · cos(2α + 90◦) =
ε′1 + ε′2

2
−

ε′1 − ε′2
2

· sin 2α, (11)

ε′c = G + H · cos(2α + 180◦) =
ε′1 + ε′2

2
−

ε′1 − ε′2
2

· cos 2α. (12)

According to modified Mohr’s circle in Fig. 6, relationship between principal strains ε′1, ε
′

2

and generally measured relieved strains ε′a, ε
′

b, ε
′

c is:

G =
ε′1 + ε′2

2
=

ε′a + ε′c
2

, (13)

H =
ε′1 − ε′2

2
=

1

2

√

(ε′a − ε′c)
2 + (ε′a + ε′c − ε′b)2. (14)

Angle between direction of principal residual stress σ1 and axis of strain gauge’s measuring

grid “a”:

tan 2α =
ε′b − G

G − ε′a
=

2ε′b − ε′a − ε′c
ε′c − ε′a

→ α = arctan

(

2ε′b − ε′a − ε′c
ε′c − ε′a

)

. (15)

Table 2. Specified quadrants

Numerator: Denominator:

2ε′b − ε′a − ε′c ε′c − ε′a 2α [◦]

+ + 0 ÷ 90
+ − 90 ÷ 180
− − 180 ÷ 270
− + 270 ÷ 360
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Similarly, derivation of strains ε′1, ε′2 and ε′a, ε′b, ε′c could be used in (10)–(15) instead of ε1,

ε2 and εa, εb, εc strains in order to evaluate stress σa, σb and σc in direction of strain gauge’s

axis:

σa =
E

K2
1 − µ2K2

2

· (K1ε
′

a + µK2ε
′

c), (16)

σb =
E

K2
1 − µ2K2

2

· [K1ε
′

b + µK2(ε
′

a − ε′b + ε′c)], (17)

σc =
E

K2
1 − µ2K2

2

· (K1ε
′

c + µK2ε
′

a). (18)

According to Mohr’s circle in Fig. 7, principal stress σ1 and σ2 could be recalculated by

using known magnitudes of non-principal stresses σa, σb, σc measured by generally turned

strain gauge rosette:

M =
σa + σc

2
, N =

1

2

√

(σa − σc)2 + (σa + σc − 2σb)2, (19)

σ1 = M + N, σ2 = M − N. (20)

3.3. Using relaxation coefficients A and B

Magnitude of principal residual stresses, acting within two drilled depths, can be determined by

using relaxation coefficients too. Therefore, relieved strains are measured only at two different

depths and step’s difference ∆z consist of two particular depths zi and 2zi, described by

∆z = 2zi − zi = zi, for zi = 1, 2, 3, 4 [mm]. (21)

Assuming that dεi

dz
≈ ∆εi

∆z
, equations of principal strains (2) and (3) can be rewritten:

σ1 =
E

K2
1 − µ2K2

2

·
1

∆z
· (K1∆ε1 + µK2∆ε2), (22)

σ2 =
E

K2
1 − µ2K2

2

·
1

∆z
· (K1∆ε2 + µK2∆ε1), (23)

∆ε1 = (ε1)2zi
− (ε1)zi

, ∆ε2 = (ε2)2zi
− (ε2)zi

. (24)

Confrontation of the calibration coefficients K1, K2 and relaxation coefficients A, B:

A =
E · K1

K2
1 − µ2K2

2

·
1

∆z
, B =

E · K2

K2
1 − µ2K2

2

·
1

∆z
. (25)

If ε1 = σ1

E
and ∆ε∗1 = ∆ε1

ε1

; ∆ε∗2 = ∆ε2

µ·ε1

then relaxation coefficients A, B are determined:

A =
E

∆ε∗
1

∆z
1

(∆z)2
[(∆ε∗1)

2 − (µ∆ε∗2)
2] · ∆z

=
E · ∆ε∗1

(∆ε∗1)
2 − (µ∆ε∗2)

2
, (26)

B = −
E · µ ·

∆ε∗
2

∆z
1

(∆z)2
[(∆ε∗1)

2 − (µ∆ε∗2)
2] · ∆z

= −
E · µ · ∆ε∗2

(∆ε∗1)
2 − (µ∆ε∗2)

2
. (27)

Finally, equations for residual stress determination, which are based on differences of re-

lieved strains and relaxation coefficients A, B are:

σ1 = A · ∆ε1 − B · ∆ε2, σ2 = A · ∆ε2 − B · ∆ε1. (28)
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4. FEM simulation

A prerequisite for correct and accurate measurement of relieved strains on the top of the core is

to use FEM simulation. It is the only reasonable way to obtain desired information or simulate

real experiment. The ANSYS analysis system is used for the FE-simulation.

FE-analysis is based on a specimen volume with dimensions of a × a = 50 × 50 mm and

thickness of t = 50 mm. Due to symmetry, only a quarter of the model has been modeled with

centre of the core on the surface as the origin. The shape of the model is simply represented

by a block with planar faces, with a quarter of the annular groove drilled away (Figs. 8 and 9).

The annular groove has been made by n = 40 increments with the step size of ∆z = 0.2 mm in

case of approach described by using calibration coefficients K1 and K2. The maximum depth

of drilled groove is z = 8 mm. Dimension of outer diameter is D = 2ri = 18 mm and groove

width is h = 2 mm.

Fig. 8. Quarter of global solid model Fig. 9. Finite element model

Linear, elastic and isotropic material model is used with material properties of Young’s

modulus E = 210 GPa and Poisson’s ratio µ ∼= 0.3. Relaxed strains ε1, ε2 and ε3 have been

measured at real positions of strain gauge rosettes’ measuring grids by integration across its

surface. Type of considered strain gauge rosette is FR-5-11-3LT, with length and width of each

measuring grid 5 mm and 1.9 mm, respectively [6].

Fig. 10. Depth of drilled groove for z = 2 mm Fig. 11. Depth of drilled groove for z = 4 mm
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5. Results

5.1. Using calibration coefficients K1 and K2

Released strains on the top of the core are obtained by the FE-analysis (Fig. 12). Application

of the general-purposed finite element model in order to simulate homogenous uniaxial state of

stress with magnitude of principal stress σ1 = 60 MPa, σ2 = 0 MPa has been used to verify

basic equations (10)–(20) and theoretical approach proposed by ISM.

Fig. 12. Plot of total displacement [mm] — uniaxial state of stress, depth of drilled groove z = 2 mm

Graphs of relaxed strains calculated by integration across strain gauge’s measuring grid [3]

are plotted in Fig. 13 and their numerical derivations are plotted in Fig. 14. Axis of strain

gauge’s measuring gird “a” was for this simulation turned from the direction of principal stress

σ1 about angle α = 30◦.
Non-principal residual stresses σa, σb, σc acting in axis direction of turned strain gauge

rosette’s measuring grids “a, b, c”, are calculated by (16)–(18) and plotted in Fig. 15 in depen-

dence on the depth of drilled hole. The set of calibration coefficients K1 and K2 (Figs. 4 and 5),

determined under uniaxial or biaxial state of stress conditions, needs to be used for this reason.

Fig. 16 shows angle α between direction of principal residual stress σ1 and axis of strain

gauge’s measuring grid “a” determined in each drilled depth by (15). Table 2 gives an ad-

vice how to consider signs of numerator and denominator of (15) in order to determine correct

quadrant of strain gauge grid’s position.

Fig. 13. Measured strains on the top of the core Fig. 14. Derivations of relieved strains
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Fig. 15. Measured stress in general direction of

strain gauges measuring grid’s axis
Fig. 16. Determined angle α

Fig. 17. Re-calculated principal stresses Fig. 18. Ratio of calibration coefficients

Re-calculated magnitudes of principal residual stresses σ1, σ2 by (19)–(20) are plotted in

Fig. 17 and their magnitudes correctly correspond with simulated homogenous state of stress

with principal stresses σ1 = 60 MPa, σ2 = 0 MPa.

Shortcoming of ISM is obvious in Figs. 15, 17 and 18 where values of results are missing

in depth of drilled hole z = 6 mm. This problem is caused by denominator K2
1 − µ2K2

2 in all

equations where it appears. Only one case is possible when denominator K2
1 − µ2K2

2 becomes

zero for certain values of K1 and K2, and this condition is met in case of Poisson’s ration

K1/K2 = µ ∼= 0.3 (steel material) exactly in depth of z = 6 mm (Fig. 18). For this reason,

magnitude of stress is non-numerable in this depth.

5.2. Using relaxation coefficients A and B

Magnitudes of residual stresses, acting between two specific depths zi and 2zi (Figs. 10 and 11)

of drilled groove can be determined by the method using differences ∆ε/∆z too (21). Values

of general strains, used for determination of relaxation coefficients A, B by simulation of ho-

mogenous uniaxial stress state (σ1 = 60 MPa, σ2 = 0 MPa), are measured across strain gauge’s

measuring grid.

Unknown angle α can be determined for set of strains εa, εb and εc in each depth zi by (15).

Principal strains ε1 and ε2 can be re-calculated by (10)–(12). After that, calibration coefficients

A and B can be determined by (26) and (27), using normalized strains ∆ε∗1, ∆ε∗2 of differentials

∆ε1, ∆ε2 (24). All necessary constants are written in Table 3 for specific variations of drilled

depths.

Incontestable advantage of residual stress determination by relaxation functions A and B
is independency on determination of depth-dependent calibration coefficients like K1 and K2,

which are possible to obtain, either by FEM simulation or experimental measurement.
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Table 3. Residual stress determination by relaxation constants

zi [mm] ∆ε1 [1] ∆ε2 [1] ∆ε∗
1

[1] ∆ε∗
2

[1] A [MPa] B [MPa] σ [MPa] α [◦]

1
3.671E–06 –7.599E–05 1.285E–02 –8.866E–01 –3.823E+05 –7.914E+05 60.00 302

2
3.617E–05 3.753E–04 1.266E–01 4.375E–00 –1.558E+04 1.615E+05 60.00 304

3
5.940E–05 –1.248E–04 2.079E–01 –1.456E–00 –2.958E+05 –6.216E+05 60.00 306

4
5.791E–05 –7.200E–05 2.027E–01 –8.400E–01 –1.898E+06 –2.360E+06 60.00 308

6. Conclusions

This paper provided basic information about semi-destructive ring-core method. By using in-

cremental strain method for residual state of stress determination by the finite element method,

this article gives additional information about homogenous residual stress measurement. By

using slightly turned strain gauge rosettes’ measuring grids from the directions of acting prin-

cipal stresses about general angle α, magnitudes and directions of principal stresses need to be

re-calculated.

Theoretical background described by basic differential or difference equations and applica-

tion of universal set of the depth-dependent calibration coefficients K1, K2 or relaxation func-

tions A, B in order to determine principal residual stresses and their orientation, has been pre-

sented.

One of the shortcomings of the ISM, such as impossibility of stress measurement in spec-

ified depth in dependence on the Poisson’s ratio, has been clarified. Another shortcoming of

this method is inaccurate non-homogenous stress evaluation and measuring of more than full

released strains in depth greater than z = 5 mm [2, 3]. Where the steep gradients of residual

state of stress are occurred, measurement is not suitable in this case too.

Incremental strain method had been used frequently until the integral method has overcome

its shortcomings. By concentrating the research on the observed weaknesses and the ambiguous

details the ring-core method can be made an accurate and reliable method for residual stress

measurement.
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