
UNIVERSITY OF WEST BOHEMIA
FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF APPLIED ELECTRONICS
AND TELECOMMUNICATIONS

in cooperation with

ESIEE PARIS

DIPLOMA THESIS

Bc. Matěj Kubička 2014

This page is intentionally left blank.

UNIVERSITY OF WEST BOHEMIA
FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF APPLIED ELECTRONICS
AND TELECOMMUNICATIONS

in cooperation with

ESIEE PARIS

DIPLOMA THESIS
Road-vehicle navigation

Author: Bc. Matěj Kubička

Supervisor: Prof. Hugues Mounier Paris, 2014

Statement

I hereby submit for review and defense my diploma thesis. I declare that I prepared this
thesis independently using professional literature and resources listed in the list, which is
part of this thesis. I also declare that software used to prepare this thesis was obtained
legally.

Note that part of this thesis was converted into conference paper and submitted at
IEEE Intelligent Transportation Systems Conference, 2014.

In Paris on June 30, 2014

2

Abstract

Kubička, M. “Road-vehicle navigation”. Laboratory of signals and systems (CNRS), 2014,
103 p., supervisors: Prof. Hugues Mounier, Dr. Arben Cela, Dr. Silviu-Iulian Niculescu.

Aim of this diploma thesis is to develop navigation system for terrestrial vehicles traveling
on known routing network. It is but one part of larger project that deals with next-
generation optimal routing. In context of this project the navigation system is required
to provide precise positioning information on a road-network map, hence the name “road-
vehicle navigation”.

The thesis starts with thorough analysis of the problem. Satellite navigation, inertial
navigation and other navigation aids are analyzed. Then, solution proposal is drafted from
this analysis. It reflects performance benefits versus factors such as availability, price and
complexity.

With the proposal at hand the thesis continues by solving major cornerstones of the
road-vehicle navigation problem. First, embedded system with various sensors is presented.
Its printed circuit board design and microcontroller software is described in detail. Then,
novel map-matching algorithm is proposed and tested with simulations on real data. Fi-
nally, an application for Android smart devices that implements road-vehicle navigation
system prototype is presented.

Keywords

Integrated navigation system, satellite navigation, inertial navigation, odometers, map-
matching, road network, OBD-II, Bluetooth, GNSS, GPS, GLONASS, INS, MEMS, ac-
celerometers, gyroscopes, magnetometer, barometric pressure sensor, feature matching

3

Anotace

Kubička, M. “Road-vehicle navigation”. Laboratoř signál̊u a systém̊u (CNRS), 2014, 103
s., vedoućı: Prof. Hugues Mounier, Dr. Arben Cela, Dr. Silviu-Iulian Niculescu.

Ćılem této diplomové práce je vyvinout navigačńı systém pro pozemńı vozidla cestuj́ıćı po
předem známé śıti cest. Jedná se o část větśıho systému, který řeš́ı problém optimálńıho
plánováńı cesty s ohledem na stav śıtě cest a stav r̊uzných zdroj̊u energie uvnitř hybridńıho
vozidla. V kontextu tohoto projektu je třeba mı́t navigačńı systém schopný určit polohu
vozidla podél śıtě cest s vysokou přesnost́ı.

Prvńı část této práce je věnována analýze problému, který řeš́ı. Satelitńı navigace, in-
erciálńı navigace a daľśı techniky jsou nejprve prozkoumány odděleně a poté jsou zkoumány
možnosti jejich integrace v jednom navigačńım systému. Výstupem této analýzy je nástin
optimálńıho řešeńı, ke kterému tato i následuj́ıćı práce budou směřovat.

V daľśıch částech této práce se věnuji vývoji kritických součást́ı navigačńıho systému
v kontextu provedené analýzy. Nejprve je navržena deska plošných spoj̊u s přij́ımačem
pro satelitńı navigaci, s inerciálńı navigaćı, OBD-II rozhrańım a daľśımi senzory. Poté je
popsán software s drivery ke všem hardwarovým součást́ım desky plošných spoj̊u. Dále je
představen nový algoritmus pro párováńı navigačńıch dat se známou śıt́ı cest a otestován
v simulaci s reálnými daty.

Finálńı část této práce popisuje aplikaci pro systém Android která realizuje proto-
typ “road-vehicle” navigačńıho systému za pomoci párovaćıho algoritmu a zmı́něné desky
plošných spoj̊u.

Kĺıčová slova

Integrovaný navigačńı systém, satelitńı navigace, inerciálńı navigace, odometrie, map-
matching, feature matching, mapa śıtě cest, OBD-II, Bluetooth, GNSS, GPS, GLONASS,
INS, MEMS, akcelerometr, gyroskop, magnetometr, barometrický měřič nadmořské výšky.

4

Résumé

Kubička, M. “Road-vehicle navigation”. Laboratoire des signaux et systèmes (CNRS), 2014,
103 p., superviseurs: Prof. Hugues Mounier, Dr. Arben Cela, Dr. Silviu-Iulian Niculescu.

Cette étude a pour but de developper un systéme de navigation pour les vehicules terrestres
dans le traffic routier. Il s’agit d’un module d’un grand projet qui traite la routage optimal
concernant l’état du réseau routier et le statut des différentes sources d’énergie dans le
véhicule hybride (de la prochaine generation). Dans le cadre de ce projet, le système de
navigation est requis de fournir des informations de positionnement précis le long du réseau
routier, d’où provient le nom navigation du véhicule routier.

La thèse commence par une analyse approfondie du problème et de sa modélisation.
La navigation par satellite, la navigation inertielle et d’autres techniques de la navigation
sont analysées séparément, puis les possibilités de leur intégration sont étudiés.

Ensuite, une solution optimale à partir de cette analyse est proposée. Il reflète les
avantages et les performances par rapport à des facteurs tels que la disponibilité, le prix
et la complexité.

Cette étude se poursuit par une proposition de solution du problème de navigation des
véhicule routiers. Premièrement, un module de calcul autour d’un processeur et intégrant
des divers capteurs est conçue ainsi que son logiciel et les drivers pour toutes les com-
posantes de mesure, de calcul et de communication du circuit imprimé.

Puis un nouvel algorithme pour le couplage des données de navigation avec des réseaux
connus est présenté et testé par des simulations sur des données réelles.

Mots clés

Système intégré de navigation, la navigation par satellite, la navigation inertielle, odomètres,
map-matching, le réseau routier, les systèmes OBD-II, Bluetooth, GNSS, GPS, GLONASS,
INS, MEMS, accéléromètres, gyroscopes, magnétomètre, capteur de pression barométrique,
feature matching

5

Contents

1 Introduction 13

2 Problem analysis 15
2.1 Satellite navigation . 15

2.1.1 Principles . 17
2.1.2 GNSS receiver architecture . 18
2.1.3 Signal strength, line-of-sight . 19
2.1.4 Atmospheric errors . 19
2.1.5 Multipath interference . 20
2.1.6 DOP errors . 21
2.1.7 Stationary tests . 22

2.2 Inertial navigation . 24
2.2.1 Accelerometer . 25
2.2.2 Gyroscope . 27
2.2.3 Error models . 28

2.3 Odometers . 29
2.3.1 Estimating scale error in vehicle speed 30

2.4 Barometric altitude meter . 32
2.5 Map-matching algorithms . 33

2.5.1 Related work . 33
2.5.2 Map-matching problem analysis . 35

2.6 Integration architectures . 38
2.7 Proposed road-vehicle navigation system 39

2.7.1 Hardware . 39
2.7.2 Software . 41

3 Embedded system 43
3.1 Printed circuit board design . 44

3.1.1 Dealing with interference . 44
3.1.2 Power supplies . 48
3.1.3 Microcontroller . 49
3.1.4 MEMS sensors . 50
3.1.5 GNSS receiver . 51
3.1.6 Communication interfaces . 52

3.2 Low-level drivers and support libraries . 53
3.2.1 Bottom halves . 54
3.2.2 Alarms . 55
3.2.3 Timestamps . 55
3.2.4 I2C peripheral driver . 57
3.2.5 USART and DBGU peripheral drivers 59

6

3.2.6 CAN peripheral driver . 60
3.3 Device drivers . 61

3.3.1 MPU-9150 and MPL3115A2 drivers 61
3.3.2 NV08C-CSM driver . 63
3.3.3 ISO 15031 support (OBD-II) . 63

3.4 Embedded application . 64
3.4.1 Communication with host system 64
3.4.2 Diagnostic features . 65

4 Android application 67
4.1 Road-network representation . 67
4.2 Map-matching algorithm . 70

4.2.1 Notion of closeness . 70
4.2.2 Notion of distance along hypothesis 71
4.2.3 Notion of probabilistic gating . 71
4.2.4 Maintaining hypotheses . 72
4.2.5 Likelihood function . 72
4.2.6 Algorithm workflow . 74

4.3 Map-matching algorithm simulations . 74
4.3.1 Tests in rural areas . 75
4.3.2 Tests in urban areas . 75

4.4 Road-vehicle navigation application (rvn-app) 76

5 Conclusion 79

A Software utilities 81
A.1 Dump measurements (log2csv) . 81
A.2 Combine measurements (csvcomb) . 82
A.3 Compute road-network graph (osmer-sql) 82

B Communication with host - protocol 85
B.1 Data objects definition . 85

B.1.1 SDO1 - Master alive . 86
B.1.2 SDO2 - Slave alive, statistics . 86
B.1.3 SDO3 - Weather correction . 87
B.1.4 PDO8 - Inertial measurement unit raw data 87
B.1.5 PDO9 - Barometric altitude meter raw data 87
B.1.6 PDO10 - OBD-II raw data . 88
B.1.7 PDO11, PDO12 - GNSS messages 88
B.1.8 PDO13 - Integrated data . 88

C Printed circuit board specifications 91

D List of acronyms and abbreviations 99

Bibliography 102

7

List of Figures

1.1 Relation between navigation system and road-vehicle navigation system. . 13

2.1 GPS satellite (block IIA; source: U.S. Air Force) 16
2.2 Comparison of estimated position with and without filtering (loc: 49.730836,

12.833126). 18
2.3 Dashed line depicts distance signal travels in atmosphere for low- and high-

elevation satellite (image not in scale). 19
2.4 Example of multipath interference - signal from same satellite is received

twice, reflected signal is delayed with respect to direct one. 20
2.5 An example of two constellations and related DOP coefficients (source:

Wikimedia). 21
2.6 Probability mass function of scatter plot on Figure 2.7a. 22
2.7 Satellite navigation test results (24-hours, stationary). 23
2.8 position drift in the night . 24
2.9 inertial navigation system block diagram 25
2.10 Time-series sample of accelerometer data and its conversion to position show

extraordinary positioning error within first 30 seconds. 26
2.11 gimballed gyroscope (source: Wikimedia) 27
2.12 Time-series sample of gyroscope data and derived orientation error propa-

gation in time. 28
2.13 velocity profile . 30
2.14 Comparison of vehicle speeds before and after correction. 31
2.15 Dependence of δw estimator performance on GNSS data filtering. 32
2.16 Altitude measurement sample (midnight to midnight). 33
2.17 Map-matcher as a gateway between low-level and high-level subsystems. . . 33
2.18 Different principles of geometric algorithms. Grey circle is measured posi-

tion, white circles are road network nodes and black dots are matched points
on the road network. 34

2.19 State machine that governs which algorithm is active enables fast failure
recovery. 36

2.20 The dotted line remains hidden for point-to-curve algorithm because its
enclosing nodes are not in vicinity of the measurement. This situation results
with incorrect match. 37

2.21 loosely coupled integration architecture . 39
2.22 road-vehicle navigation system . 41

3.1 PCB block diagram . 44
3.2 Front side of the printed circuit board. 45

8

3.3 PCB copper traces (not in scale) . 46
3.4 PCB parts placement (not in scale) . 47
3.5 power supply for digital circuitry . 48
3.6 power supply with low-noise properties . 48
3.7 MEMS sensors (filtering capacitors not shown) 50
3.8 GNSS receiver . 51
3.9 memory backup for GNSS receiver . 52
3.10 CAN and USB interfaces . 53

4.1 Blue lines represent edges of road-network graph around Montmartre, Paris
returned by method cacheArea(). 69

4.2 Cases that might occur when computing closest point on line segment. . . 70
4.3 An example with two points on some hypothesis for which we want to com-

pute distance along the hypothesis. Length of the thick line is what we seek
to compute. 71

4.4 Principle of traveled distances observed on different hypotheses. Hypothesis
h1 is clearly the most likely one if we take the length of dotted line as actually
traveled distance and compare it to the length of distances projected on both
hypotheses. 73

4.5 Algorithm workflow. Each step is described in detail in Section 4.2 with
exception of point-to-curve algorithm that is described in Section 2.5.2. . . 74

4.6 Test in rural area, blue line is map-matched route. 75
4.7 Test in urban area. Blue line is map-matched route for test in urban area,

red dots are successive reported positions. 76
4.8 rvn-app layout . 77

B.1 process/service data object frame . 85

C.1 PCB copper trace, top side . 94
C.2 PCB copper trace, bottom side . 95
C.3 PCB parts placement, top side . 96
C.4 PCB parts placement, bottom side . 97

9

List of Tables

2.1 IMU-9150 performance (1g=9.80665m/s2) 40

3.1 main power supply properties . 49
3.2 MPU-9150 configuration . 63
3.3 GNSS receiver configuration . 63
3.4 messages sent by GNSS receiver . 63
3.5 list of process/service data objects . 65
3.6 in-run statistics and other diagnostic information (extract) 66

A.1 output type specifiers . 81

B.1 fields in SDO1 . 86
B.2 fields in SDO2 . 86
B.3 fields in PDO8 . 87
B.4 fields in PDO9 . 87
B.5 fields in PDO10 . 88
B.6 messages forwarded by PDO11 (for their specification see [17]) 88
B.7 messages forwarded in PDO12 (for their specification see [17]) 88
B.8 fields in PDO13 . 89

C.1 bill of materials . 92

10

List of Listings

2.1 implementation of δw estimator . 31
3.1 function read timestamp raw() . 56
3.2 i2c device data structure . 57
3.3 i2c request data structure . 57
3.4 MPU-9150 driver (simplified) . 62
4.1 retrieving adjacent vertices . 68
A.1 log2csv usage instructions . 81
A.2 log2csv output example . 82
A.3 csvcomb usage instructions . 82
A.4 osmer-sql usage instructions . 82
A.5 osmer-sql output when run on a map of Czech Republic 83
B.1 bit positions in services field . 86

11

This page is intentionally left blank.

12

Chapter 1

Introduction

This work was conducted in Laboratory of Signals and Systems L2S/Supelec during six
month internship at the end of my undergraduate study. The Laboratory of signals and
systems (commonly known as L2S) is a research unit of the Centre national de la recherche
scientifique (CNRS), École supérieure d’électricité (Supélec) and Paris-Sud University.

Main goal of this work was to conduct thorough analysis of Road-vehicle navigation
problem and to propose optimal architecture in terms of performance. Secondary goal
was to implement this proposal to some degree. It was never required to implement it
completely as the proposal was not designed to be implementable in few months by a
single developer.

As part of the analysis I have designed embedded system to run tests on sensors,
navigation systems and communication interfaces we were considering with my supervisors
to deploy. This prototype system has shown capable to host integrated navigation system
as proposed in the analysis. It is described in Chapter 3.

Important part of road-vehicle navigation system is so-called map-matching algorithm.
This algorithm matches Earth-referenced position to position on a map and provides map-
referenced position. Hence, the map-matching algorithm promotes classical navigation
systems to road-vehicle navigation systems, see Figure 1.1.

Please note that although both analysis and implementation was conducted by me, I

Figure 1.1: Relation between navigation system and road-vehicle navigation system.

13

was lead by my supervisors who were managing this project. Thorough the thesis text I
often refer to authors in plural form to acknowledge it.

Document organization

Chapter 2 is concerned with the analysis, it presents theoretical background and practical
test results on various devices that can potentially realize or enhance navigation system
performance. Chapter 3 is concerned with design of the embedded system. Printed circuit
board is detailed as well as microcontroller’s program, peripheral drivers and device drivers.
Chapter 4 is concerned with map-matching algorithm, optimal data structures to hold high
resolution maps and with “rvn-app” application that implements prototypical road-vehicle
navigation system.

Appendices of this document contain description of tools we developed to conduct this
work, printed circuit board designs and detailed specification of communication protocol
between embedded system and the Android device.

14

Chapter 2

Problem analysis

This chapter is concerned with technologies that have potential to enhance performance
of road-vehicle navigation system we develop. Performance and properties of satellite
navigation, inertial navigation and other navigation aids is analyzed separately in sections
2.1-2.4. Section 2.5 is concerned with various map-matching algorithms proposed so far
and with analysis of required map-matching algorithm behavior. Then, Section 2.6 lists
various ways how navigation systems can be integrated and, finally, Section 2.7 proposes
architecture of the road-vehicle navigation system based on this analysis.

2.1 Satellite navigation

Satellite navigation refers to family of systems that use satellites to provide positioning
information. These are GPS, GLONASS, Galileo, Compass, Beidou, and IRNSS. Satel-
lite navigation systems are generally referred to as GNSS which is shortcut for Global
Navigation Satellite System1.

GPS is oldest. It has reached full operation capability on January 17, 1994. Two
services were provided - first, called C/A code, is freely available for civilian use and second,
called P code, is intended for military use. The C/A code was intentionally crippled
with selective availability algorithm reducing precision to about 100 meters. Selective
availability was disabled on May 1, 2000 enabling horizontal precision of 20 meters. Today,
GPS receivers are able to deliver precision in order of few meters. Unfortunately this is
never guaranteed as it depends on many environmental factors (visibility, multipath, sun’s
activity, weather..).

GLONASS is Russian navigation system closely similar to GPS. GLONASS reached full
operation capability in 1995, but since 1996 system went into decline losing its ability to
provide positioning. The system underwent restoration since 2000, reaching full operation
capability in October 2, 2011. It has precision of 5-10 meters since restrictions on its
formerly military signal were lifted on May 18, 2007.

GLONASS uses same underlying principles as GPS, but their implementation is dif-
ferent. GLONASS uses FDMA (frequency division) channel access method while GPS

1Acronym GLONASS actually translates to GNSS in English. We will use term GNSS to refer to
satellite navigation systems in general and GLONASS to refer to Russian system specifically.

15

Figure 2.1: GPS satellite (block IIA; source: U.S. Air Force)

uses CDMA (code division). This prevents cheap integration of GPS and GLONASS re-
ceivers into a single device. First integrated GPS/GLONASS receivers surfaced in 2012.
These devices used two separate baseband processors - one for GPS and another one for
GLONASS.

Galileo is GNSS system currently developed by European Union. Distinctive feature
of Galileo is that it is designed as commercial system (in contrast to GPS and GLONASS
which are operated by military). In the time of writing, Galileo is in in-orbit validation
phase, having 4 satellites orbiting earth. Full-operation capability is scheduled for 2019.
Galileo is on its way to be the first fully operational second-generation satellite system
meaning that it will offer global integrity, integrated SBAS (see below) and high chipping
rate signals.

BeiDou and Compass are developed by China. BeiDou is different from other systems
as it uses two-way communication with geostationary satellites above China. This tech-
nology allows only limited number of active users at a single moment, has lower precision
than GPS and covers only local parts of Asia. Compass, also known as BeiDou-2, is cur-
rently developed as China’s truly global GNSS system. It is scheduled for full operational
capability by 2020.

IRNSS (Indian Regional Navigation Satellite System) is GNSS system currently de-
veloped by India. Seven geostationary satellites are planned to provide independent geo-
ranging codes for civilian and military use above Indian peninsula.

Apart of pure GNSS systems listed above there are satellite-based augmentation systems
(SBAS) that locally improve performance of GPS (or GLONASS). Currently in operation
are EGNOS, WAAS and GAGAN and few others. These systems use a number of geo-
stationary satellites above their area of interest and provide some or all of following services:

• Geo-ranging “GPS like” signals that improve satellite visibility in urban areas.

• Differential corrections, used to correct errors that affect all receivers in the area
covered by SBAS system. These are atmosphere propagation delays and satellite
residual clock offsets and drifts.

16

• Integrity, used to validate positioning data and to automatically recover from error
states, if possible. This is used in critical applications such as aircraft positioning. It
requires the SBAS system to detect and broadcast anomaly in GNSS system within
few seconds from its occurrence.

Above Europe we have EGNOS which provides all three services (geo-ranging, differ-
ential corrections and integrity). WAAS covers United States of America and GAGAN
covers Indian peninsula.

2.1.1 Principles

Many things can be said about satellite navigation but here we restrict ourselves to bare
minimum with which we can understand performance characteristics of GNSS systems.
Among other things, we completely omit modulation schemes, coding and problems related
to signal acquisition and tracking. Instead, we assume that we track signals from j satellites
knowing time of transmission from i-th satellite tsi, local time of reception tri and position
of the satellite, pi, when the signal was transmitted. With this at hand we can compute
range ρi from i-th satellite to receiver

ρi = (tri − tsi)c (2.1)

in meters, noting that c is the speed of light. Note that we assume that receiver and
satellite clocks are perfectly aligned. Even 1µs offset would cause error of 300 meters.
Clock synchronization in sub-microsecond level is practically impossible to achieve. For
this reason ρi is called “pseudo-range” to account for the fact that it contain receiver clock
offset error.

Imagine we track 3 satellites, then if we ignore the clock offset we can obtain receiver’s
antenna position simply by computing intersection of 3 spheres centered at pi (satellite
positions) with radius ρi (distance satellite-receiver). This yields system of three equations
with three unknowns with form

ρi = ||pi − pr|| (2.2)

where i = {1, 2, 3} and pr is unknown receiver’s antenna position. When fully expanded,
equation 2.2 translates to following

c2(tr1 − ts1)2 = (p1x − prx)2 + (p1y − pry)2 + (p1z − prz)2

c2(tr2 − ts2)2 = (p2x − prx)2 + (p2y − pry)2 + (p2z − prz)2

c2(tr3 − ts3)2 = (p3x − prx)2 + (p3y − pry)2 + (p3z − prz)2

(2.3)

However, the receiver clock error would render results unusable due to not synchronized
clocks in receiver and on the satellite. For this reason we treat receiver clock error as fourth
unknown in our system of equations, requiring 4 satellites to provide three dimensional
position. This is possible because receiver clock offset δrc is common for all pseudo-ranges.

ρi + δrc = ||pi − pr|| (2.4)

With less than 4 tracked satellites the system is underestimated and cannot be solved
(unless some variable is supplied externally). With exactly 4 tracked satellites the system

17

−20 −10 0 10 20 30

−20

−10

0

10

20

30

East (m)

N
o
rt

h
(m

)

(a) least-squares estimation

−20 −10 0 10 20 30

−20

−10

0

10

20

30

East (m)

N
o
rt

h
(m

)

(b) extended Kalman filter

Figure 2.2: Comparison of estimated position with and without filtering (loc: 49.730836, 12.833126).

can be solved exactly. With more than four tracked satellites the solution is overestimated
and position can be obtained by means of least squares estimation, although Kalman filter
is used in practice. Least-squares solution is often used for RAIM2 function.

The transmission time, tsi, is encoded in the message that satellite transmits. There is
high precision clock on board keeping precise time reference. Residual errors in satellite
clocks with respect to UTC time reference are observed on ground by GNSS system operator
and periodically uploaded to satellites. Satellites do not correct their clocks, but forward
the information to receivers. Hence, residual clock error for each satellite is corrected in
the receiver.

Satellite’s own position is transmitted in a set of parameters known as ephemeris. GPS
and Galileo ephemeris contain 16 parameters that describe satellite position on Keplerian
orbit. GLONASS satellites transmit position directly in ECEF frame - with position, ve-
locity and acceleration in Cartesian coordinates. This is easier to work with as GPS’s
ephemeris data have to be transformed into ECEF coordinates, requiring nonlinear equa-
tion to be solved. Nonetheless, time of validity for ephemeris data in GLONASS is shorter
than for GPS. Note that satellites do not send their current position, but rather some older
position that receiver can update to current time.

2.1.2 GNSS receiver architecture

In this section we briefly review main parts of GNSS receiver. Using terminology of [5]
we can separate receiver into 4 parts: (1) antenna, (2) baseband processor, (3) ranging
processor and (4) navigation processor.

The antenna and baseband processor are classically implemented in hardware3. Base-
band processor down-converts modulated signal, samples it and separates signals from
different satellites using bank of correlators where the signal is compared to locally gener-
ated code known in advance (pseudo-random code, each satellite has its own).

2Receiver Autonomous Integrity Monitoring
3Note that software receivers have baseband processor implemented in software [5].

18

Figure 2.3: Dashed line depicts distance signal travels in atmosphere for low- and high- elevation satellite
(image not in scale).

Ranging processor controls the correlator banks. Satellite signal is found when correla-
tion peak is detected (process that searches for the peak is called acquisition) and PLL loop
keeps the receiver locked on signal from there on (process called tracking). Ranging pro-
cessor computes pseudo-ranges, signal-to-noise ratios, demodulates the message data, etc.
All this information is then provided to navigation processor which typically implements
extended Kalman filter and outputs position. Note that Kalman filter uses pseudo-range
rates (ρi derivatives) as aid to compute filtered position solution. In practice these can be
obtained with the PLL discussed above4

2.1.3 Signal strength, line-of-sight

GNSS signals are weak as they fall below noise floor. GNSS receiver has to search for the
signal by correlating samples with known PRN codes. GNSS carriers are in L band, many
with frequency around 1550 Mhz. This is microwave frequency band meaning that solid
objects tend to attenuate the signal. Hence, GNSS carrier cannot pertain to buildings and
even foliage have effects on signal strength.

Note that reflected signals cause positioning errors as they are delayed. This introduces
error to pseudo-range computation so only signals in direct line-of-sight between receiver
and satellite are usable. See Section 2.1.5 for further information.

2.1.4 Atmospheric errors

GPS satellites are located in medium Earth orbit at altitude of 20,200 kilometers, Galileo
satellites are at altitude of 23,222 kilometers and GLONASS satellites at 19,100 kilometers.

Transmitted signals are refracted by free electrons in ionosphere and by gases in tropo-
sphere. Induced propagation delays vary with ionosphere’s ionization due to sun’s activity,
with satellite’s elevation and also due to weather conditions in troposphere.

There is more refraction when satellites have low elevation with respect to the receiver,
see Figure 2.3. Receivers can compensate for that as propagation error is approximately
proportional to cosine of elevation angle, see [5] for the formula.

Solar radiation charges ionosphere during the day, causing more refraction than in the
night. Induced pseudo-range error can reach 15 meters during the day and 3 meters in
the night [5]. Moreover, ionosphere is a dispersive medium so propagation delay is not

4Carrier and phase tracking is a complex topic, see [1] for further information.

19

Figure 2.4: Example of multipath interference - signal from same satellite is received twice, reflected
signal is delayed with respect to direct one.

uniform on all frequencies. If the receiver tracks signal on more than one frequency, then
the propagation delays can be observed and mostly removed from the pseudo-range.

Troposphere is non-dispersive medium so all signals are delayed uniformly, no matter
their frequency. It is attributable to the error of about 2.5 meters, mostly due to dry
gases in troposphere [5]. Weather fronts (water vapor) have minor effect on troposphere
propagation delay as well.

Differential corrections

Atmospheric errors are global, meaning that correlation distance is in the order of hundreds
of kilometers. Hence, they can be corrected for as they are common for all receivers in a
large area. Satellites provide parameters of Klobuchar’s ionospheric model that corrects
about half of the error.

One have to know local properties of ionosphere for increased precision. This is usually
resolved with reference stations that compute the difference between real pseudo-range and
observed one. These so-called differential corrections are then supplied to GNSS receivers
in radius of hundreds of kilometers from the reference station. Sub-meter accuracy is
attainable by subtracting the difference from receiver’s own computed pseudo-range.

There are various ways how differential corrections are transported to GNSS receivers.
SBAS systems upload corrections to geo-stationary satellites that forward the information
to receivers. Other technique is to tunnel the differential corrections through the internet.
This can be so-called differential GPS (DGPS) or SBAS satellite data stream encapsulated
in TCP/IP packets (case of SiSNET service that forwards EGNOS data). Finally, differen-
tial corrections are sometimes forwarded by radio beacons transmitting in LF band. This
is the case of LORAN terrestrial navigation system that used to forward WAAS differential
corrections in its data channel in North America.

2.1.5 Multipath interference

Multipath interference is caused by reflection of GNSS signals from solid objects. In land
applications, signals reflect mostly from the land and surrounding buildings, see Figure

20

(a) bad DOP (b) good DOP

Figure 2.5: An example of two constellations and related DOP coefficients (source: Wikimedia).

2.4. Consequence is that GNSS receiver receives reflected signals in addition to direct ones.
Reflected signals tend to be delayed which introduces error to pseudo-range computation
(see equation 2.1).

Direct signals are always right-hand circularly polarized, reflected signal may be both
left- and right- hand circularly polarized as single reflection inverts it. Some antennas
mitigate multipath interference by rejecting left-hand circular polarized waves.

Moreover, when higher chipping rate5 is used, then multipath interference is mitigated
as well because the difference in observed range from direct and refracted signal must be
smaller in order to affect the computation.

2.1.6 DOP errors

Acronym DOP refers to “dilution of precision”. Some satellite constellations can enhance
effect of errors in pseudo-ranges when combined to single positioning solution. The idea of
DOP6 is to express how errors in pseudo-ranges affect precision of positioning solution. It
is unit-less coefficient.

When receiver tracks signals from satellites that are close to each other (from receivers
point of view), then the position will be unstable in receiver-satellites direction (see Figure
2.5a). On the other hand, if the satellites are well spaced above the receiver, then the
position is more stable (see Figure 2.5b).

DOP parameters had great importance in early GPS receiver designs as these have
been able to track only a few satellites at a time. Choice of a set of tracked satellites had
effect on performance. Nowadays, receivers are able to track 30+ satellites from multiple
systems simultaneously, so they don’t need to choose a set of satellites to track - they
usually track them all. Hence, dilution of precision errors are mitigated with performance
of current GNSS receivers. The problem still exist, though, in situations where only small
fraction of the sky is visible.

5Term “chipping rate” is not discussed here, see [1] for definition.
6It it sometimes called GDOP as Geometric DOP.

21

2.1.7 Stationary tests

We have tested performance of combined GPS/GLONASS receiver7 NV08C-CSM from
NVS Technologies AG [15]. This device has 2.5-meter horizontal precision (standard devi-
ation) in autonomous mode and 1-meter precision when differential corrections are used.

Two tests were carried out - first was using least-squares position estimator and other
used extended Kalman filer. Both tests were stationary meaning that antenna didn’t move.
Both tests were running non-stop for 24 hours, allowing to see error variation during the
day and night. Both GPS and GLONASS satellites circle Earth twice in that period. Note
that precise position of the antenna was unknown.

The receiver was set for 10 Hz update rate, giving some 864,000 measurements during
the test. It tracked usually between 19 and 24 satellites. Support for SBAS was enabled,
although SBAS satellites were not always tracked. We have asked manufacturer to explain
this and the answer was that SBAS satellite tracking is implemented as low-priority task.
Device’s CPU gets overloaded when there are more than 20 other satellites to track.

Test results are shown on Figure 2.7. Unfiltered position shows normal random distri-
bution with standard deviation of 14.4 meters in East direction and 5.02 meters in North
direction. See Figure 2.7a for scatter plot and Figure 2.6 for probability mass function.

Test that uses extended Kalman filter to estimate position is shown on Figure 2.7b.
Results show random walk of reported position in radius of 2.5 meters around mean (real
antenna position is unknown). This matches receiver’s specification provided by manufac-
turer. Figure 2.8 shows in detail measurement obtained during the night. Bounding radius
for random walk in this period is significantly smaller, about 1 meter. This indicates that
errors in position are generally smaller in the night than in the day. Note that we don’t
have any proof of that as we would need to compare the data to precise position.

North [m]

0

0.1

0.2

0.3

p
e

rc
e

n
t

[%
]

0.4

0.5

0.6

0.7

20

10

0

-10

-20 -20

-10

0
East [m]

10

20

30

Figure 2.6: Probability mass function of scatter plot on Figure 2.7a.

7This receiver can also work with Galileo and BeiDou-2 (with change of firmware).

22

−15 −10 −5 0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

East (m)

N
or

th
(m

)

(a) least-squares position estimator (unfiltered)

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

East (m)

N
or

th
(m

)

(b) Extended Kalman filter

Figure 2.7: Satellite navigation test results (24-hours, stationary).

23

−1 −0.8 −0.6 −0.4 −0.2

−0.2

0

0.2

0.4

0.6

East (m)

N
o
rt

h
(m

)

Figure 2.8: position drift in the night

2.2 Inertial navigation

Inertial navigation systems (INS) are navigation aid that uses measurements of accelera-
tion (from accelerometer) and rotational velocity (from gyroscope) to continuously update
current position. Note that initial orientation and position has to be set manually due to
recursive nature of inertial navigation equations - it updates position based on previous
position and current measurements.

Inertial navigation system consists of inertial measurement unit (called IMU) and pro-
cessing that computes the navigation solution, see Figure 2.9. IMU contains accelerometer
and gyroscope triads - 3 accelerometers and 3 gyroscopes.

According to [5], IMUs can be grouped into five broad categories: (1) marine-grade,
(2) aviation-grade, (3) intermediate-grade, (4) tactical-grade and (5) automotive-grade.
Marine-grade devices drift less than 1.8 kilometers a day, but they cost above 1 million
euros. Similarly, price tag for aviation-grade, tactical-grade and intermediate-grade devices
starts in thousands of euros per IMU.

On the other hand, automotive-grade IMUs cost a few euros a piece. They are manufac-
tured with MEMS technology which makes them cheap, small and imprecise. They suffer
with significantly larger biases and scaling errors than other grades. Their performance is
so poor that [5] claims that automotive-grade IMUs are practically useless for navigation
even when integrated with other systems.

Some IMUs employ magnetometer triad in addition to accelerometers and gyroscopes.
When initial orientation is being determined, one can use accelerometer to find the down
vector (assuming the device is not moving). This will fix orientation in two axes, leaving
third axis free. Magnetometer indicates direction to magnetic North pole, hence when
magnetometer and accelerometer are used together, the orientation can be fully determined.
Then, in local frame, Z-axis points to Earth’s center of gravity, X-axis points to magnetic
North pole and Y-axis is a cross product of the other two, heading to east.

We do not pay attention to magnetometers in this study. Even they are beneficial, they
are also very sensitive and they do change performance in different environments.

24

Figure 2.9: inertial navigation system block diagram

2.2.1 Accelerometer

Accelerometers measure force applied to its casing. It is not the same as coordinate accel-
eration. If the accelerometer is at rest on Earth’s surface it will measure acceleration of
1g (g ≈ 9.805m/s2) upwards. This is due force that holds the accelerometer in place, not
falling. It would measure no acceleration only during free fall.

Conceptually, accelerometer is a proof mass damped on springs. Position of the proof
mass is what we measure. MEMS accelerometers work on this principle, with capacitive
pick-off being used to measure the position - proof mass is the first electrode and casing is
the second. Measured capacity is exponentially related to the gap size between the proof
mass and the casing. Damping is provided by residual gas sealed in the device.

Note that a single accelerometer is measuring acceleration in a single direction. In
order to measure acceleration in any direction one need three accelerometers positioned
orthogonally to each other.

Force measured by accelerometer, fa, is a sum of forces applied to accelerometer’s
casing. These are forces that cause movement, fc, and force fg that compensates for
gravitational acceleration.

fa = fc + fg (2.5)

Newton’s second law of motion says that force is acceleration scaled with mass’s weight.
Hence, if we assume unitary-weight mass, then force equals acceleration8 and gravitational
force fg becomes inverted gravitational acceleration vector, −g. This is because fg is the
force applied by soil below the accelerometer to keep it in place instead of free-falling.

In order to get pure coordinate acceleration we have to cancel fg by adding gravitational

8Even mass in the device does not have unitary weight, this assumption always holds in our model
because accelerometer outputs acceleration, i.e. force applied to unitary-weight mass

25

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
cc

el
er

at
io

n
(m
/s

2
)

x-axis
y-axis
z-axis

(a) accelerometer data sample

0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

·1014

Time (s)

P
o
si

ti
o
n

er
ro

r
(m

)

x-axis
y-axis
z-axis

(b) positioning error in time

Figure 2.10: Time-series sample of accelerometer data and its conversion to position show extraordinary
positioning error within first 30 seconds.

force to the measurement. As both fg and gravitational force have same magnitude and
opposite direction they cancel each other when summed. Hence, coordinate acceleration â
is obtained as follows (assuming proof mass with unit weight, giving â = fc):

â = fa + g (2.6)

Note that we need to know orientation of the vehicle in order to find vector g. This
is why gyroscope is always deployed together with accelerometer. Moreover, magnitude
of gravitational acceleration, g, is not universally same everywhere. Nonetheless, we can
model it as constant because errors of MEMS accelerometers overbound departure of stan-
dard gravity from its mean value.

Finally, there is an easy way to remove fg from accelerometric measurements that
does not require orientation. Assuming device is stationary or accelerating slowly, then
gravitational force is close to the DC component in frequency domain of the signal. So, one
can apply high-pass filter to the samples which will remove the DC component. Although
it is easy to implement, it also distorts the measurements and works only when acceleration
changes slower than filter’s cut-off frequency.

Error sources

Accelerometers are devices with a number of error sources. Zero-bias, scaling factor error
and cross-coupling errors are typical. Zero-bias (or simply bias) is departure from 0 when
there is no force applied to the sensor. Biases are by far the largest pain with MEMS
accelerometers due to inherent double integration process when acceleration is converted

26

Figure 2.11: gimballed gyroscope (source: Wikimedia)

to position. By integrating small constant-valued bias we get linear slope, meaning that
after first integration the bias error adds linearly in time. Consequently, velocity error
is not bounded. Moreover, second integration (of the linear slope) will cause exponential
growth of the positioning error.

In order to get some sense of how grave this problem is, we have made test with
uncalibrated accelerometer inside a cell phone. The device indicated position change in
X-axis of about 1.2 ·1014 meters in 30 seconds even it actually didn’t move at all, see Figure
2.10b. It is roughly 1000 times the distance from Earth to Sun!

Scale factor error is multiplicative error of measured value with respect to true forces
applied to accelerometer casing.

Cross-coupling errors occur due to orthogonal misalignment of the three measurement
axes. Two axes that are not precisely orthogonal are partially sensitive to forces in the
same direction. Cross-coupling errors cause scale factor error as well.

2.2.2 Gyroscope

Classical gyroscope is a device that measures orientation. It uses gimballed platform and
a spin wheel that rotates with high speed, see Figure 2.11. The spin axis remains upright
while spinning due to its angular momentum even when the casing is moving.

MEMS gyroscopes measure angular velocity (ω, rate of change in orientation) hence
they are not gyroscopes in classical sense. The physical principle is based on Coriolis force
- vibrating beam tends to continue vibrating in the same plane while its support rotates.

Three sensors in mutually orthogonal orientations are necessary to measure rotation of
all three axes (pitch, yaw and roll). Bias, scale and cross-coupling errors apply and can be
corrected with same model as for accelerometers, see Section 2.2.3.

Figure 2.12 shows gyroscope test results (when stationary). We can observe similar
biases like with MEMS accelerometers. Nonetheless, the problem is not as severe because
error in orientation grows only linearly in time. Tested gyroscope shown worst-case error
of 0.6◦ in 35 seconds, see Figure 2.12b.

Determining orientation from gyroscope measurement

Orientation (also called attitude) can be represented in various ways: as rotation matrix,
Euler angles or quaternions. In here, we use rotation matrix as it is simplest. Rotation

27

5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
n

g
u

la
r

ve
lo

ci
ty

(◦
/s

)
x-axis
y-axis
z-axis

(a) MEMS gyroscope output sample

0 10 20 30

−0.2

0

0.2

0.4

0.6

Time (s)
O

ri
en

ta
ti

on
er

ro
r

(◦
)

x-axis
y-axis
z-axis

(b) orientation error in time

Figure 2.12: Time-series sample of gyroscope data and derived orientation error propagation in time.

matrix is sometimes referred to as “coordinate transformation matrix”, but here we avoid
using this term as it can be used interchangeably for both rotation and translation9.

Lets suppose we have current orientation expressed as rotation matrix Cr(t) and we
wish to update it with new angular velocity measurement ω = (ωx, ωy, ωz). Then, we can
compute updated orientation Cr(t+ τ) using

Cr(t+ τ) = Cr(t)e
Ωτ ; Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2.7)

Where τ is gyroscope measurement update period. By expressing (2.7) as truncated
power series we get simplest form of orientation update:

Cr(t+ τ) ≈ Cr(t)

 1 −ωzτ ωyτ
ωzτ 1 −ωxτ
−ωyτ ωxτ 1

 (2.8)

This version applies to inertial (ECI) frame only, version for ECEF and local frames
can be found in [5] together with detailed derivation of (2.8).

2.2.3 Error models

Lets assume we have acceleration measurement â and angular velocity measurement ω.
Model that would correct for bias, scale and cross-coupling errors is essentially the same

9Translation is achievable using homogeneous coordinates

28

for both accelerometers and gyroscopes.
Lets note scale factor coefficient α = (αx, αy, αz), bias β = (βx, βy, βz) and cross-

coupling coefficients mxy,myz and mxz. Then, acceleration error can be expressed with
following formula

â =

1 + αx mxy mxz

mxy 1 + αy myz

mxz myz 1 + αz

 a+ β (2.9)

Where â is measured acceleration and a its real counter part. This model requires
9 parameters - three for bias, three for scaling and three for cross-coupling. Note that
random noise is ignored. Correction formula can be found simply by rearranging (2.9).

a = β − â

1 + αx mxy mxz

mxy 1 + αy myz

mxz myz 1 + αz

−1

(2.10)

Scale and cross-coupling coefficients can be determined once and used from there on.
When comes to biases, our experimentation has shown that they undergo random walks.
Literature [5] suggest that there are 3 types of bias variations: (1) device-to-device vari-
ation that can be corrected in factory, (2) run-to-run variation and (3) in-run variations.
Latest manifests as slow bias drift with correlation time in minutes. Bias dependence on
temperature was observed as well, perhaps this has major impact on run-to-run and in-run
bias variations. Practical implementations should model temperature dependence as well.
Typically, it suffices to estimate correction coefficients on two distinct temperatures and
use linear fitting to estimate correction coefficients on any temperature.

Bias correction is not easy due to run-to-run and in-run variations. Nonetheless, it
remains crucial due to exponential growth of positioning errors originating from biases.
Applications often estimate bias whenever possible. For example, biases can be estimated
with Kalman filter that is activated when vehicle is stationary. This is sometimes called
zero-velocity updates (ZVUs).

A method that estimates all 9 parameters for accelerometer is presented in [4]. Authors
use Kalman filter and a special platform that can put device in any orientation. They have
shown that by putting IMU in some 30 approximately known orientations the filter is
capable to estimate all 9 parameters.

2.3 Odometers

Cars were traditionally fitted with vehicle speed sensor in transmission shaft. Nowadays,
each wheel has its own speed sensor and some hi-end cars are equipped with steering angle
sensor as well.

With information from all four wheel speed sensors one can determine vehicle speed
and yaw (turning rate). For appropriate model see [5], it provides precise vehicle speed
and low-resolution yaw. This is because yaw is determined from difference in wheel speed
between left and right front wheels. As these two wheels copy different radiuses, the outer
wheel moves slightly faster. If we take into account that wheel speed sensor has finite
resolution together with the fact that wheels rotate only with slightly different speeds,

29

100 150 200 250 300 350 400 450 500 550 600 650 700
0

20
40
60
80

100

Time (s)

S
p

ee
d

(k
m

/
h

)

Figure 2.13: velocity profile

consequence is that yaw inherits low resolution. Note that with steering angle sensor, it
should be possible to obtain high precision positioning in horizontal plane.

Wheel speed sensor measures angular velocity of the wheel. So, wheel radius is required
in order to convert it to speed. This is not constant, though, because of tire wear and
pressure. Induced error can be observed with Kalman filter that uses GNSS to estimate
scale factor that corrects the velocity, see Section 2.3.1

Odometry-related information can be read through standard OBD-II diagnostic inter-
face. Nonetheless, only vehicle speed is available through legislated OBD. Wheel speed sen-
sors on each wheel and steering angle sensors might be available as well, but only through
manufacturer-specific access codes. In practice, these have to be reverse engineered for a
specific vehicle in use.

Legislated OBD-II services are specified in ISO 15031-5 (“Road vehicles - Commu-
nication between vehicle and external equipment for emissions-related diagnostics - Part
5: Emissions-related diagnostic services”). Vehicle speed is available via PID (parameter
identifier) 0x0D under service $01 - request for current powertrain data. Its value is 8-bit
unsigned integer with range from 0 to 255 km/h and resolution of ≈ 0.28 m/s (1 km/h).
See Figure 2.13 for sample data obtained through OBD-II interface.

2.3.1 Estimating scale error in vehicle speed

As was stated above, wheel speed sensor precision suffers with scaling error due to slightly
variable wheel radius. This is multiplicative error that changes slowly over the lifetime of
a tire. It can be expressed simply as

s = δwŝ (2.11)

where s is real speed, ŝ is speed read via OBD-II and δw is scale correction coefficient.
We can use Kalman filter to continuously estimate δw based on difference between speed
reported by OBD-II and satellite navigation. Speed based on GNSS is noisier, especially
when the vehicle is moving slowly, but it doesn’t share same error modes as odometry-based
sensor making it a good complement for this use case.

Kalman filter [26] implementation is simple as we estimate state of a single parameter
δw. Hence, all matrices and vectors reduce to scalars. State matrix A reduces to 1 and
process noise covariance matrix to 0, taking into account that δw is virtually constant.
Measurement matrix H reduces to current speed reported by OBD-II and measurement
vector z becomes current speed observed by satellite navigation system. Finally, measure-
ment covariance matrix reduces to variance of velocity as reported by GNSS receiver. Note

30

330 335 340 345 350
27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

Time (s)

V
eh

ic
le

sp
ee

d
(m

/s
)

GNSS

OBD-II

(a) before correction (detail)

330 335 340 345 350
27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

Time (s)

V
eh

ic
le

sp
ee

d
(m

/s
)

GNSS

OBD-II

(b) after correction (detail)

Figure 2.14: Comparison of vehicle speeds before and after correction.

that Kalman’s measurement model (zk = Hxk) becomes our error model (2.11) in this
setup. See Listing 2.1 for implementation in MATLAB.

We have tested this filter on real test drive data, it estimated δw = 1.0115. As you
can see on Figure 2.14 the filter clearly corrected gap between GNSS and OBD-II speed
measurements. Note that GNSS data were not filtered to avoid Kalman filter cascading.
See Figure 2.15 for comparison of performance with filtered and not filtered GNSS data.

data = dlmread("hlupenov-stribro-obd2+gps.csv", "\t");
vel_obd = data(2:end,2)*(1/3.6);
vel_gnss = data(2:end,11)*(1/3.6);
vel_gns_var = (max(data(2:end, 19:21)’)’).ˆ2;
time = data(2:end,1);

A = 1;
R = vel_gnss_var;
H = vel_obd;
z = vel_gnss;
B = Q = 0;
P = K = xm = delta_sf = u = Pm = zeros(size(data, 1)-1,1);

P(1) = 1;
for k=2:size(data, 1)-1

% projection
xm(k) = A*delta_sf(k-1)+B*u(k-1);
Pm(k) = A*P(k-1)*A’+Q;

% correction
K(k) = Pm(k)*H(k)’*inv(H(k)*Pm(k)*H(k)’+R(k));
delta_sf(k) = xm(k)+K(k)*(z(k)-H(k)*xm(k));
P(k) = (1-K(k)*H(k))*Pm(k);

end

Listing 2.1: implementation of δw estimator

31

0 200 400 600 800
0

0.5

1

Time (s)

δ w
(-

)

(a) least-squares (not filtered)

0 200 400 600 800
0

0.5

1

Time (s)

δ w
(-

)

(b) Extended Kalman filter (filtered)

Figure 2.15: Dependence of δw estimator performance on GNSS data filtering.

2.4 Barometric altitude meter

Barometric altitude meter uses barometer to measure ambient air pressure, pa. Height
above mean sea level, h, can be determined using US Standard Atmosphere 1976 model.
It requires reference atmospheric pressure pr, reference temperature tr (in Kelvins) and
reference height hr. These can be supplied from a station nearby, if available. Otherwise
standard values pr = 101325kPa and tr = 288.15K at hr = 0 are assumed.

h =
tr

0.0065

[(
pa
pr

)−1.86615
g

− 1

]
+ hr (2.12)

This model is valid for heights limited to about 11 kilometers. Note the gravitational ac-
celeration, g. In simplest case one can use g = 9.80665, otherwise gravitational model such
as EGM96 (Earth Gravitational Model 1996) can be used if higher precision is required.
Then, g becomes function of latitude and longitude.

Barometric pressure vary with weather causing biases of several hundred meters in
standalone version. It is due to departure of reference ambient pressure, pr and temperature
tr at mean sea level from the assumed values. If reference is used, then precision depends
on distance from the reference station and on age of information it provided.

Sonic booms cause measurement outliers, hence outlier removal and data validation
techniques are important for robust applications. Measured pressure can also undergo
significant changes in short time when weather front is passing by in vicinity of the sensor.
These changes can be corrected only with differential data from reference station.

Modern MEMS barometers have resolution of about 2 Pascals. Sigma-delta ADC con-
verts with high oversampling factors are used. It allows sub-meter precision for the price
of slow operation, typically about 1 Hz.

The height information can be used as an aid to GNSS. By supplying height externally
to receiver’s navigation processor we can compute position fix with only three instead of
four satellites. Note that this works only if height is referenced to EGM96 geoid, not to
standard ellipsoid model. The difference between them can be as much as 100 meters.

32

0 2 4 6 8 10 12 14 16 18 20 22 24

460

480

500

520

Time (hours)

B
ar

o
m

et
ri

c
al

ti
tu

d
e

(m
)

Figure 2.16: Altitude measurement sample (midnight to midnight).

2.5 Map-matching algorithms

By map-matching we mean problem of converting information provided by vehicle’s navi-
gation system onto position on a map. By navigation system we mean any system (satellite
based, inertial-based, integrated, filtered, unfiltered, etc..) that provides three dimensional
position in ECEF frame (optionally with other information such as heading and velocity).

In context of road-vehicle navigation, the map-matcher is instrumental as it converts
Earth-referenced position to position on a known road network see Figure 2.17.

Figure 2.17: Map-matcher as a gateway between low-level and high-level subsystems.

We assume to have only minimal representation of the road-network. It shall be speci-
fied by graph-like structure with only position in terms of latitude and longitude assigned
to each node. The altitude coordinate is omitted as we consider only classical 2D maps for
matching.

2.5.1 Related work

To our best knowledge there is no work published so far that would analyze the problem of
map-matching for road navigation in general sense. Indeed, there are over 30 map-matching

33

Figure 2.18: Different principles of geometric algorithms. Grey circle is measured position, white circles
are road network nodes and black dots are matched points on the road network.

algorithms published so far but they mostly relate to experiments in specific environment
and reports often don’t consider their general applicability [3].

Comprehensive review of map-matching algorithms published between 1989 and 2007
is given in paper by Quddus et al. [3]. Author categorizes the algorithms into four groups:
geometric, topological, probabilistic and advanced.

• Geometric algorithms [13] are generally based on geometric closeness. Simplest ap-
proach is so-called point-to-point matching that, given a position from navigation
system, searches for closest node on the road network graph. More advanced ap-
proach is point-to-curve matching that searches for closest point along the edges of
the road-network (given that edges represent so-called road centrelines). Finally,
curve-to-curve matching compares shape of the road network with shape of position
trace. This overcomes shortcomings of previous “point-to-something” approaches
as it takes into account past measurements. Nonetheless, it is sensitive to outliers.
Differences between the three approaches are depicted on Figure 2.18.

• Topological algorithms [12] take into account both road network geometry and topol-
ogy. Hence, connectivity, contiguity and, in some cases, direction of the links is taken
into account. This has been shown to give better results than pure geometric algo-
rithms as the solution is more constrained.

• Probabilistic algorithms [14] use uncertainties related to positioning system measure-
ments to devise error regions (circles, ellipses, spheres or ellipsoids). This is a powerful
technique, but it relies on the positioning system to provide realistic uncertainties.
It is not always the case [5]. The algorithm use error regions to identify all road
segments on which the vehicle can be traveling and computes related probabilities
for each. Most probable (or most-likely) road segment is identified as correct one.
Probabilistic algorithms have been shown to perform well.

• Advanced algorithms [7, 9, 6] relate to methods that use Kalman filter, particle filters,
fuzzy logic, belief theory, etc. Fuzzy logic algorithms have been told to perform
slightly better than probabilistic ones [6] but as these algorithms are rule based,
performance in varying environments is questionable. Algorithms that use Kalman
filter require the underlying positioning system to provide unfiltered data as one of
the main assumptions of Kalman (normally distributed zero-bias errors) is breached
otherwise. It is feasible to use filtered data but uncertainties have to be boosted
to avoid stability issues and consequently the Kalman gain gets smaller and filter
converges slower.

Although the categorization above provides concise roadmap for different methods pro-
posed so far, algorithms usually combine ideas from different categories trying to get the
best from each.

34

Methods that use multiple hypotheses stem from research conducted mainly in 1970’s
for multiple target tracking. Pyo et. al [7] used Reid’s algorithm [8] for multiple hypothesis
multiple target tracking and restated it as single target tracking problem. Although Reid’s
algorithm was designed to track air vehicles (airplanes, missiles) with radar measurements
and on-board transponders, Pyo has successfully shown that it can readily be used for
map-matching.

Interesting results were reported by Gustafsson et. al [9] who used particle filters
(recursive Bayesian estimation) to find current position based solely on a map, approximate
starting position and vehicle’s transnational velocity. They report that the filter performs
comparably with satellite navigation in rural areas and better than satellite navigation in
urban areas. Note that achievable precision with GPS C/A code at the time of writing of
their paper (2002) was considerably lower.

2.5.2 Map-matching problem analysis

We consider road-network represented as directed graph. Each node have assigned position
in known frame and each directed edge represents centreline of linear road segment between
position of the two nodes it connects. Structure of the graph together with the position of
the nodes constitute a map.

For map-matching purposes we neglect any additional information such as street name,
type of the road, etc. Furthermore we do not make any distinction between junctions and
waypoints on curved road. Note that as the graph is directed, information whether we are
on one-way or two-way road is inherently integrated in the directed graph structure.

Maps are classically described by means of curves and arcs. Nonetheless, arcs in maps
are piece-wise linear. By dropping any diversification between waypoints that shape the
arcs and junction nodes that connect different roads, we encoded curvature of the road
directly into the structure of the graph, leaving only linear road segments in the map.

Navigation system is, for the purposes of this text, any system that periodically reports
current position and related uncertainty in ECEF frame. In the case where supplementary
outputs are reported (velocity, heading), then we require them to have their uncertainty
reported as well.

Map-matching is a process of matching positioning data to points along line segments
described by directed edges of the road network graph such that discrepancies between
reported position and position on the map are minimized. x Hypothesis is, for the purposes
of this text, any sequence of contiguous edges on the graph without any restriction on its
length.

Rest of this section is concerned with various conclusions of our analysis. Each claim
is described in detail and defended.

Use only minimal set of assumptions

Map-matching algorithm that depends on many assumptions or ad-hoc rules can not be
robust as the road-network and positioning system properties vary with changing environ-
ment. For example, satellite based navigation systems are well known to perform poorly in
urban areas where multipath is common and direct satellite-antenna visibility is limited.
Yet, many proposed algorithms [10, 11, 12] define fixed-sized uncertainty radius around
measurements and assume that it bounds all the errors.

35

Figure 2.19: State machine that governs which algorithm is active enables fast failure recovery.

One has to be careful to keep assumptions he makes at minimum to sustain robustness.
Optimal map-matching in this sense would not require any tuning.

Maps are only models of reality that change (due to road constructions, closures, etc..)
and even if they would not, the graph-like model is useless in 2D areas like parking lots, for
example. Hence, one cannot assume that maps are error free. On the other hand, errors in
maps cannot be effectively modeled. Apart of simple errors such as discretization of curved
road by piece-wise linear arc or bias of the road centrelines, most painful errors stem from
various simplifications (i.e. missing road segments) and artifacts (i.e. road segment takes
place in a map instead of a parking lot that actually lays there). These cannot be effectively
modeled and so we cannot infer realistic uncertainties about the errors inside the map.

Fast failure recovery

All feature-matching systems give occasional false matches [5]. With map-matching this
emerges in form of occasionally taken wrong turn (usually only for a short period of time;
it is typical for Y junctions) and by track loss. Hence, algorithms shall be able to recover
from track loss as quickly as possible.

With multiple-hypothesis algorithms this problem is remedied with two map matching
algorithms existing in parallel [10, 12]. First algorithm is geometrical (point-to-curve).
It is active only when no hypothesis is available - during initialization and track loss. It
identifies possible road segments on which the vehicle might be traveling. When at least one
road segment is identified, then the main algorithm takes control. It can be implemented
as simple state machine, see Figure 2.19.

Problem arises when using point-to-curve algorithms. They don’t cooperate well with
graph representation of the road network as closeness criteria on graph are not geometric.
The algorithm have no choice but to search first for nodes in vicinity (since position along
the linear road segments constitute infinite set). Then, having the list of candidate nodes,
the algorithm can create a list of candidate edges by looking at their adjacency’s. Finally,
then the algorithm can apply its geometrical closeness criteria to the list of edges in vicinity.
However question remains how large is the search radius for nodes that would give certainty
that a complete set of edges in vicinity is found. Indeed, it might happen that some edges
will remain hidden. Imagine situation on Figure 2.20. The long, straight edge is close to
reported position but still remain hidden for the point-to-curve algorithm because search
radius for the nodes wasn’t large enough.

Typical remedy for this problem is artificial threshold parameter which was empirically
tested to perform well with the map, algorithm, data structures, and computational ca-
pacity at hand. Better solution is to make the search radius as large as longest linear road
segment in the map. That gives certitude that no road segments remain hidden. When the
longest road segments are unfeasibly long, then redundant nodes can be added on these

36

Figure 2.20: The dotted line remains hidden for point-to-curve algorithm because its enclosing nodes
are not in vicinity of the measurement. This situation results with incorrect match.

segments at a little cost.

Recursive nature

Having recursive instead of iterative algorithm is desirable as it off-loads the main processor
and enables the algorithm to run on smaller and cheaper embedded system.

One of the main advantages of multiple hypothesis technique is that it is recursive in
nature - new hypotheses are easily generated by branching already existing ones along
directed edges of the road network graph (by taking advantage of its topology).

Maximum likelihood estimation is also more desirable than classic probabilistic ap-
proach as likelihood functions that add error terms can be easily designed recursive.

No filtering

We claim that there should be no filtering applied on input data. This is so because
navigation system is always in better position to filter the positioning data than map-
matcher. Filtering data in map-matcher data practically means that assumptions have to
be made about underlying positioning system. That is undesirable for generally applicable
algorithm.

Often, map-matching algorithms try to enhance data provided by positioning system
with the map. Nowadays this looses its significance as cheap satellite navigation systems
are capable of sub-meter precision in some conditions. Putting this together with the fact
that many errors in maps cannot be statistically modeled drives us to conclusion that,
for common cases, classical maps are not suitable to enhance position. An exception to
this would be when positioning data are known to drift (which is the case with inertial
navigation for example).

Mind the uncertainty

Robust algorithms shall consider uncertainty regions around reported position. These
regions are usually modeled as circles or ellipses (spheres, or ellipsoids) so simple geometry
can be applied to detect intersections with road segments. They provide convenient way
for choosing search regions. The size of these regions can be computed in a way that it
overbounds the measurement error with probability above given level (assuming normally
distributed errors).

37

Uncertainties can be obtained from RMS position errors reported by GNSS receiver.
RMS errors are simply statistical measures of magnitude of the errors. They relate to mean
and variance with:

xrms =
√
E[x]2 + σ2

x (2.13)

Taking into account that Kalman filter and least squares estimator (both can be used
by GNSS receiver) are zero-bias estimators, its easy to see that RMS error of the position
equal to its standard deviation σx.

Where uncertainties are not available, they can be often modeled. Moreover, where
navigation system integrates measurements from different sources, the integration is usually
carried out with error-state Kalman filter. Such filter directly reports residual uncertainty.

2.6 Integration architectures

Number of navigation systems and navigation aids were discussed so far, but possibilities
of their integration into one system were mentioned only marginally. This section discusses
various ways how these systems can be combined together.

Satellite navigation systems provide Earth-referenced positioning with sustainable long-
term accuracy, but it cannot be relied upon to provide continuous navigation solution.
On the other hand, inertial navigation systems are able to provide continuous navigation
solution, have high update rate and high short-term precision. Nonetheless, its accuracy
degrades in time as errors in inertial navigation equations are integrated in time. System
that combines satellite navigation with inertial navigation can overcome these drawbacks
and provide continuous high-precision navigation solution.

The integration algorithm is typically based on Kalman filter. Inertial navigation sys-
tem is always referential, GNSS is used to correct it. This is because INS provides un-
interrupted navigation solution while GNSS-based position availability depends on signal
availability. Open-loop and closed-loop implementations are possible. When open-loop is
used, the integration algorithm estimates INS position error, uses it for correct the output,
but do not feed back the errors to INS. With closed-loop approach, the corrections are fed
back to INS where they are used to correct inertial navigation solution itself. This allows
to estimate bias and scaling errors as well as linearization-induced errors in inertial navi-
gation equations. Where low-grade INS is used, open-loop implementation is not suitable
because raw INS navigation solution would quickly become useless.

Literature [5] describes four approaches for GNSS/INS integration. These are uncou-
pled, loosely coupled, tightly coupled and deeply coupled architectures. The difference is in
how “deeply” is inertial navigation embedded in GNSS receiver. Most simple is uncoupled
architecture. It uses GNSS receiver to reset INS-based position on periodical basis. This
provides reliable position only when higher-grade INS system is used and therefore is not
suitable for our needs.

Loosely coupled architecture (Figure 2.21) can work with any GNSS receiver and any
INS system, which is its main advantage. It is an example of high level integration where
GNSS and INS are two separate subsystems.

Main problem with loosely coupled architecture is that it cascades Kalman filters (first
is in the navigation processor, see Section 2.1.2, and second in the integration algorithm).
One of the assumptions Kalman filter makes about its inputs is that they are not time-

38

Figure 2.21: loosely coupled integration architecture

correlated. Filtered data are, in nature, time-correlated so inputs of the second filter do not
meet this assumption. Consequently, Kalman gain must be lowered by increasing related
uncertainties, otherwise the filter might run into stability problems. Lower Kalman gain
means that the filter will be slower.

Filter cascading can be overcome by using least square estimator in navigation processor
instead of Kalman filter. This, however, solves nothing as unfiltered positioning solution
is noisy (see Figure 2.2a). Hence, uncertainties have to be boosted anyway causing sub-
optimal performance.

Tightly coupled architecture replaces navigation processor in GNSS receiver with spe-
cialized processor that incorporates INS data into the main fusing filter. This avoids
problems related to filter cascading, but it requires specialized GNSS equipment that can
provide raw pseudo-ranges and pseudo-range rates from ranging processor. Standard GNSS
receivers cannot do that, although, it is possible to buy standalone receivers capable of pro-
viding this information alongside its own navigation solution.

Finally, deeply coupled integration replaces both ranging and navigation processors.
In practice this means that own specialized GNSS receiver has to be developed. Benefits
are substantial, though, as INS can aid with satellite tracking as well as with positioning.
Deeply coupled integration architecture is optimal [5].

2.7 Proposed road-vehicle navigation system

In this section we draw a number of conclusions based on our analysis and propose ar-
chitecture of road-vehicle navigation system that meet required performance goals. See
Figure 2.22 for block diagram. Note that in here we provide only high-level outlook of the
system we propose, implementation is discussed in following chapters.

2.7.1 Hardware

Originally, whole road-vehicle navigation was supposed to be implemented on Android
devices as they are usually equipped with both satellite navigation receiver and inertial
measurement unit. Most important observation we made is that specialized hardware will
be necessary. Smartphones are not equipped with hardware that is sufficient to create nav-
igation system with guaranteed performance. We observed that especially accelerometers
and gyroscopes have low-resolution and unstable update rate (due to non real-time kernel
running on smartphone). Moreover, applications have access to GNSS/INS measurements

39

min typ max

full-scale range ±2g - ±16g
accelerometer sensitivity 0.48mg/LSB - 0.061mg/LSB

temperature change - ±0.75mg/◦C -

full-scale range ±250◦/s - ±2000◦/s
gyroscope sensitivity 0.061◦/LSB - 0.0076◦/LSB

RMS noise - 0.06◦/s-rms -

Table 2.1: IMU-9150 performance (1g=9.80665m/s2)

only through high-level interfaces, having no information about underlying processes such
as filtering, on-line calibration, etc..

When comes to satellite navigation, we should use specialized GNSS receiver that can
receive both GPS and GLONASS systems in order increase satellite visibility. Furthermore,
receiver should provide raw measurements (pseudo-ranges and pseudo-range rates) so we
are able to implement tightly coupled integrated navigation system. Finally, it has to
provide detailed information about its state10 and preferably even implement both least-
squares and Kalman filter based position estimators.

We found device which is readily available on market and posses properties mentioned
above - module NV08C-CSM from NVS technologies AG [15]. It is combined GPS/-
GLONASS receiver that features proprietary interface called BINR [17]. This interface
provides access to internal information such as raw data from ranging processor, detailed
description of all tracked satellites, etc.. Such level of insight into its operation is not
possible with standard NMEA-0183 interface. Also, it is possible to feed the device on
secondary UART channel with differential corrections in RTCM-SC104 format. There are
web services that provide corrections directly in this format so one can open TCP/IP socket
and just forward incoming data to the receiver.

Inertial measurement unit based on MEMS has to have high update rate (>50Hz)
and high resolution. Literature indicated that MEMS accelerometers and gyroscopes are
practically useless for navigation even when integrated with other systems, so we need
to use cutting edge device in order to try to prove this claim outdated. We have com-
pared performance of many devices according to their sensitivity and noise characteristics.
Device called MPU-9150 from InvenSense had best performance (on paper). It combines
3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer in a single package. Main
properties according to which we compared it with others are listed in Table 2.1.

Odometry-based navigation system is not readily available with common vehicles, only
low-resolution vehicle speed can be read through standard interface. This is still valuable
information as it can be used as navigation aid in various ways. Most notably, vehicle
speed in conjunction with gyroscope can form standalone dead-reckoning navigation sys-
tem excluding use of accelerometer altogether. This is beneficial because position error
stemming from cumulative integration of the vehicle speed has errors growing linearly in
time while for accelerometer they grow exponentially (see Figure 2.10b). Moreover, if we
add filter to estimate scale error in the vehicle speed (see Section 2.3.1) we can eliminate
major error source and improve performance of dead-reckoning navigation system. Note
that dead-reckoning system can be integrated with GNSS in the same way as INS (see
section 2.6).

Barometric altitude meter cannot improve performance of our system. It is useful only

10Non-standard communication interface is required for that.

40

Figure 2.22: road-vehicle navigation system

when referential system provides differential corrections, but it cannot be guaranteed as
there is no such network of referential barometers deployed today (to our best knowledge).
Bias errors can be as high as several hundred meters without the corrections. This problem
can be evaded by taking altitude rate of change. Nonetheless, our analysis have shown that
this information has low quality due to slow update rate (1Hz) and measurement noise that
is high when differentiated.

There might be a way to improve performance of barometric altimeter as some weather
forecasting web services provide information about atmospheric pressure and temperature.
Atmospheric pressure is either related to mean sea level or there is altitude information
added to the data. It might be possible to use this information to mitigate problem of large
measurement bias common with standalone barometric altimeters. This is topic requires
further investigation.

2.7.2 Software

Considering our analysis of integration architectures (section 2.6) we chose to build our
road-vehicle navigation system on tight GNSS/INS integration. It does not suffer with
statistical problems related to filter cascading while it is not necessary to build specialized
GNSS receiver to get it working.

We have also considered where to implement inertial navigation equations and integra-
tion filter. Originally, we planned to do it on Android device, but our tests have shown
that Bluetooth11 communication channel is quickly overloaded when GNSS raw data and
IMU measurements are fed through.

Problems with timing also need to be considered. Android smartphone uses best-effort
scheduler meaning that it is not real-time capable. For this reason, all measurements we
send to the Android device must be time-stamped. This allows to compare age of the
data between each other, but as the Android device and our hardware does not run on
synchronized clocks we cannot devise age of the data in Android device. This is a problem

11We use Bluetooth to connect our hardware with Android phone, see Chapter 3.

41

particularly for prediction phase of the Kalman filter.
Clock synchronization is not easily achievable between the two devices due to non-

realtime behavior of Android device and unknown behavior of Bluetooth stack. Nonethe-
less, our hardware can easily align its time reference with UTC using GNSS receiver.
Unfortunately, Android devices are not precisely synchronized with UTC time reference
(even if the device carry all necessary hardware).

Consequently, we have to implement inertial navigation equations and integration filter
in the embedded system. However, the map-matching algorithm can be implemented on
Android as it only requires latest position to provide most up-to-date position on a map.
Considering that map-matching algorithm requires substantial road-network database, it
is easier to implement it on Android device.

We also had to decide what maps and mapping resources to use. We have chosen to
use OpenStreetMaps because of high resolution, friendly licensing and simple data format.
Precision of this map is not guaranteed as it is developed by open community, but our
analysis of map-matching algorithms have shown that error-less maps do not exist anyway,
so our algorithm need the ability to cooperate with them whatever map we use.

Finally, we should make use of differential corrections to improve overall performance.
SiSNET service provides EGNOS data stream over the internet, which is optimal as it
allows us to make use of SBAS services even when EGNOS satellite is not tracked by the
receiver.

42

Chapter 3

Embedded system

Previous chapter finished with a proposal of road-vehicle navigation system based on thor-
ough analysis. One of the main conclusions was that specially designed embedded system
will be necessary to collect and filter navigational data. This chapter is concerned with
design of that embedded system.

See Figure 3.1 for block diagram of the printed circuit board (PCB). Subsystems and
their interconnection is shown. Note that signal names are identical to the ones used in
schematic (see Appendix C, so the diagram can be understood as more abstract version of
schematic showing how different subsystems are connected to each other. These subsystems
can be organized in three broad categories:

• Sensors that collect navigation-related information. Inertial measurement unit MPU-
9150, barometric altitude meter MPL3115A2 and GNSS receiver NV08C-CSM belong
to this category. Note the barometric altitude meter - we have deemed it useless in
our analysis yet here we use it. It is so because this board was designed to run the
tests presented in analysis as well.

• Communication interfaces that exchange data with other devices. Bluetooth, CAN-
bus and USB belong to this category. Bluetooth is used to interface with Android
device, CAN-bus provides means to communicate with the vehicle (OBD-II interface)
and USB is there as a backup in cases when Bluetooth bandwidth proves insufficient.

• Microcontroller that collects, filters and forwards measurements. We chose device
named AT91SAM7X512 from Atmel featuring ARM7 processor. It has 512kB of
Flash EEPROM memory, 256kB of SRAM and all peripherals we need (CAN, I2C,
USB, JTAG, DBGU1 and two UARTs).

We have developed peripheral drivers for CAN, I2C, DBGU, UART and built device
drivers for MPU-9150, MPL3115A2, NV08C-CSM and OBD-II on top of them. Peripheral
drivers were designed optimally in terms of processor load. I2C interface got asynchronous
drivers with simple message prioritization and the two UARTs with DBGU use direct
memory access (DMA) to transfer their payload. Device drivers were designed as mini-
malist implementations of functionality we require from connected devices. We’ve avoided
implementing any unnecessary features.

1DBGU is actually used as third UART

43

Figure 3.1: PCB block diagram

3.1 Printed circuit board design

The printed circuit board (also reffered to as PCB, or simply board) has 103 × 53 × 9
millimeters. It is classic 2-layer PCB featuring 1.5mm FR4 dielectric with 18µm copper
layer on both sides. Green solder mask and white printing is also both sided. Contact pads
were chemically gilded to avoid corrosion. See Figure 3.2 for finished board.

The device needs DC voltage in range from 5V to 15V. Small overvoltage will cause
increased current draw due to transient voltage suppression diode, high overvoltage and
reversed polarity will short the circuit and blow 2A fuse.

It features three buttons and five LED diodes. The buttons are used for system-wide
reset, to erase program memory and to put Bluetooth module to factory reset. Three
LED diodes are used by Bluetooth module to indicate mode, whether it is connected and
to indicate ongoing data transfer. One LED is used by the microcontroller to indicate
health (so-called heartbeat LED) and the last LED indicates state of NRST signal routed
thorough the board to all resetable circuits.

Three connectors are available. SUBD-9 (also called CANNON-9) is used to connect
to the vehicle. The power is routed through there together with CAN-bus (if available).
SMA connector for external GNSS antenna and JTAG connector are available as well.

3.1.1 Dealing with interference

There are three microwave signals routed on the board - 2.45Ghz signal from Bluetooth
antenna, 1.55Ghz signal from GNSS antenna and USB data lines clocked on 480Mhz. Also,
accelerometers, gyroscopes, magnetometers and barometer make use of high resolution
analog-to-digital converters. Hence, reducing all kinds of interference is critical if the
board is to deliver without spurious failures.

We have deployed number of different techniques to minimize it. Some are concerned
with differential-mode and common-mode noises propagated on copper traces of the board.
Other techniques are used to minimize EMI interference.

We have created “copper pour islands” under each of the subsystems mentioned above
(microcontroller, sensors, communication interfaces) and made sure they are connected to

44

Figure 3.2: Front side of the printed circuit board.

power lines (+3V3, GND) at one point only. We have put at least three MLCC capacitors
(10nF/C0G, 100nF/X7R, 10µF/X7R) to the point where the power lines are connected
to the copper pour. Noise have no choice but to pass through this place where we can
effectively eliminate it with filtering capacitors. This way noise from one part of the board
cannot escape to another.

Main power supply is based on step-down converter. These circuits tend to generate
noise on their switching frequency which can couple to both +3V3 and ground. Conse-
quently, part of the noise is common for both lines. In order to avoid it we didn’t allow
GND power line to pass through this noisy area and connected it to power supply in one
place only. Best place for that is right under the output capacitor using a via to other side
of the board, where the GND line is routed. Note that the via has some inductance as
well. It improves performance because it behaves as a small choke.

In order to further improve our guards against noise we placed vias under both pads
of the output capacitor. On the other side we placed five ceramic capacitors ranging from
22pF to 10µF to filter differential-mode noise (noise coupled to one of the two power lines,
not both).

Result is that we get very clean output even switching power supply is used. Nonethe-
less, there are high-resolution ADCs on board which require highly stable voltage to avoid
coupling of noise to their digital output. So, we designed two low-noise power supplies to
provide analogous parts of the board with separate power. First is for inertial measurement
unit and barometer, second for analogous part of GNSS receiver and its active antenna.

We placed guard ring around the board. It is a copper trace around its edge connected
to ground. Important is that ground is connected at a single place that is as close as possible
to power connector. In principle, guard ring works as trap for interference radiating out of
the board. The trace is both sided with frequent vias to minimize impedance between top
and bottom sides.

45

(a) top side

(b) bottom side

Figure 3.3: PCB copper traces (not in scale)

46

1
5

20
R

F0
9D

BT FRST

M
C

RXTX

RESET ERASE

JTAG

CA
N IC6

Q2

C19

C24

R15
R

30

R
29

R
28

R8

R22

R
25

R23
R24

R
26

R27

Q1

R20

X2

R
18

C6

R
3

R
11

IC5

C
23 C22

R
13

C
20

C
25

IC3

C8

C7

R
1

R2

H
B

R
32

R5

R12

C
1

R21

R
31

IC1

C9

C
2

C
3

T1
D

1
D

3

L1

IC
2

D8

R33

R34
R35

T3

T4

T2

T5

R36

C
12

C21

C5

C
27

C28IC4

R7R16

R17

R19

RTS CTS

C33

D
2

D
4

D
7

D6

D10

D5

D11

C
54C

55

IC
9

R
38

C58

C60

C57

T6

C61

R39

IC
10

R
40

C59

C63

C
64

T7

C
65

R41

C
66

C50

C51 C52

D9

NRST

R9
Q3

C
71

(a) top side

20

NV08C-CSM

GPS
GLONASS
GALILEO 1

5

F0
9D

C42 C
43

C44

C
45

C
46

C
47

C48

C
35

C36

C
37

C
38

C39

C
40

C29 C30

R
6 C

16

F1

FB1

C26

C31

C32

C41

C
4

C34

R14

C
17

L2

X3

C14

C
56

C49

C
53

C67

C
15C
68

C
69

C70

(b) bottom side

Figure 3.4: PCB parts placement (not in scale)

47

Figure 3.5: power supply for digital circuitry

Figure 3.6: power supply with low-noise properties

3.1.2 Power supplies

As was mentioned above, the board uses three power supplies. Main power supply provides
power to digital circuitry and the other two are supplementary for sensitive analogous
circuitry.

Vehicle battery is connected through the SUBD-9 connector. In schematic we use names
PWR and GND for the two nets. Firstly, there is SMT fuse (rated 2A; very fast) on PWR
line for protection. Transient voltage suppression diode, D4, and reverse-polarized diode
D2 follow. Diode D4 is used to suppress transients and to limit maximum applied voltage
to ±16V. When the voltage is higher than that the D4 opens and short-circuits the power
lines. As D4 is bidirectional, we also use reverse-polarized diode D2 to short-circuit the
power lines in case voltage is reversed. In effect, if applied voltage is not in range from
-0.7V to about 16V, then the protection circuitry shorts PWR and GND together, causing
the fuse to blow.

Main power supply is a step-down converter with properties listed in Table 3.1. It is
classical design with switcher, inductor, input/output capacitors and flyback diode. We use
LM2597-3V3 switcher from Texas Instruments, 100µF tantalum input/output capacitors,
100µH power inductor and 1A Schottky diode. Both input and output capacitors were
selected so they have very low equivalent series resistance. Also, the power inductor is
rated for double current than required to avoid inductance loss due to saturation and to
minimize heat losses.

The other two power supplies are identical in design. First powers the MEMS devices,
second GNSS antenna and baseband. It is important that they both provide clean and
stable voltage.

In heart of these power supplies lays linear voltage regulator. These devices tend to
generate noise as small variations in their voltage reference are multiplied by feedback loop
and propagated to the output. Even linear regulators are usually less noisy than switched
circuits, this is still a problem to address when aiming for low noise design. We have used
linear low drop-out regulator TPS79133 from Texas Instruments. This device has extra
pin for bypass capacitor that, if used, stabilizes its internal voltage reference.

48

Input voltage 5-15V
Output voltage 3.3V
Maximum load 500mA
Output voltage ripple 15mV
Switching frequency 150kHz

Table 3.1: main power supply properties

On the input side of the voltage regulator we placed RC circuit and so-called “capacitor
multiplier” circuit. The RC circuit works as low pass filter with 3.3kHz cut-off frequency.
Ferrite bead FB1 behaves as inductor for frequencies below 100Mhz, so it might happen
that noise in that range is amplified by LC circuit formed by FB1 and input capacitors
on these secondary power supplies. Both ferrite beads and ceramic capacitors have high
quality factor which allows them to create gain peaks on their resonant frequency. The
series resistor in the RC circuit effectively damps the peaking by diminishing quality factor
of the LC circuit.

The capacitor multiplier helps to remove ripple voltage. In principle, this circuit mul-
tiplies capacity of C61 with current gain of transistor T6. Note that the capacity isn’t
actually multiplied, only impedance of this circuit resembles impedance of much larger
capacitor than actually used.

3.1.3 Microcontroller

Microcontroller is the heart of this embedded system. Its task is to collect measurements,
filter them and exchange processing and servicing information with devices connected either
via Bluetooth or USB.

We have chosen AT91SAM7X512 microcontroller from Atmel. This device has 512kB
of Flash EEPROM memory, 256kB of SRAM and ARM7TDMI processor from ARM.
Hence, there is plenty of memory and computational capacity available. The device also
features CAN, USART, DBGU, USB and I2C peripherals that we need to connect to all
on-board sensors and interfaces. Only missing feature is so-called FPU unit that would
enable hardware support for floating-point numbers. Unfortunately, ARM7 cores were
never equipped with this.

It became apparent in late stages of our analysis that the integration filter will have
to be implemented in this microcontroller (see Section 2.7). Implementing Kalman filter
with fixed point arithmetic is problematic due to numerical instability of the solution -
covariance matrices deteriorate in time because of accumulated rounding errors. These
matrices need to stay positive definite, otherwise the filter will fail. Often, they have to be
stored in squared-root form and squared on each iteration in order to make sure that even
severely deteriorated covariance matrix is always positive definite. Of course, it is possible
to implement Kalman filter using floating point arithmetic even on fixed point processor,
but it will be slow as there is no hardware support for the floating point operations. New
versions of this system would be better off using microcontroller with floating point support,
or even better, with DSP (digital signal processor) replacing the microcontroller.

Used microcontroller has PLL to generate main clock frequency. We clock the device on
48.092MHz using 18.432Mhz crystal oscillator2. The clocking frequency might be changed

2USB peripheral requires this clock frequency to operate

49

(a) inertial measurement unit (b) barometric altitude meter

Figure 3.7: MEMS sensors (filtering capacitors not shown)

in software, but one has to be careful as there is filter for PLL outside the chip that might
not comply with changed clock frequency, see [18]. Maximum clock frequency is 55Mhz,
although one can overclock it (risking device damage and/or shorter lifetime).

It also supports standard JTAG boundary scan and JTAG Embedded ICE (in-circuit
emulator). We don’t make use of the boundary scan so this feature is permanently disabled,
but we make heavy use of Embedded ICE for software development and debugging.

NRST resetting signal from JTAG is routed thorough the board to reset the micro-
controller, GNSS receiver and Bluetooth transceiver. Note that when the reset button is
pushed it takes NRST signal to active state.

Future versions should route NRST signal to enabling inputs of the voltage regulators
used in secondary power supplies (Figure 3.6). This will reset the remaining circuitry when
NRST is asserted.

3.1.4 MEMS sensors

Both MEMS devices are connected on separate power supply (see Section 3.1.2) and com-
municate with main microcontroller on shared I2C bus. They are both I2C slaves while
the microcontroller acts as I2C master.

Inertial measurement unit MPU-9150 is multiple-chip-module (MCM) with two silicon
dies in single LGA package. First die accommodates accelerometer and gyroscope, second
is the 3-axis magnetometer. These are, in fact, two separate devices - first die is normally
sold as MPU-6150 from InvenSense and second as AK8975 from Asahi Kasei Microdevices.
They are internally connected with separate I2C bus. First die (MPU-6150) acts as master,
second as slave. Other slave devices can be connected via ES DA and ES CL pins. Note
that it is possible to bypass the secondary bus programatically. Doing it would enable
direct access to the magnetometer.

This device also prides itself with feature named “DMP processor”. It seems to be some
sort of specialized digital signal processor. Unfortunately, there is very little information
available about it. Official documentation [23] don’t mention this feature apart of admitting
its existence. There is application note available with instructions on how to upload given
binary file to the device. When uploaded, it enables number of motion detection features
which are not available otherwise. Nonetheless, there is no documentation, no source code,
and no development tools. Consequently, it is useless for our purposes.

50

Figure 3.8: GNSS receiver

Communication between the MPU-9150 and main microcontroller is interrupt driven.
MPU9150 asserts its INT line when new data are available. When main microcontroller
detects the change it will start I2C-read command to retrieve the data. This will automat-
ically clear the interrupt source and de-assert the interrupt line.

Figure 3.7b shows schematic connection of barometric pressure sensor MPL3115A2 [24].
This device converts pressure to height above mean sea level as described in Section 2.4. It
is enclosed in 8-pin LGA package from noncorrosive metal with a hole for pressure sensing.
Signals SDA and SCL belong to I2C bus. The ALTINT1 and ALTINT2 are interruption
signals connected to main microcontroller. Capacitor C18 is required for proper operation.

Communication with the barometer is interrupt driven as well - when new data are
available the device asserts ALTINT1 line and microcontroller reads the data in response.
ALTINT2 is not used at the moment.

3.1.5 GNSS receiver

NV08C-CSM is standalone GNSS receiver module, for its connection with other parts of
the board see Figure 3.8. It is small printed circuit board covered with metallic shield
that leaves only SMT soldering pads outside. No blocking capacitors or extra filtering is
necessary according to documentation so we added only 10µF capacitors on power inputs
to lower source impedance. Capacitor C50 is used as placeholder in case we need to add
filtering capacitor later.

GNSS antenna connects on SMA connector X3. Power supply is provided for the
antenna, maximum allowed current consumption is about 70mA. DC bias on the RF line
is separated from the GNSS receiver with capacitor C26.

The NRST signal is system-wide reset as discussed in Section 3.1.3. Signal 1PPS gener-
ates short pulse when one-second boundary is passed. It allows alignment of local wall-clock
time with UTC time reference. Signals RXD0/TXD0 and RXD1/TXD1 are two UART
channels used to communicate with microcontroller. Channel 0 is preset to communicate
using standard NMEA-0183 protocol, channel 1 uses manufacturer’s proprietary BINR
protocol. Optionally, channel 1 can be switched for RTCM-SC104 protocol.

Common pain with GNSS receivers is long time to first fix. It might take several minutes

51

Figure 3.9: memory backup for GNSS receiver

for the receiver start up. For this reason we use memory backup circuit that preserves its
memory across resets and short power outages, see Figure 3.9. In heart of this circuit
lays 330mF backup capacitor (C33, double layer “gold” capacitor). This type of capacitor
have outstanding capacity with otherwise terrible properties. First thing to know about
it is that it does not behave like capacitor - more like network of many small capacitors
in parallel, each having random resistance in series added to it. The “small” capacitors
inside with small series resistance will charge almost immediately causing the device to
seem charged (it will quickly report full voltage across its contacts). Nonetheless, it is not
the case as the rest of the “small” capacitors with large series resistors will be charging
slowly. In our experiments the capacitor have charged in first 5 seconds of operation to
about 40%. Rest was charging for several hours using minimal currents.

The circuitry around C33 is to provide correct voltage and to limit the current. Maxi-
mum voltage for this type of capacitor is 5.5V, while all power supplies provide only 3.3V.
Hence, we used battery voltage (≈12V) and designed basic voltage regulator with current
limiting capability for its charging and protection.

3.1.6 Communication interfaces

The system can communicate with other devices using Bluetooth, USB and CAN bus.
Bluetooth is used to connect with host system, USB is used as backup channel and CAN
bus is used to communicate with the vehicle.

Bluetooth module RN41 from Microchip is used to implement Bluetooth interface. It
is standalone system that doesn’t require any extra circuitry. Only power supply and
UART channel needs to be connected. The device works as transparent cable replacement
using standard serial port profile (SPP). Data received on UART are enclosed in Bluetooth
packet and transmitted wirelessly. Similarly, data received over the wireless channel are
forwarded to the UART. Hence the main microcontroller communicates with the Android
device using its UART channel having no idea that the data are actually transmitted
wirelessly.

CAN is supported by the microcontroller, but it implements only CAN protocol layer,
not the hardware layer. Hardware layer requires powerful bus drivers that does not fit on
a VLSI die with microcontroller. Hence, external CAN transceiver is necessary. We chose
MAX3051 from Maxim Integrated, see Figure 3.10a.

Signals CANH and CANL connect the CAN bus. Note the crossed resistor R5, it is
used as placeholder for termination resistor. The transient voltage suppression diode D9 is

52

(a) CAN transceiver (b) USB interface

Figure 3.10: CAN and USB interfaces

used for protection against high transients that can damage the transceiver. Resistor R3
on RS pin is used for slope control. The microcontroller and the transceiver use CANTX
and CANRX signals to communicate. CANTX is driven by the transceiver according to
bus state. CANRX is driven by the microcontroller to instruct the transceiver whether it
should force dominant state on the bus or not.

USB 2.0 bus is supported by the microcontroller. Schematic diagram on Figure 3.10b
follows recommendations of application note “AT91SAM7X and AT91SAM7XC Microcon-
troller Series Schematic Check List” from Atmel, see [18]. Signals DDM and DDP are
USB data lines, they connect to microcontroller. Note that DDM is inverted version of
DDP. Signal USBSEN is used to sense voltage on the USB bus, USBPUP is used to select
between high speed and full speed.

MiniUSB-B slot is used instead of classical USB-B as this one is smaller. DDM and DDP
traces are routed as short as possible and shielded from the rest of the board. We followed
recommendations from application note “USB 2.0 Board Design and Layout Guidelines”
from Texas Instruments, see [19].

3.2 Low-level drivers and support libraries

This section is concerned with libraries and drivers that help to accommodate application in
the microcontroller. Hence, everything mentioned here relates only to the microcontroller
and its peripherals. Device drivers and the application are described later. We haven’t
used any support library3 and wrote the code from scratch using only newlib (incarnation
of standard C library).

Even we currently don’t use any support library, our intention is to use RTOS in future.
What we need is not full-fledged RTOS but merely simple real-time threading library with
support for EDF scheduling.

We have analyzed applicability of following real-time operating systems: FreeRTOS,
FreeOSEK, TOPPERS-OSEK, nxtOSEK, eCos, SHaRK and ERIKA Enterprise. FreeR-
TOS is well-known to work, well-documented, but while it calls itself free, the documen-
tation is available for a fee. FreeOSEK is one of many OSEK implementations, but it
seems unfinished and forgotten (last update 2010). TOPPERS-OSEK is a good candi-
date, but the documentation is in Japanese. nxtOSEK (based on TOPPERS-OSEK) is
used in Lego NXT bricks. We use similar microcontroller so it is possible to use it with

3Suitable library would be AT91lib provided by Atmel. We were not satisfied with its quality.

53

few modifications. Nonetheless, nxtOSEK is not just RTOS - it combines a number of
things together. Furthermore, eCos and ERIKA Enterprise operating systems are too big
and complex, while we were aiming for something light and clean. Finally SHaRK RTOS
seems outdated, which is a pity as it is only RTOS from the list capable of EDF scheduling.

We chose FreeRTOS because it is best match for our needs. It is not fully to our
satisfaction, though, as FreeRTOS uses simple round-robin scheduling with support for
preemption (instead of EDF scheduler we wish to deploy). The program on microcontroller
is designed in such a way that FreeRTOS can be easily integrated to it. For the moment
we use a number of alarms that run specified routine when expired. This is by no means
optimal, but we decided to stick with this simple solution for the moment.

3.2.1 Bottom halves

Bottom halves are used to defer time-consuming processing that should be done within
interrupt for later. All interrupt sources are blocked when a single interrupt is serviced.
Hence, it is critical that interrupt servicing routines finish as quickly as possible, otherwise
system responsiveness will suffer. One solution is to use nested interrupts, but this often
cause more problems than benefits. Alternative solution is to use bottom halves.

The concept (and name) of bottom halves is taken from Linux kernel. Linux separates
interrupt handler to two parts - top half and bottom half. Top half is interrupt service
routine in classical sense. When it is finished the processor re-enables interrupts and,
normally, it would return to the point where program was interrupted. The idea of bottom
halves is to do interrupt’s lengthy processing after interrupts are re-enabled but before
the execution returns to the program. What we get by implementing bottom halves is
means to run lengthy tasks within interrupt while other interrupts (of all priorities) are
not blocked.

Our implementation of bottom halves is simple. Internally it uses bit-field to collect
pending requests and an array of function pointers to handling functions. Its API features
following routines:

• void bh_init() - Initializes internal data structures, must be called during sys-
tem startup.

• int bh_register() - Used to register new bottom half. It takes function pointer
in form of int (*h)(unsigned long) as its only argument. It shall point to
bottom half handler. Handle to allocated bottom half is returned.

• void bh_request() - Registers request to run bottom half. It takes two argu-
ments. First is handle to the bottom half (must have been previously returned by
bh_register). Second argument is going to be passed to bottom half handler
when invoked.

• void bh_process() - Executes all pending requests. It may never be called from
interrupt context as it blocks until all requests are serviced.

Note that bottom half handler must always return BH_OK in case of success, otherwise
the request will not be cleared and the handler will be called again on next invocation of
bh_process().

54

Current implementation does not process bottom halves right after interrupt han-
dler. There is no need to run it immediately as we don’t use RTOS yet. Function
bh_process() is called from main program loop instead. When we integrate RTOS
to our system we will have to implement it as part of interrupt servicing. It can be done by
calling bh_process right after global interrupt mask is re-enabled and before execution
is returned to the point of interruption. Note that it is not as straightforward as it might
sound because one has to be careful not to loose context of the program before interruption.

3.2.2 Alarms

Purpose of alarms is to call given function when time expires. We use periodic interval
timer (PIT) on the microcontroller to count time. It generates interrupts periodically on
each millisecond. The interrupt handler simply increments global variable time on each
invocation. This realizes simple timer with resolution of one millisecond.

We use alarms to call functions that implement tasks. There are 8 alarms available,
each can be programmed separately. Every time new alarm is configured the code will
sum current time with given delay to get expiration date. Then, the expiration date is
registered together with the pointer to function that shall be called when timer expires.
Note that the alarm can be restarted from within function it called upon expiration. In
this way one can achieve periodical behavior. Alarms API consists of following functions:

• void pit_init() - Initializes the timer and related data structures.

• void pit_setup_alarm() - Sets up new alarm. It takes three arguments: first is
alarm identifier (valid values are from 0 to 7), second is waiting interval in milliseconds
and third is the function pointer that is called upon timer expiration. Its prototype
is simply void (*hook)(void). Note that it is possible to setup only single-shot
alarms.

• void pit_restart_alarm() - Restarts disabled alarm. Its only argument is
alarm identifier as interval and function pointer values are copied from previous
setting.

• void pit_process_alarms() - This routine checks whether any of the alarms
expired and, if so, disables it and calls given handling function. Currently, we call
this routine from main program loop in order to service the alarms as frequently as
possible. This shall be implemented as bottom half of the PIT interrupt when we
integrate RTOS with our system.

• unsigned long get_system_time() - Returns value of time variable. It
takes no arguments.

3.2.3 Timestamps

The millisecond timer described above provides useful reference for local timekeeping but
we needed higher precision for the integration algorithm. Each measurement has to be
timestamped in order to know age of information it carries. Furthermore, the integration
algorithm requires all its inputs to refer to same instant in time. This is not feasible with

55

different sensors running on different clocks. Solution is to have a model that can estimate
measurements at any time4 by fitting past measurements on a curve.

Modern processors are usually equipped with so-called timestamp register. It is 64-bit
free-running counter that increments on each rising edge of system clock. Unfortunately,
ARM7 processor doesn’t have this feature. Our solution uses three serialized 16-bit timers
in pulse generation mode. Input of first timer is connected to system clock divided by five
(9.618 Mhz), output is connected to input of second timer. Similarly, output of second
timer connects to input of third timer. Having each timer set to generate rising edge on
overflow we get 48-bit free-running counter similar to timestamp register available in other
processors. First timer overflows every 6.8 milliseconds, second timer every 446.55 seconds
and third timer in about a year.

Reading correct value from the three timers at once is tricky. We need to read three
registers one after another meaning that this operation is not atomic. Consequently, when
we read state of any of the three timers the other two might overflow in that very moment.
If that happens then reported time might be shifted either by 6.8 milliseconds or 446.55
seconds. For solution see function read_timestamp_raw() in Listing 3.1 below. We
start by reading the timing registers from highest significant bytes to lowest. Then we
read again values of upper and middle timers to verify that they didn’t overflow sometime
during the process. This is repeated until no overflow is detected. Note that probability
that one of the 3 timers overflows while we read their value is below 0.1%.

static void read_timestamp_raw(int *l, int *m, int *h)
{

int m1,h1;

/* the timestamp will be spoiled if irq strikes here */
do {

*h = TC_CV(TC2);
*m = TC_CV(TC1);
*l = TC_CV(TC0);
m1 = TC_CV(TC1);
h1 = TC_CV(TC2);

} while(m1!=*m||h1!=*h);
}

Listing 3.1: function read timestamp raw()

There are two functions in the API that return most current timestamp. First is
get_timestamp() and second is get_timestamp_isr(). Former disables the inter-
rupts before calling read_timestamp_raw, latter doesn’t do that as it is meant to be
invoked from interrupt context (where the interrupts are disabled already).

Note that it is not allowed for the function get_timestamp() to be called from
interrupt context.

4small number approximation applies

56

3.2.4 I2C peripheral driver

We use I2C bus to communicate with the inertial measurement unit and barometric al-
timeter. Protocol and signaling is handled by I2C peripheral5. We merely needed to write
hardware abstraction layer that would provide reasonable application interface. Note that
the microcontroller acts as I2C master only, I2C slave is not supported.

Main requirement from this driver is that it runs asynchronously. It means that both
send and read requests cannot block the processor until the transfer is finished. The I2C
bus is much slower than processor so blocking calls would cause tremendous performance
regression. Unfortunately, the peripheral is not asynchronous in nature and it does not
support DMA. Nonetheless, it is possible to implement the driver as state machine that
executes asynchronous transfers through interrupt-based notifications.

Our implementation uses prioritized queue of I2C transmission requests. The state
machine takes request with highest priority, executes it and when done continues with
next highest priority request until there is none left. Transmission handling is done asyn-
chronously, but there is function i2c_do_requests that has to be called periodically
for house keeping and starting new requests. Currently we call this routine from main
program loop but with RTOS it should be implemented as bottom half.

There are two data structures involved. First is i2c_device that is used to specify
properties of connected devices (such as device address and internal addressing mode).
Second is i2c_request. This structure gathers all information about the request neces-
sary to carry it out. Normally the requests are prepared during system startup and used
repeatedly to perform read or write operations later. Declaration of both data structures
is in Listings 3.2 and 3.3.

/* used to describe a device */
struct i2c_device {

unsigned int address;
unsigned int iadrsz;

};

Listing 3.2: i2c device data structure

Structure i2c_device contains only device address and specification of internal ad-
dress size. For example, EEPROM memories often use 3-byte internal addressing while
sensors use only 1-byte addressing as they dont have that much memory to address.

/* used to specify a request */
struct i2c_request {

struct i2c_device *dev;
unsigned char *data;
/* flags can be retrieved with i2c_get_finished(), i2c_get_dir(),
i2c_get_bh(), and i2c_get_prio() macros */
unsigned int flags;
unsigned int iadr;
unsigned int size;

};

Listing 3.3: i2c request data structure

5Strictly speaking the microcontroller does not support I2C - it supports another bus called TWI
(two-wire interface) which is I2C compliant.

57

Structure i2c_request contain many fields, see Listing 3.3. Pointer *dev specifies
the device for which the request is ment to. Pointer *data points to location in memory
where received data bytes should be copied to in case of read request or where the data shall
be copied from in case of write request. Field flags specifies number of different things
such as priority, transfer direction and others. Notably, it encodes identifier of bottom half
that shall be invoked when the request is finished. Furthermore, field iadr is the internal
address in the device and field size contain number of bytes to transfer.

Note that location in memory where *data points to cannot be accessed until the
request is finished. For this reason we notify the application by invoking bottom half
specified in flags field upon finishing. This is convenient as I2C driver is not used directly
by the application but by device drivers that handle devices connected on I2C bus. They
need to be notified as soon as possible in order to increase system responsiveness. Bottom
half is fastest way to do it.

Finally, there is blocking interface existing in parallel with non-blocking equivalent
described so far. Non-blocking interface is difficult to use for single-shot transfers, but it
is well suited for repetitive transmissions during normal operation. Blocking interface is
easy to use for device configuration purposes, but it would slow down the microcontroller
during normal operation. List of all interface functions follows:

• void i2c_init() - Initializes I2C peripheral and internal data structures.

• int i2c_write_blocking() - Performs I2C write command and does not return
until the transfer is finished. It takes four arguments: first is pointer to i2c_device
structure, second is address in the device where the data shall be stored, third is
pointer to the data and last argument specifies how many bytes shall be transferred.
Returns non-zero value upon success.

• int i2c_write_1blocking() - Wrapper of i2c_write_blocking() that
transfers only a single byte. Instead of pointer to data it takes directly single value
that will be stored on given address in the device.

• int i2c_read_blocking() - Performs I2C read command and does not return
until the transfer is finished. It takes same arguments as i2c_write_blocking(),
but in this case data pointer points to place in memory where to store the data, not
where to read them.

• unsigned char i2c_read_1blocking() - Wrapper function that simplifies
use of i2c_read_blocking() when only single data byte needs to be read from
given address in the device. It takes two arguments: first is pointer to i2c_device
structure and second is internal address where to read from. Retrieved data byte is
returned.

• struct i2c_device *i2c_create_device() - Returns initialized structure
i2c_device. It takes two arguments: first is device address and second is size of its
internal address in bytes. Put zero if the device does not support internal addressing.

• struct i2c_request *i2c_create_request() - Creates asynchronous I2C
request and returns pointer to it. It takes 6 arguments in following order: pointer
to valid i2c_device, priority, internal address, read/write flag, transfer size and
bottom half handle. For the prototype see header file i2c.h. Note that this function

58

does not actually request data transfer, it just creates the data structure necessary
for that.

• struct i2c_request *i2c_create_read_req() - This is actually a macro
that expands to i2c_create_request() with read/write flag set to read. It takes
same arguments as i2c_create_request() without the read/write flag.

• struct i2c_request *i2c_create_write_req() - Also a macro that ex-
pands to i2c_create_request, only the read/write flag is fixed on write.

• void i2c_nonblocking() - Requests non-blocking transfer. It takes two argu-
ments: pointer to i2c_request structure and pointer to data where to copy from
(or copy to).

Note that some I2C slave devices does not support internal addressing. This can be
indicated by setting internal address size (iadrsz field in i2c_device structure) to
zero. Then, field iadr in structure i2c_request is ignored.

3.2.5 USART and DBGU peripheral drivers

We needed three UART channels - two for GNSS receiver and one for Bluetooth. The
microcontroller is equipped with two USART channels that can be configured as standard
UART. Furthermore, there is DBGU peripheral meant for debugging and testing purposes
that is equipped with standard UART as well. We used DBGU as third UART channel
for communication with the host system over Bluetooth and the two USARTs to exchange
data with GNSS receiver.

Both USARTs and the DBGU are equipped with their own DMA channel (called pe-
ripheral data channel - PDC). The DMA is critical as it allows to copy data between
UART and SRAM automatically without assistance of the processor. This is optimal from
processor load point of view. One can program the DMA to store received data to SRAM
automatically. Similarly, it is possible to program the DMA channel to transmit specified
part of SRAM memory over UART.

We don’t access USART and DBGU peripherals directly, instead we use the DMA. Each
UART channel has associated 4kB reception and transmission circular buffers. Received
data are automatically stored to the reception buffer. The application has to read content
of the reception buffer as often as possible to avoid data overriding. Similarly, if the
application wish to transmit data it only needs to copy them to the top of the transmission
buffer and to notify DMA about number of copied bytes.

The application interface for the USART peripherals consists of following functions:

• void usart_init() - Initializes both USART peripherals and internal data struc-
tures. This has to be called prior to usart_setup().

• struct usart *usart_setup() - Configures USART peripheral. It takes three
arguments. First is base address of the peripheral to use (USART0 is at 0xFFFC0000
and USART1 at 0xFFFC4000). Second argument is baud rate, it is used to compute
baud rate generator settings. Third argument is for flags that are forwarded to
USART mode register (see datasheet [20]). Normally it can be left zero.

It returns pointer to structure usart that is used as a handle to specify which
peripheral to use when calling usart_send() and usart_get() functions.

59

• void usart_send() - Used to send data over UART. It takes three arguments:
first is pointer to structure usart that specifies which USART peripheral shall be
used. Second argument is pointer to buffer with data and last argument is a number
of bytes to transfer. This function is not blocking until the transmission is finished,
it will only copy the data to the transmission buffer and program the DMA to do the
job.

• int usart_get() - Copies data from reception buffer to given location in memory
and returns number of bytes copied. It takes two arguments: first is pointer to
structure usart and second is pointer to address in memory where the data shall
be copied to.

As you can see, the interface is simple as all DMA programming and parallelism-related
issues are handled internally. Note that interrupt sources USART0 and USART1 have to
be handled by routines usart0_irq() and usart1_irq for the driver to work correctly.

The DBGU driver implements both low-level DMA handling and high-level commu-
nication protocol used to communicate with the host device. The protocol is described
in Section 3.4.1. Here it suffices to say that it uses a number of different data objects.
Each data object have assigned unique identifier and pointer to function that handles its
reception. DBGU driver application interface consists of following functions:

• void dbgu_init() - Initializes DBGU peripheral. Its only argument is requested
baud rate.

• void dbgu_setup_do() - Configures new data object (DO). It takes two argu-
ments: data object identifier (valid values are from 0 to 15) and pointer to function
with prototype void (*hook)(unsigned char *data, int size). This
function is called upon reception of data object.

• void dbgu_send_do() - Sends data object. It takes three arguments: first is
data object identifier (values from 0 to 15), second is pointer to memory location
where the message is stored and last argument is message size in bytes.

• void dbgu_process_rx() - Processes reception buffer and invokes data object
handlers accordingly. This function has to be called periodically to process the re-
ception buffer. It takes no arguments.

3.2.6 CAN peripheral driver

CAN peripheral is asynchronous in nature. There are 8 mailboxes in hardware, each can
contain a single message. The mailboxes can be configured either to hold received messages
according to acceptance criteria or to hold messages that are due for transmission.

Each reception mailbox have acceptance criterion that, if met, allow received message
to be copied into the mailbox. The message is dropped if no mailbox have compliant
acceptance criteria.

The criterion consists of matching identifier and its acceptance mask. When new mes-
sage is received then its identifier bits are multiplied with acceptance mask. Similarly,
matching identifier is multiplied with acceptance mask as well. If the two masked identi-
fiers are identical, then the message is accepted. This process is repeated for all receiving
mailboxes.

60

CAN bus bit timing scheme is complex so the programmer has to compute the values
manually and provide them to can_init(). CAN driver application interface consists of
following functions:

• void can_init() - Initializes CAN peripheral. It takes 5 arguments: first is baud
rate prescaler (divides system clock) and then follows phase1, phase2, synchronization
jump width (SJW) and propagation delay. These parameters are specified in time
quanta. One time quantum has period of baud rate prescaler divided by system clock
(see [21] for details on CAN bit timing).

• int can_setup_tx_mailbox() - Configures mailbox for transmission. It takes
three arguments: message identifier, flag whether the identifier has standard or ex-
tended size and flag whether the message is remote request or not. Note that message
data are not given at this point. Returns handle to the mailbox.

• int can_setup_rx_mailbox() - Configures mailbox for reception. It takes
four arguments. First two are acceptance criteria (message identifier and acceptance
mask). Third argument specifies whether received message is remote request or not.
Last argument is bottom half identifier that shall be invoked when a message gets
accepted.

• void can_send() - Used to send a CAN message. It takes three arguments: first
is mailbox handle, second pointer to memory where the message is stored and last is
message size. Note that CAN message have length limited to 8 bytes.

• unsigned char can_get_tec() - Returns value of transmission error counter.

• unsigned char can_get_rec() - Returns value of reception error counter.

3.3 Device drivers

This section is concerned with design of device drivers. They use services of peripheral
drivers to communicate with devices on PCB.

3.3.1 MPU-9150 and MPL3115A2 drivers

Both devices are connected to microcontroller using I2C bus. They are I2C slaves. As
slave devices cannot start communication on I2C bus they use separate signal to inform
the microcontroller that new data are ready.

Listing 3.4 contains excerpt from MPU-9150 driver. Function mpu9150_setup is used
to initialize the device and underlying I2C driver. It takes single argument - a pointer to
notifier function that shall be called when new measurements are available. Note that it
creates i2c_request named req_meas. This request is preset to read accelerometric
and gyroscopic measurements when executed. Also, it is further configured to execute
mpu9150_bh() bottom half when transfer is finished.

The MPU-9150 device is configured to generate edge on its INT output when new mea-
surements become available. This signal is routed to pin PB10 on the microcontroller. It is
assumed that every time when rising edge appears on PB10 then function mpu9150_irq

61

is called. This function will execute transfer request req_meas and return. When the
request is finished the bottom half mpu9150_bh is invoked automatically by underlying
I2C driver. As bottom halves are always executed in program context it can call notifier
function to inform the application. Currently, we forward directly raw data read from
MPU-9150. It contains 7 floating point variables encoded in 16-bit numbers. These are
three accelerometric measurements, three gyroscopic measurements and temperature.

static unsigned char raw[15];
static struct i2c_device *mpu9150;
static struct i2c_request *req_meas;
static void (*notifier_fcn)(unsigned char *raw);

void mpu9150_irq() {
/* request the i2c transfer when rising edge on PB10 is detected */
i2c_nonblocking(req_meas, &raw[0]);

}

int mpu9150_bh() {
/* transfer is finished, raw[] has the data, notify the application */
notifier_fcn(&raw[1]);
return BH_OK;

}

void mpu9150_setup(void (*notifier)(unsigned char *raw)) {
/* supposes that i2c is initialized and that mpu9150_irq is called
when rising edge appears on IO pin where INT is routed to. */
int bh = bh_register(mpu9150_bh);
mpu9150 = i2c_create_device(0x68, 1);
req_meas = i2c_create_read_req(mpu9150, I2C_GET_IMU_DATA_PRIO,

INT_STATUS, 15, bh);
notifier_fcn = notifier;

/* configure the device */
i2c_write_1blocking(mpu9150, PWR_MGMT_1, 0x00); /* go active */
i2c_write_1blocking(mpu9150, SMPLRT_DIV, 5); /* max sample rate */
i2c_write_1blocking(mpu9150, CONFIG, 0x02); /* dlpf mode 2 */
i2c_write_1blocking(mpu9150, GYRO_CONFIG, 0x08); /* +-500 deg/s */
i2c_write_1blocking(mpu9150, ACCEL_CONFIG, 0x08); /* +-4g */
i2c_write_1blocking(mpu9150, INT_PIN_CFG, 0x30);
i2c_write_1blocking(mpu9150, INT_ENABLE, 0x01);

}

Listing 3.4: MPU-9150 driver (simplified)

As you can see the driver is simple. It does not allow any flexibility in configuration
as there is no need for universality (for the configuration see Table 3.2). Also, it does not
implement any features we don’t use at the moment. Future versions of this driver should
convert retrieved data to floating point variables with correct units. We don’t do that as
the integration filter is not implemented yet - only thing we do with the data is that we
forward them using Bluetooth to host device.

MPL3115A2 driver works on same principle. The device generates rising edge on AL-
TINT1 line connected to pin PA13 on the microcontroller (see schematic in Appendix C).
The driver expects function mpl3115a2_irq to be called in response to that. This rou-
tine will execute non-blocking I2C transfer to read current pressure. The application is
informed through bottom half that is called automatically when the transfer is finished.
Function mpl3115a2_setup() is available to initialize the driver.

62

Sampling rate 166Hz
Gyroscope full-scale range ±500◦/s
Gyroscope sensitivity 0.0152◦/s
Accelerometer full-scale range ±4g
Accelerometer sensitivity 122.07mg

Table 3.2: MPU-9150 configuration

3.3.2 NV08C-CSM driver

The GNSS receiver communicates with the microcontroller using two UART channels.
First channel is set for NMEA-0183 protocol [22] and second for BINR protocol [17]. We
implement both but use mainly BINR as it provides floating point numbers directly in
IEEE 754 format. The NMEA channel is currently used only to command the receiver to
stop reporting on that channel.

Application interface of the driver consists of two functions. First is gps_setup().
It configures the GNSS receiver. Single argument is required - pointer to notifier function
that is used to inform the application when new data are available. Second function is
gps_process_incoming(). It processes USART reception buffers on both channels.
No arguments are necessary, but it needs to be called periodically.

Internally, function gps_setup configures the device according to Table 3.3 and re-
quests messages in Table 3.4 to be sent periodically by receiver.

Data sent using BINR protocol are validated with cyclic redundancy check (CRC)
that uses standardized CCITT-16 seed. Whenever new message is received the function
gps_process_incoming() decodes it and checks the CRC checksum. If the message
is one of those listed in Table 3.4, then the application is informed through the notifier
callback.

Update rate 10Hz
Enabled systems GPS, GLONASS, SBAS

Maximum acceleration 10m/s2

BINR baudrate 230.4kBd

Table 3.3: GNSS receiver configuration

41h Course angle and current speed
52h Visible satellites
88h Position, velocity and time vector
4Ah Ionosphere parameters
64h DOP and calculated uncertainties
F5h Raw data (pseudo-ranges, pseudo-range rates, doppler)
F7h Extended ephemeris of satellites

Table 3.4: messages sent by GNSS receiver

3.3.3 ISO 15031 support (OBD-II)

Support for communication with the vehicle over OBD-II cannot be called device driver
as there is no device to control. We periodically read a single value from a vehicle’s ECU

63

connected on CAN bus through diagnostic port. This value is vehicle speed encoded as
8-bit unsigned integer.

Physical and link layers are based on CAN bus (ISO 11898). Network and transport
layers are described in ISO 15765 (Road vehicles - Diagnostics on Controller Area Networks)
and OBD-II services are subject of ISO 15031-5 (Road vehicles - Communication between
vehicle and external equipment for emission-related diagnostics).

We need to send periodically a request for vehicle speed. According to ISO 15031, this
request turns out to be a single CAN message. The vehicle shall respond in defined manner
using only a single CAN message as well. Hence, for our limited needs we don’t need to
implement these standards, but only send periodically predefined message and check form
of the response (if it comes). Message identifier for the request is 0x7DF and the message
consists of 3 bytes 0x2, 0x1, 0xD followed by five zeroes. First byte specifies number
of following bytes, second byte specifies requested service (Service $1 - Request current
powertrain diagnostic data) and 0xD is parameter ID of vehicle speed sensor.

Expected response can have identifiers in range from 0x7E8 to 0x7EF. The message
shall start with three bytes 0x3, 0x41 and 0xD followed by vehicle speed encoded in a
single byte. First byte (value 3) specifies number of following bytes, second byte (0x41)
says that the message is response to Service $1 request and third byte is the parameter ID.

Periodical reading of vehicle speed is based on alarms. Function obd2_setup()
configures the CAN driver and the alarm. It takes pointer to notifier function as its single
argument. Similarly like with other peripheral drivers, the notifier is used to inform the
application that new data are ready. Vehicle speed is passed as its argument.

3.4 Embedded application

The application running on microcontroller continuously collects measurements from iner-
tial measurement unit, from barometric altimeter, from vehicle (its speed) and from GNSS
receiver (both positioning solution and raw data). For that it uses the device drivers
described above.

Current version does not implement the integration filter. Its design and implementa-
tion is not in scope of this thesis.

3.4.1 Communication with host system

By host system we mean Android device connected via Bluetooth that runs navigational
application. We refer to it as “master” while embedded system is called “slave”. Master
requests services, slave provides them.

Used communication protocol is described in Appendix B. Data are transferred by
means of messages called data objects. Different data objects carry different information.
For example, one data object can contain satellite navigation-based position, another latest
inertial measurements, etc.. There can be up to 16 different data objects in use. Each data
object can carry a message of 4 kilobytes.

We distinguish between process data objects (PDOs) and service data objects (SDOs).
There is no actual difference in message format, but it allows to distinguish whether the
data contain processing or configuration information. Process data objects contain most

64

ID name description

1 SDO1 MASTER ALIVE Sent periodically by master to inform slave of its pres-
ence. Message contains list of requested services that
the slave shall provide.

2 SDO2 ALIVE STATS Sent periodically by slave to inform master of its pres-
ence. Message contains device state, diagnostic and
statistic information.

3 SDO3 WEATHER Weather-dependent corrections for barometric alti-
tude meter. Sent by master.

8 PDO8 IMU Latest inertial measurements.
9 PDO9 ALT Latest altitude measurement.
10 PDO10 OBD Latest vehicle speed.
11 PDO11 GPS Forwards GNSS message.
12 PDO12 GPS RAW Forwards GNSS message that contain raw measure-

ments (pseudo ranges, pseudo-range rates, etc..).
13 PDO13 INTEGRATED Current position, velocity and related uncertainties.

Table 3.5: list of process/service data objects

up-to-date measurements while service data objects are used for configuration and report-
ing. List of all data objects is in Table 3.5, for their definition see Appendix B.

The slave is idle after system start. He is waiting for the master to report his presence
by transmitting SDO1_MASTER_ALIVE data object. When slave receives this message
it will consider master connected for next 2 seconds. Within this period master should
report again, otherwise slave will consider him as disconnected when timeout expires. This
is used for automatic detection of connection failures. Master has to periodically reset the
2 second timeout which will keep slave informed whether master is listening. When master
drops out, slave will switch into disconnected mode and stop transmitting.

When master is connected the slave forwards requested measurements to him. Also,
he sends his SDO2_ALIVE_STATS object every 500ms and blinks with heartbeat LED
fast. When in disconnected mode, slave keeps collecting the measurements, but it does not
forward them and the heartbeat LED blinks slowly.

The slave provides services to the master. There is one service that is provided always
(when connected) and five that are optional. Which optional services are activated is
selected by master in his SDO1_MASTER_ALIVE data object. As this message is periodic,
master has to select each time which services he requests.

The slave transmits PDO13_INTEGRATED with period 200ms. It is the integrated
positioning solution supposedly calculated by integration filter. As the filter does not exist
yet, we forward position obtained from satellite navigation.

The other five optional services forward raw measurements from sensors for offline pro-
cessing and analysis. Their names are SERVICE_IMU, SERVICE_ALT, SERVICE_OBD,
SERVICE_GPS and SERVICE_GPS_RAW. Each service has associated PDO that is used
to forward new measurements to the master.

3.4.2 Diagnostic features

Each information source (MEMS sensors, OBD-II and GNSS receiver) is monitored by
imposing deadlines on its update period. These deadlines are designed to detect sensor

65

variable description

checksum errors counts number of dropped data objects
missed irqs counts missed external interrupts
can unknown messages counts unrecognized CAN messages
rbuf level DBGU reception buffer watermark
tbuf level DBGU transmission buffer watermark
gps0 rbuf level GNSS channel 0 reception buffer watermark
gps0 tbuf level GNSS channel 0 transmission buffer watermark
gps1 rbuf level GNSS channel 1 reception buffer watermark
gps1 tbuf level GNSS channel 1 transmission buffer watermark
looptime looping-time watermark
system time system time, in milliseconds
services bit flags for currently enabled services
stability bit flags that indicate stability
health bit flags that indicate healthiness

Table 3.6: in-run statistics and other diagnostic information (extract)

failure when it goes silent. If the sensor fails to provide update before the deadline, then
it is flagged as both “unstable” and “not healthy”. If the sensor wakes up again later
and starts working normally, then we drop the “not healthy” flag, but it will be remain
flagged as “unstable”. In this way we can easily observe reliability of the sensors. This
functionality is implemented with task health_observer that runs with period of 70
milliseconds.

Furthermore, health_observer also checks whether the system missed any external
interrupts. Both interrupt signals (INT and ALTINT1, see schematic in Appendix C) are
level-triggered while the microcontroller has edge-triggered interrupts on I/O lines. The
edge might potentially go unnoticed which would cause issuing sensor to go silent. To
detect this, task health_observer checks state of both interrupt lines and recovers
from error if interrupt was missed.

The program also collects numerous in-run statistics. These can be used to locate
problems. For example, one of the things we observe is number of checksum errors in
communication. One can expect that these errors are rather rare, but if the count grows
unnaturally fast, then it might indicate problem with the transmission lines or a problem
with involved algorithms. Hence, these statistics are most valuable during development to
observe whether the device behaves as expected.

Collected statistics are mostly concerned with counting error conditions, watermark
levels of buffers, etc. Watermarks are buffer load maxima observed in some period of time.
Simply said, it indicates how close it came to overflow. Similarly, we use looping time
watermark which is maximum time it took the program to finish single iteration of its
main loop.

See Table 3.6 for list of in-run statistics program generates. Data structure that holds
them is declared in stats.h. Various accessing functions are available in stats.c.
Snapshot of these statistics is also part of SDO1_ALIVE_STATS data object.

66

Chapter 4

Android application

This chapter is concerned with implementation of host system. In general sense this should
be Java library that provides road-referenced position to higher-level services such as route
planner for example. In specific case of this project we also needed presentation layer that
would show both integrated position and map-referenced position on a map so we can
validate behavior of the map-matcher.

As a result, we designed application “rvn-app” that runs map-matching algorithm and
shows the output on a map. Additionally, it logs measurements for offline analysis.

Section 4.1 deals with road-network graph representation. We analyze various ways to
deal with graphs that feature millions of vertices and present the best solution. Section
4.2 describes the map-matching algorithm and Section 4.4 the rvn-app application.

4.1 Road-network representation

We have experimented with various ways to store road-network graph. As was defined
in Section 2.5, road network graph is directed graph G(V,E) where each vertex V has
assigned position in terms of latitude/longitude and each directed edge represents road
between the two vertices. By taking position of the two vertices connected by an edge we
can construct line segment between them that represents road “centreline”. Direction of
the edge defines driving direction.

This model allows to encode complete road-networks, their curvature and allowed driv-
ing directions. Although not optimal in terms of data set size, this is minimalist and most
simplest representation which can fulfill needs of any road-network. Other authors use lay-
ered representation with list of known roads where each road has its own list of geographic
points. Even this representation is somewhat intuitive, it is more structural than analytic.
Our model is simple, elegant and allows to apply graph theory on it.

No matter the representation, these graphs are large. For example road-network graph
of Czech Republic has 4 millions vertices and about 10 million indices (directed edges).
Important question that remains to be answered is how to store it. One solution is to use
graph databases that are designed to handle this type of data structures, but we didn’t
find any free implementation on Android.

Our first attempt was to store the graph as separate lists of vertices and indices to binary
file. This leads to format where vertices have assigned their geographical position and

67

indices refer to positions in array of vertices. First few bytes encode number of vertices and
indices in following lists. Then, list of vertices is stored, having each vertex is represented
by two floating point numbers, latitude and longitude. List of indices follows where each
edge is represented by two integer numbers - indexes of starting and ending vertices in the
vertices list.

We wrote utility program named “osmer” that generates such a road-network graph
using OpenStreetMaps map data. Generated road-network of Czech Republic had around
60MB. Nonetheless, problem of this approach is that complete graph has to be loaded to
RAM. This has shown unfeasible as it took minutes to load complete graph to memory.
Moreover, object-oriented data structures that were holding the graph have shown to be
much larger than the file itself1.

Need to use temporal cache with only parts of the graph became apparent. This would
require the file to hold vertices list sorted and indexed by both latitude and longitude
which, in consequence, would prevent to use simple list of indices to describe edges of the
graph. For this reason we changed approach and used SQL database. It supports indexing
while it can manage cross-links between vertices and indices lists.

So, second attempt was to store the road-network graph using SQLite3 embedded
database. We used tables vertices and indices. Table vertices contain fields ID,
latitude and longitude. Table indices contain IDs of starting and ending vertices. SQL’s
LEFT JOIN relation can be used to traverse the graph. For example, one could use SQL
command in Listing 4.1 to find vertices adjacent to vertex with ID=10.

SELECT *
FROM vertices v
LEFT JOIN indices i
ON v.id = i.end_v
WHERE i.start_v = 10;

Listing 4.1: retrieving adjacent vertices

We wrote utility program named “osmer-sql” that implements this. Problems with
start-up time due to graph loading were solved, but query from Listing 4.1 have shown to
be slow on full-sized road-network graphs.

We have attacked this problem by pre-computing adjacent vertices for each vertex and
encoding them into the vertices table. Table indices was dropped and vertices
was extended with field that holds string with encoded IDs of adjacent vertices.

Base64 encoding was used to encode binary 24-bit vertex IDs into 4 textual characters.
Hence, each four characters in the string encode single ID of adjacent vertex.

In this way we are not bounded to use relations anymore to retrieve adjacent nodes.
It is also beneficial as we can read list of adjacencies of a vertex without needing to load
them immediately. This allows to create cache where adjacencies of all cached vertices are
known by their ID, but can be loaded later as needed.

The cache is implemented in class RoadNetwork in package rvn-app. It caches the
road-network graph using TreeMap that maps vertex IDs to instances of Node class (that
holds information about the vertex). We chose TreeMap because it allows to search for
Node instance according to given ID in O(log(n)) time.

1Instance of Object class has 16B - this is theoretical minimum per any class instance as all classes
are inherited from Object in Java.

68

Figure 4.1: Blue lines represent edges of road-network graph around Montmartre, Paris returned by
method cacheArea().

Class Node contain geographical position of the vertex (latitude, longitude) and ref-
erences to adjacent vertices (instances of Node). Also, it features boolean field loaded
that indicates whether the vertex was loaded from database. If not, then the instance of
Node is empty placeholder serving as “connector” between cached and not cached parts
of the graph2.

RoadNetwork class features a number of methods that the program can use for
caching. Method cacheArea is used to cache road-network over rectangular area given
as variation of latitude and longitude around some central point, see Figure 4.1. Other
method, cacheNode, allows to cache single vertex identified by ID, or by instance of
Node class that has not been loaded yet. Finally, method cacheAdjacent allows to
cache adjacent vertices to given vertex.

2Set of not loaded Node instances constitutes a graph cut known from graph theory.

69

4.2 Map-matching algorithm

Our algorithm was designed with simplicity in mind. It can be categorized as mutation of
geometric, topological and probabilistic approaches, taking the best features of each. Due
to its simplicity and generality the algorithm can be easily adopted by other systems.

It requires the navigation system to provide position and velocity plus related uncer-
tainties. Note that the velocity is used to compute traveled distance and can be easily
replaced with difference between two consecutively reported positions, see Section 4.2.5.

In accordance with our analysis, we haven’t designed the algorithm to refine reported
position. Instead, we leave outlier removal and filtering to the underlying navigation sys-
tem. The reasons are discussed in detail in Section 2.5.2. This means that both position
and velocity is used to identify correct road segments but not to filter position of the vehicle
along them.

Main principles are as follows: there is point-to-curve geometric algorithm (see Section
2.5.2) that is active during track initialization and track loss (see figure 2.19). When
possible tracks are identified, then algorithms are switched and main algorithm that uses
multiple hypotheses technique develops them as vehicle proceed along road-network graph.
The algorithm is completely recursive. Likelihood function that maintain discrepancy
between measurements and each hypothesis is used. Note that algorithms are automatically
switched back on track loss so geometric algorithm can immediately identify new set of
possible hypotheses. This allows to recover from failure as soon as its effect is gone.

4.2.1 Notion of closeness

“Closeness” of road segment to measured position pg is observed as distance between pg
and its perpendicular projection on the line segment (see Figure 4.2a). In case projected
point lies outside the segment we take distance to the end of the segment that is closer
(see Figures 4.2b, 4.2c).

Figure 4.2: Cases that might occur when computing closest point on line segment.

Computing the position of the closest point on line segment is matter of simple ge-
ometry. If we want to find projected point pl on the segment such that it is the closest
point to the measurement we can take n = p2 − p1 and construct a line with parameter t.
Closest point from the line to the measured position pg can be found by means of obtaining
parameter t from equation (4.1).

t =
(n · pg)− (n · p1)

nTn
(4.1)

if t ∈ 〈0, 1〉 then we have case on Figure 4.2a and point pl = nt + p1. If t < 0 then
pl = p1 (case on Figure 4.2b) and, finally, if t > 1 then pl = p2 (Figure 4.2c).

70

With ability to find closest point to measurement on a line segment we can easily find
closest point to measurement on hypothesis. As hypothesis is essentially a sequence of
linear segments we just need to identify line segment that is closest to the point.

4.2.2 Notion of distance along hypothesis

For purposes of our algorithm we also need means to measure distance between two points
along hypothesis. Again, this task is easy as hypotheses are piece-wise linear. We just need
to identify road segments on which the two points lay and then we can compute distance
by summing Euclidian distances between the points and nodes in between (see Figure 4.3).

Figure 4.3: An example with two points on some hypothesis for which we want to compute distance
along the hypothesis. Length of the thick line is what we seek to compute.

4.2.3 Notion of probabilistic gating

We borrow term “gate” from [8] where it was used to account for uncertainty along mea-
sured position. For our algorithm these gates are spheres defined by their origin and
radius. Origin is the reported position and radius is based on uncertainty. We use ra-
dius r = max(20, 3σ) with σ being standard deviation. Assuming normally distributed
measurements the 3σ term gives 99.7% probability that measurement error is bounded by
the region. By taking at least 20-meter radius we account for displacement between used
driving lane and road centreline.

It is important to know what road segments are intersecting with the gate in order to
identify candidate roads. It can be done by testing for line-sphere intersection. Combining
line and sphere equations leads to quadratic equation which is straightforward to solve.
First, consider equation of a line constructed from positions p1, p2 of two nodes along an
edge on the road network graph and a sphere with center at measured position pg and
radius r.

(p2 − p1)t+ p1 = pl (4.2)

||x− pg||2 = r (4.3)

where pl is a point on the line and x is simply a point on the surface of the sphere. Then,
we can plug equation for a line to the equation of a sphere in order to find intersections.

||(p2 − p1)t+ p1 − pg||2 = r (4.4)

By solving for t we obtain quadratic equation:

||p2 − p1||2t2 + 2(p2 − p1)T (p1 − pg) + ||p1 − pg||2 − r2 = 0 (4.5)

71

We can test for intersection existence by testing for non-negativity of discriminant.
Note that it is not enough to know whether the intersection exist, it is also important
to check whether the intersection happens to be on the segment (part of the line) that
constitutes the road. Hence, there is intersection of road segment with uncertainty sphere
if discriminant is non-negative and at least one solution of t is in range 〈0, 1〉.

4.2.4 Maintaining hypotheses

The algorithm have to continuously update its set of candidate hypotheses as measurements
come. Convenient way to do this is to use probabilistic gating.

New hypotheses can be generated simply by branching older ones along the edges of
the road network graph. Gate region can be used as criterion for branching. For algorithm
that branches single hypothesis see Algorithm 1.

Algorithm 1 Branching hypotheses

procedure branch(hypot)
n← last node in hypot
if n inside the gate then

for each adjacent edge adj of n do
newhypot← clone hypothesis(hypot)
extend hypothesis(newhypot, adj)
branch(newhypot)

Function clone hypothesis(·) creates copy of given hypothesis and function ex-
tend hypothesis(hypot, adj) extends hypotheses by adding edge adj to the end of the
sequence. Note the recursive call for branch(). It works as safeguard mechanism against
short road segments. It is possible that a single hypothesis needs to be branched more
times in case the road segments are comparatively smaller than gate radius.

Admittedly, it is not preferable to have recursive functions running on small embedded
systems with limited stack sizes. It is possible to remove the recursive call from the
algorithm but chances are that it will loose track from time to time. Nonetheless, if the
fast failure recovery is implemented correctly, then the algorithm should recover within
single iteration (see Section 2.5.2).

Pruning hypotheses can be done by observing distance between hypothesis and latest
reported position (see Section 4.2.1). If the distance is larger than gate radius then the
hypothesis can be safely removed.

4.2.5 Likelihood function

Likelihood function is designed to compute “likeliness” of single hypothesis with respect to
measurements. Geometric displacements are accounted for with positioning measurements.
Heading discrepancies are accounted for with distance measurements.

Positioning error δn(hi) is computed as magnitude of displacement between reported
position pn and its closest point on hypothesis hi (see section 4.2.1).

Velocity measurements are used to compare distance observed on hypothesis with dis-
tance traveled by the vehicle. We convert velocity to distance by multiplying it with

72

updating period τ . Note that small number approximation is applied here, so velocity
update rate has to be sufficiently high.

For comparison we take current and previous reported positions and find their closest
counterparts on hypothesis. Having the two points projected on hypothesis hi we can
compute distance along the hypothesis ϑn,n−1(hi) (see Section 4.2.2).

Difference between ϑn,n−1(hi) and observed distance acts as both velocity and heading
error indicator, see Figure 4.4. Its advantage over classically used heading based on GNSS
[12] is that this version is more stable. Indeed, GNSS heading is not reliable unless the
vehicle is moving relatively fast (more than 3m/s according to [3]). Our solution doesn’t
rely on direction of positioning data but on their projection on different hypotheses.

Figure 4.4: Principle of traveled distances observed on different hypotheses. Hypothesis h1 is clearly the
most likely one if we take the length of dotted line as actually traveled distance and compare it to the
length of distances projected on both hypotheses.

In order to combine observations from both sources optimally we propose two factors
an and bn such that a + b = 1. They are “trustworthiness” ratios based on uncertainties
reported by navigation system. Taking σp as uncertainty in position (in meters) and σv
as uncertainty in velocity (in meters per second) then the formulas for an and bn are as
follows:

an =
σvτ

σvτ + σp
bn =

σp
σvτ + σp

(4.6)

With an representing our trust in position and bn our trust in velocity. Note that these
coefficients are unitless. With them at hand, we are ready to introduce inverse of likelihood
function:

s(hi)
−1 =

1

N

N∑
n=2

anδn(hi) + bn(vnτ − ϑn,n−1(hi)) (4.7)

with N being total number of measurements included and vn reported velocity for
measurement n. Note that this function is well-formed since all terms are in meters or
unitless. Resulting value can be understood as average error of all measurements with
respect to hypothesis hi.

Note that likelihood in (4.7) is inversed. It is so because maximum likelihood hypothesis
is the one with minimum error (error is represented by right hand side). In practice we can
simply skip the inversion and search for hypothesis that minimizes the right hand side.

Moreover, in practice the normalization to N is not necessary and can be omitted. The
function will loose its real-world meaning but the most likely hypothesis is still the one
with maximal likelihood as N is always the same for all hypotheses.

73

4.2.6 Algorithm workflow

Algorithm runs each time when new measurement arrives, see Figure 4.5 for workflow dia-
gram. It’s asymptotic complexity is linear with number of active hypotheses (experiments
show that most of the time there is actually only one hypothesis). Supplementary geomet-
ric algorithm that implements fast failure recovery (see Section 2.5.2) runs also in O(n)
time with n being number of edges in vicinity.

Figure 4.5: Algorithm workflow. Each step is described in detail in Section 4.2 with exception of point-
to-curve algorithm that is described in Section 2.5.2.

4.3 Map-matching algorithm simulations

We have run simulations based on real measurements and real maps before implementing it
in Java. We have used data provided by our embedded system (see chapter 3). Specifically,
we have used position from GNSS receiver and vehicle speed read via OBD-II interface.
Uncertainty in position is obtained from GNSS receiver as well. Uncertainty in vehicle
speed is modeled as 5% from reported velocity3. It accounts for scaling errors due to
pressure in the tires, tire wear, etc..

We have recorded measurements in rural and urban areas. The simulation is written
for GNU Octave4 (version 3.8.1).

3We have estimated the actual scaling error in the data to be about 1% (with Kalman filter that used
information from GNSS to observe it, see Section 2.3.1).

4Language for numerical computations mostly compatible with MATLAB.

74

4.3.1 Tests in rural areas

The route we tested was recorded in rural areas of Czech Republic on regional road that
connects number of villages in vicinity. The land is mostly flat and about 20% of the route
is covered with tree canopies of various thickness.

−6 −5 −4 −3 −2 −1 0 1 2 3 4

−2

0

2

East direction (km)

N
or

th
d

ir
ec

ti
on

(k
m

)

Figure 4.6: Test in rural area, blue line is map-matched route.

Simulation involved 3309 measurements from which none were falsely matched. When
on junction the algorithm always chose the right path on first try. If situation is unclear
the algorithm tends to stay on the junction and wait for the situation to clarify with
forthcoming measurements.

4.3.2 Tests in urban areas

Tests in urban areas were designed to span small streets with tall buildings around, streets
running closely in parallel, various squares as well as open spaces with good visibility.

Urban areas are difficult because satellite navigation provides lower-quality signal and
increased number of junctions makes the task more involved for the algorithm. See Figure
4.7 for tested route.

Simulation of the route on Figure 4.7 involved 2138 measurements. By manually re-
viewing the results we have found that there were two occasions where the algorithm chose
wrong turn on junction. The wrong match lasted 1.4 seconds in a first case and 800 mil-
liseconds in second case. Scenario that caused the error was in both cases similar - increased
noise due to disabled filtering of GNSS position together with measurements biased to the
right side in the direction of driving (due to driving in right lane) caused the algorithm to
wrongly match turn when there was junction with straight and right turn choices.

What we observed with rural areas has shown up in this test again - the algorithm
tends to make sober decisions by waiting on the junctions until it is clear which direction
vehicle actually took.

75

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

East direction (m)

N
or

th
d

ir
ec

ti
on

(m
)

Figure 4.7: Test in urban area. Blue line is map-matched route for test in urban area, red dots are
successive reported positions.

4.4 Road-vehicle navigation application (rvn-app)

Android application rvn-app is a prototype of host system. It implements road-network
cache (Section 4.1), map-matching algorithm (Section 4.2), communication with embed-
ded system (Section 3.4.1) and presentation layer that shows road-referenced position on
classical map.

Moreover, rvn-app automatically creates communication logs, allows to replay them and
allows to inspect structure of road-network graph. Following paragraphs describe features
of rvn-app in detail.

For application layout see Figure 4.8. Buttons “load” and “connect” lay in top-right
corner. Former is used to run simulation and latter to connect to embedded system.

When button “connect” is pushed the application will try to search for embedded
system. If found, it will establish connection and start transmitting SDO1. Note that
embedded system needs to be paired with Android device and Bluetooth has to be enabled.

When button “load” is pushed user is presented with dialog to choose simulation file.
This file is simple CSV table where each line convey same information as PDO13. It can be
generated from communication logs with log2csv utility (see Appendix A.1). Simulations
are useful to test the map-matching algorithm.

See Figure 4.8a for layout of “summary” tab. This tab shows various information about
rvn-app’s operation. Status field specifies current operation - either that it is connected

76

(a) “summary” tab (b) “map” tab (c) contextual menu

Figure 4.8: rvn-app layout

to embedded device, runs simulation, or that the program is idle. Fields “log file” and
“sim file” specify files in external storage where incoming Bluetooth stream is logged and
where the simulation data are taken from. Fields under “device subsystems” header in-
dicate healthiness and stability of embedded system subsystems when connected. Field
“device/sim run time” shows current time on the embedded system or simulation time
when simulation is running. Finally, field “Bluetooth bus load” indicates current load of
Bluetooth channel.

Figure 4.8b shows “map” tab. It features rendered map based on OpenStreetMaps
(OSM) data. We use mapsforge library [25] to render both map and overlays. The overlays
are used to show reported positions (red dots) and maximum likelihood hypothesis (blue
line) in context of the map. Map data are stored in a file on device’s external storage. The
library uses own maps based on regional OSM extracts. Note that enclosed DVD contain
maps of Île de France and of Czech Republic.

Figure 4.8c shows options available through contextual menu. Option “Recenter map”
is used to recenter map around latest reported position. Option “Show known roads in
vicinity” shows known roads in current view (such as on Figure 4.1) when ticked on. It can
be used to visually inspect structure of road-network graph. Option “Clear overlays” does
exactly what the title says - clears all overlays. Last option “Dump road-network cache”
is used to dump current content of road-network cache into files “road-network-cache-
dump.nodes” and “road-network-cache-dump.edges” in device’s external storage. These
files contain cached part of road-network that can be loaded by Octave or MATLAB and
used for analysis and simulations.

77

This page is intentionally left blank.

78

Chapter 5

Conclusion

This work started with thorough analysis of the road-vehicle navigation problem. Outcome
of this analysis was a proposal of optimal road-vehicle navigation system in terms of per-
formance. Special embedded system with sensors, navigation systems and communication
interfaces of interest was designed and manufactured to run tests on the devices. Test
results are shown and discussed in the analysis.

Part of the proposal was recommendation to design integrated navigation system run-
ning on our own embedded system instead of using sensors embedded in Android smart
devices as my supervisors were planning originally. The embedded system used for analysis
has proven sufficient for this job as all sensors were on board, it was fully functional and
able to work for days without failure. This has saved us plenty of time as I didn’t need to
design new embedded system based on knowledge gained from the analysis.

The optimal road-vehicle navigation system should integrate satellite-based and inertial-
based navigation systems. The analysis details how this should be done, but the imple-
mentation in following chapters does not do the integration. This is so because there was
not sufficient time to implement it. Nonetheless, it does not mean that the project would
not be finished. The road-vehicle navigation system works, only sub-optimally. This was
expected as it is not feasible to develop road-vehicle navigation system according to the
proposal in given time.

Important part of the road-vehicle navigation system is map-matching algorithm. I
conducted review of current map-matching algorithms as part of the problem analysis.
Nonetheless, I didn’t find sufficiently robust algorithm. For this reason I developed under
lead of my supervisors novel map-matching algorithm that is described in Chapter 4.
The algorithm is proposed in our conference paper “On designing robust real-time map-
matching algorithms” that was submitted to IEEE ITSC2014 conference. At the time of
writing this thesis the paper was accepted.

Final chapter in this thesis describes application “rvn-app” for Android smart devices.
It implements prototypical road-vehicle navigation system by integrating navigation system
based on our embedded system with map-matcher running on the device.

79

This page is intentionally left blank.

80

Appendix A

Software utilities

We have developed number of utilities while working on this project. This addendum
describes how to use them. Source codes and compiled binaries (for x86_64-linux-gnu)
are enclosed on the DVD.

A.1 Dump measurements (log2csv)

Tool log2csv is used to dump measurements from communication logs. It takes binary log
file and generates human-readable CSV table with measurements it contains. The tables
can be used for offline analysis. A number of Octave scripts that plot the measurements is
available on enclosed DVD. Usage instructions are printed when invoked with no arguments,
see Listing A.1.

matej@lenovo:˜$ log2csv
Usage: log2csv {gps|raw|ins|alt|obd2|eph|iono|sim} <log-file> <csv-file>

Listing A.1: log2csv usage instructions

First argument is output type specifier. There are eight options - gps, raw, ins, alt,
obd2, eph, iono and sim, see Table A.1 for their description. Second argument is path
to log file and third is output file.

gps PDO11 position, velocity, time, course and related uncertainties as
well as detailed information about all visible satellites

raw PDO12 GNSS raw measurements (pseudo-ranges, etc..)
ins PDO8 inertial measurements (accelerometer, gyro)
alt PDO9 altitude measurements
obd2 PDO10 vehicle speed
eph satellite ephemerides
iono coefficients of Klobuchar’s ionosphere model
sim PDO13 generates data for map-matching simulation in rvn-app

Table A.1: output type specifiers

81

The log files are automatically generated by rvn-app and stored to device’s external stor-
age memory. Their names follow pattern “rvn-log DD-Month YYYY HH:MM:SS.bin”.

For exemplary output see Table A.2. The program prints summary of log file contents.

matej@lenovo:˜$ log2csv sim "rvn-log 16-June 2014 15:13:11.bin" out.csv
Processed: 2458875 bytes
Ignored: 976 bytes (0.039693%)
Checksum errors: 0 (0.000000%)
Received alive stats SDOs: 747
Received imu PDOs: 62174
Received alt PDOs: 386
Received obd2 PDOs: 3683
Received gps PDOs: 11580
Received gps raw PDOs: 0

Listing A.2: log2csv output example

A.2 Combine measurements (csvcomb)

This tool combines two tables generated by log2csv into one. Resulting data are combined
in such a way that measurements from both tables relate to same time instants. This is
useful for development and simulations of integrated filters. Usage instructions are listed
in Listing A.3.

matej@lenovo:˜$ csvcomb
Usage: csvcomb <csv-file> <csv-file> <output-file>
This program expects first column in both csv tables to be timestamp of
the measurement that follows. It combines the records from both files

Listing A.3: csvcomb usage instructions

A.3 Compute road-network graph (osmer-sql)

This program takes OSM map and extracts road-network graph from it. The graph is
stored into Sqlite3 database file. For details on its operation see section 4.1. It takes two
arguments. First is OpenStreetMap XML file and second is the output file.

The map can be obtained freely from planet.osm.org website. Note that full-planet
map has about 500GB so using regional extracts is advisable. Note that even regional
extracts can have tens of gigabytes.

matej@lenovo:˜$ osmer-sql
Usage: osmer-sql <osm-map.xml> <output.sqlite3>

Listing A.4: osmer-sql usage instructions

Enclosed DVD contains OSM extracts of Czech Republic and of region Île de France in
France (dated April 2014). Note that both files are compressed with gzipped tarballs. See
Listing A.5 for program output when processing the map of Czech Republic. This map

82

has 9.2GB, its processing took 1.8GB of RAM and 5 minutes 11 seconds on regular PC.
Resulting SQLite3 file has about 350 megabytes (most of which are indexing tables).

matej@lenovo:˜$ osmer-sql czech-republic-latest.osm czech.sql
Collecting geo-points: 40485674
Sorting...
Analyzing map polylines/routes: 4931584/546261
Looking up junctions: 615636
Saving 4234630 nodes into czech.sql using sqlite3

Listing A.5: osmer-sql output when run on a map of Czech Republic

83

This page is intentionally left blank.

84

Appendix B

Communication with host - protocol

Communication between the embedded system and the host system is based on data ob-
jects. Format of a data object is shown on Figure B.1 below. It has three parts - header,
data and footer. Header has 5 bytes in total. First three bytes are fixed 0x13, 0x27 and
0xC8. This sequence marks beginning of a new data object1. Last two bytes of the header
encode data object identifier (field DO; upper 4 bits) and message size (filed SIZE; lower
12 bits). Note that 4 bits in DO field allow for 16 different data objects and 12 bits of
SIZE field limit message size to 4kB.

Figure B.1: process/service data object frame

Message data follow after the header. Receiver counts number of received data bytes
and when complete message is received it expects 1-byte checksum. The checksum is
computed as sum of all data bytes in the message modulo 256 (lowest 8 bits of the sum).

This type of checksum is particularly ineffective, but it is fast to compute while sufficient
for our purposes. It is so because Bluetooth uses its own data validation mechanism (CRC
checksum) and transmission line between the microcontroller and Bluetooth module is only
few millimeters long (see Figure C.1).

B.1 Data objects definition

Following subsections specify data objects currently in use. Data types designated as
uintXX are unsigned integers of XX bits. Data types float and double are standard
C types for floating point numbers encoded according to IEEE 754. All variables are sent
in little endian fashion except for some variables in PDOs 8 and 9. These PDOs contain
raw measurements that are register bank snapshots of device they originate from.

Several PDOs contain variable timestamp typed as uint48. In order to convert it
to seconds multiply timestamp with 32

MCLK
. MCLK is system clock (48092000 Hz).

1its suitability was verified by statistical analysis of 1-megabyte communication sample

85

B.1.1 SDO1 - Master alive

This message is periodically sent by master to declare its presence (master is the host
system, slave is the embedded system, see Section 3.4.1). It contains two bytes with list of
requested optional services. Second byte is bit inverse of first (for increased security).

field type comment

0 services uint8
1 inv services uint8 bit-wise inverted services

Table B.1: fields in SDO1

Relevant bit positions for services field are defined in stats.h. Here is excerpt:

#define SERVICE_IMU 7 /* enables PDO8 */
#define SERVICE_ALT 6 /* enables PDO9 */
#define SERVICE_OBD 5 /* enables PDO10 */
#define SERVICE_GPS 4 /* enables PDO11 */
#define SERVICE_GPS_RAW 3 /* enables PDO12 */

Listing B.1: bit positions in services field

B.1.2 SDO2 - Slave alive, statistics

This message is periodically sent by slave whenever master is connected. It has period of
500 milliseconds and contain diagnostic information. Its purpose is to acknowledge SDO1
sent by master. For format see Table B.2, meaning of the fields is explained in Section
3.4.2.

field type comment

0 checksum_errors uint16
2 missed_irqs uint16
4 ignored_bytes uint16
6 can_unknown_message uint16
8 rbuf_level uint16

10 tbuf_level uint16
12 gps0_rbuf_level uint16
14 gps0_tbuf_level uint16
16 gps1_rbuf_level uint16
18 gps1_tbuf_level uint16
20 looptime uint32 multiply with 32

MCLK for seconds
24 services uint8
25 stability uint8
26 health uint8
28 system_time uint32 in milliseconds
32 nmea_frame_errors uint16
34 nmea_checksum_errors uint16
36 nmea_ignored_bytes uint16
38 nmea_unknown_messages uint16

Table B.2: fields in SDO2

86

Size of SDO2 is 40 bytes. Note that there is 1-byte gap between fields health and
system_time. It pads system_time to 4-byte boundary (as its type is uint32). Bit
fields services, stability and health are encoded according to Listing B.1.

B.1.3 SDO3 - Weather correction

This SDO is used by master to push differential corrections for barometric altitude meter.
These corrections can be used to correct for its bias errors. Message has one field - pressure
at mean sea level in pascals (encoded as uint32). Size of SDO3 is 4 bytes.

In general case one cannot measure pressure at mean sea level directly. Nonetheless, if
the reference pressure sensor is at known altitude it is possible to use atmosphere model
described in Section 2.4 to estimate pressure at mean sea level.

B.1.4 PDO8 - Inertial measurement unit raw data

This PDO carries latest data from MPU-9150 inertial measurement unit. It is sent by slave
whenever new data arrive. Content of the message is MPU-9150’s register bank snapshot
(registers from 0x3B to 0x48). See MPU-9150 register map [23] for encoding of the values.
This is raw data, slave does not alter them in any way. Size of PDO8 is 20 bytes.

field type comment

0 acceleration_x uint16 big endian; abnormal coding
2 acceleration_y uint16 big endian; abnormal coding
4 acceleration_z uint16 big endian; abnormal coding
6 chip_temp uint16 big endian; abnormal coding
8 gyroscope_x uint16 big endian; abnormal coding

10 gyroscope_y uint16 big endian; abnormal coding
12 gyroscope_z uint16 big endian; abnormal coding
14 timestamp uint48

Table B.3: fields in PDO8

B.1.5 PDO9 - Barometric altitude meter raw data

This PDO carries latest data from MPL3115A2 barometric altitude meter. It is sent
by slave whenever new data arrive. Content of the message is in Table B.4, the data
are readouts from MPL3115A2’s register bank. They are not altered in any way. See
MPL3115A2 datasheet [24] for instructions to decode these values. Size of PDO9 is 13B.

field type comment

0 altitude uint24 registers 0x01-0x03; big endian; abnormal coding
3 temperature uint16 registers 0x04-0x05; big endian; abnormal coding
5 correction uint16 registers 0x14-0x15; big endian; abnormal coding
7 timestamp uint48

Table B.4: fields in PDO9

87

B.1.6 PDO10 - OBD-II raw data

This PDO carries latest data read from vehicle’s ECU via OBD-II interface. It is sent by
slave every 100ms. See Table B.5 for its format.

field type comment

0 vehicle speed uint8 1LSB = 1km/h
1 timestamp uint48

Table B.5: fields in PDO10

B.1.7 PDO11, PDO12 - GNSS messages

These two PDOs contain messages received from NV08C-CSM receiver, they are sent by
slave. Content is forwarded exactly the way as it was received, adding only 1-byte identifier
to the beginning. This identifier allows to distinguish between different messages.

PDO11 forwards messages listed in Table B.6. These are related to position, velocity
and time solution that the GNSS receiver provides. PDO12 forwards messages listed in
Table B.7, these are outputs from ranging processor that allow to re-implement receiver’s
navigation processor in microcontroller and to tightly integrate it with inertial navigation
system (see section 2.6). Note that PDO12 can, in some cases, overload the Bluetooth
channel.

Format of messages listed in Tables B.6 and B.7 is described in BINR protocol specifi-
cation [17].

41h Course angle and current speed
52h Visible satellites
88h Position, velocity and time vector
64h DOP and calculated uncertainties

Table B.6: messages forwarded by PDO11 (for their specification see [17])

4Ah Ionosphere parameters
F5h Raw data (pseudo-ranges, pseudo-range rates, doppler)
F7h Extended ephemeris of satellites

Table B.7: messages forwarded in PDO12 (for their specification see [17])

B.1.8 PDO13 - Integrated data

This PDO carries navigation solution of the embedded system. The message contains posi-
tion, velocity and related uncertainties. Position is expressed in ECI coordinates (Cartesian
system), standard deviations are in meters, velocity in meters per second. For its format
see Table B.8, the message has 50 bytes.

88

field type comment

0 position_x double
8 position_y double

16 position_z double
24 stddev_x float
28 stddev_y float
32 stddev_z float
36 velocity float
40 stddev_vel float
44 timestamp uint48

Table B.8: fields in PDO13

Note that the data are based on vehicle speed and GNSS positioning solution as the inte-
gration filter does not exist yet. The map-matching algorithm uses information provided
by this PDO.

89

This page is intentionally left blank.

90

Appendix C

Printed circuit board specifications

Resources related to printed circuit board design are listed here. See following pages for
the schematic, detailed view of the PCB copper traces and PCB parts placement. For the
bill of materials see Table C.1 below. Note that bill of materials with more details and
ordering codes is available on enclosed DVD.

Qty Part name Description

5 HB, LED1, LED2, LED3, NRST LED diodes, 0805, yellow
1 C33 Backup capacitor, BUC-0.33
24 C6, C7, C9, C10, C13, C16, C18, C22,

C35, C36, C37, C38, C39, C40, C42,
C43, C44, C45, C46, C47, C48, C55,
C62, C66

Capacitor 100n X7R, 0805, 50V

1 C2 Capacitor, 100uF, 85mΩ
1 C3 Capacitor, 100uF, 60mΩ
11 C1, C4, C8, C14, C17, C23, C24, C50,

C58, C59, C69
Capacitor 10n, C0G, 0805, 50V

2 C29, C30 Capacitor 10p, C0G, 0805, 50V
23 C5, C11, C12, C15, C20, C21, C25,

C27, C28, C32, C34, C41, C52, C53,
C54, C56, C57, C60, C61, C63, C64,
C65, C67

Capacitor 10u, X7R, 0805, 6.3V

1 C19 Capacitor 1n, C0G, 0805, 50V
2 C51, C68 Capacitor 1u, X7R, 0805, 6.3V
5 C26, C31, C49, C70, C71 Capacitor 22p, C0G, 0402
1 F1 Fuse 2A, fast, 1206
1 R5 Resistor, 120Ω, 0805
11 R3, R7, R8, R12, R13, R18, R28, R29,

R30, R31, R34
Resistor, 10k, 1%, 0805

6 R4, R9, R16, R17, R19, R32 Resistor, 150, 1%, 0805
1 R33 Resistor, 1R, 1%, 2512
11 R1, R2, R6, R11, R14, R21, R22, R25,

R36, R39, R41
Resistor, 1k, 1%, 0805

2 R15, R20 Resistor, 1k5, 1%, 0805

91

4 R23, R24, R38, R40 Resistor, 27, 1%, 0805
1 R35 Resistor, 2k, 1%, 0805
2 R26, R27 Resistor, 330k, 1%, 0805
1 D2 Power schottky, 3A
3 D1, D3, D8 Power schottky, 1A
1 D4 Transil, 600W, 15V
1 D9 Transil, 600W, 6.8V
2 D6, D7 Schottky diode
1 D5 Zener diode, 4.1V, 0.6W
1 D10 Zener diode, 3V, 0.6W
1 D11 Zener diode, 5.1V, 3W
1 T2 NPN Transistor, 3W
6 T1, T3, T4, T5, T6, T7 NPN signal transistor
2 Q1,Q3 P-channel MOSFET
1 L1 Power inductor, 100uH, 1.3A
1 L2 Inductor, 0402, 47nH
1 FB1 Ferrite Bead, 600R@100MHz, 2A
1 Q2 Crystal, 18.432Mhz
3 SW1, SW2, SW3 Microswitch, SMD, 50mA
1 IC1 PSU switcher LM2597, 3.3V
1 IC2 CAN transceiver MAX3051
2 IC9, IC10 TP79133, LDO, 3.3V,
1 IC6 Microcontroller AT91SAM7X512
1 IC5 Pressure sensor MPL3115A2
1 IC3 9-axis IMU MPU-9150
1 IC7 GNSS receiver NV08C-CSM
1 IC4 Bluetooth module RN41
1 JTAG HARTING, 20-pin, male
1 X2 MINI USB-B Conector
1 X1 SUBD9, edge mount
1 X3 SMA Antenna Connector
15 TP3, TP4, TP5, TP6, TP7, TP8,

TP9, TP10, TP11, TP12, TP14, TP15,
TP16, TP21, TP1

Spring test probes

Table C.1: bill of materials

92

F
ig

u
re

C
.1

:
P

C
B

co
p

p
er

tr
a
ce

,
to

p
si

d
e

94

F
ig

u
re

C
.2

:
P

C
B

co
p

p
er

tr
a
ce

,
b

o
tt

o
m

si
d

e

95

15

20

R

F09D

BT
 F

R
ST

M C R
XT

X

R
ES

ET
ER

AS
E

JT
AG

CAN

IC
6

Q
2

C
19 C

24

R
15

R30

R29
R28

R
8

R
22

R25

R
23R
24

R26

R
27

Q
1

R
20 X2

R18

C
6

R3

R11

IC
5

C23C
22

R13 C20

C25IC
3

C
8

C
7

R1

R
2

HB R32

R
5

R
12

C1

R
21

R31

IC
1

C
9

C2

C3

T1

D1D3
L1

IC2

D
8

R
33

R
34

R
35

T3 T4

T2

T5

R
36

C12

C
21

C
5

C27 C
28

IC
4

R
7

R
16

R
17R
19

RT
S

C
TS

C
33

D2
D4

D7
D

6

D
10

D
5

D
11

C54
C55

IC9

R38

C
58

C
60

C
57

T6C
61

R
39

IC10

R40

C
59

C
63

C64T7

C65

R
41

C66

C
50

C
51

C
52

D
9

N
R

ST

R
9

Q
3

C71

F
ig

u
re

C
.3

:
P

C
B

p
a
rt

s
p

la
ce

m
en

t,
to

p
si

d
e

96

20

N
V0

8C
-C

SM

G
PS

G
LO

N
AS

S
G

AL
IL

EO

1 5

F09D

C
42

C43

C
44

C45

C46

C47

C
48

C35

C
36

C37

C38

C
39

C40

C
29

C
30

R6

C16

F1

FB
1

C
26

C
31

C
32

C
41

C4

C
34

R
14

C17

L2

X3

C
14

C56

C
49

C53

C
67

C15

C68
C69

C
70

F
ig

u
re

C
.4

:
P

C
B

p
a
rt

s
p

la
ce

m
en

t,
b

o
tt

o
m

si
d

e

97

This page is intentionally left blank.

98

Appendix D

List of acronyms and abbreviations

1PPS One pulse per second
ADC Analog to digital converter
API Application interface
ARM Advanced RISC Machines
CAN Controller area network
CCITT Comité Consultatif International Téléphonique et Télégraphique
CDMA Code-division multiple-access
CNRS Centre National de la Recherche Scientifique
CPU Central processing unit
CRC Cyclic redundancy check
CSV Comma separated values
DBGU Debug unit
DGPS Differential GPS
DMA Direct memory access
DOP Dillution of precision
DSP Digital signal processor
ECEF Earth-centered Earth-fixed
ECI Earth-centered inertial
ECU Engine control unit
EDF Earliest deadline first
EEPROM Electrically erasable programmable read-only memory
EGM96 Earth gravitational model 1996
EGNOS European geostationary navigation overlay service
EMI Electromagnetic interference
FDMA Frequency-division multiple-access
FPU Floating point unit
GAGAN GPS Aided GEO Augmented Navigation
GDOP Geometric dilution of precision
GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema
GNSS Global navigation satellite system
GNU GNU Not Unix
GPR General purpose registers

99

GPS Global Positioning System
IC Integrated circuit
IEEE Institute of Electrical and Electronics Engineers
IMU Inertial measurement unit
INS Inertial navigation system
IRNSS Indian Regional Navigation Satellite System
ISO International Standardization Organization
JTAG Joint Test Action Group
LDO Low drop-out
LED Light emitting diode
LGA Land grid array
LORAN Long range navigation
LSB Lowest significant bit
MCLK Master clock
MCM Multiple chip module
MEMS Micro electro-mechanical systems
MHT Multiple hypotheses technique
MLCC Multiple layer ceramic capacitor
MOSFET Metal-oxide semiconductor field-effect transistor
NMEA National Marine Electronics Association
OBD-II On-board diagnostics II
OSM Open street maps
PCB Printed circuit board
PDC Peripheral data channel
PDO Process data object
PID Parameter ID
PIO Parallel input/output
PIT Periodic interval timer
PLL Phase locked loop
PPS Precise positioning system
PRN Pseudo-random number
PSU Power supply unit
RAIM Receiver autonomous integrity monitoring
RAM Random access memory
RMS Root mean square
RTCM Radio Technical Commission for Maritime Services
RTOS Real-time operating system
SBAS Satellite-based augmentation system
SCL Serial clock
SDA Serial data
SDO Service data object
SMD Surface mount devices
SMT Surface mount technology
SiSNET Signal-In-Space available over the Internet
SPP Serial port profile

100

SQL Select query language
SRAM Static random access memory
TCP/IP Transmission Control Protocol/Internet Protocol
TDMA Time-division multiple access
TWI Two-wire Interface
UART Universal asynchronous receiver/transceiver
USART Universal synchronous/asynchronous receiver/transceiver
USB Universal serial bus
UTC Universal time coordinated
VLSI Very large scale integration
WAAS Wide Area Augmentation System
XML Extensible markup language
ZVU Zero-velocity updates

101

Bibliography

[1] Kaplan, E. D., Hegarty C. J. (2005). “Understanding GPS: Principles and Applications
(second edition)”. Artech House. ISBN 1-58053-894-0.

[2] Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y. (2009). “Map-Matching
for Low-Sampling-Rate GPS Trajectories”, ACM GIS ’09, November 4-6, 2009. Seat-
tle, WA, USA.

[3] Quddus, M.A. (2006). “Current map-matching algorithms for transport applications:
State-of-the art and future research directions”, Transportation Research Part C 15,
p. 312-328.

[4] Artese, G., Trecroci, A. (2008). “Calibration of a low cost MEMS INS sensor for
an integrated navigation system. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences”. Vol. XXXVII. Part B5.

[5] Groves P.D. (2008), “Principles of GNSS, inertial, and multi-sensor integrated navi-
gation systems”. Artech House, ISBN-13: 978-1-58053-255-6.

[6] Quddus, M.A., Noland, R.B., Ochieng, W.Y. (2006). “A high accuracy fuzzy logic-
based map-matching algorithm for road transport”. Journal of Intelligent Transporta-
tion Systems: Technology, Planning, and Operations 10 (3), 103-115.

[7] Pyo, J., Shin, D., Sung, T. (2001). “Development of a map-matching method using
the multiple hypothesis technique”. IEEE Proceedings on Intelligent Transportation
Systems, p. 23-27.

[8] D. B. Reid (1979) “An algorithm for tracking multiple targets”, IEEE Trans. Auto-
matic Control, vol. AC-24, pp843-854.

[9] Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R.,
Nordlund, P. (2002). “Particle filters for positioning, navigation, and tracking”. IEEE
Transactions on Signal Processing 50, 425-435.

[10] Schuessler, N., Axhausen K. W. (2009). “Map-matching of GPS traces on high-
resolution navigation networks using the Multiple Hypothesis Technique (MHT)”,
Working paper 568, Transport and Spatial Planning.

[11] Marchal, F., Hackney, J., Axhausen, K.W. (2005). “Efficient map matching of large
global positioning system data sets: Tests on speed monitoring experiment in Zurich”.
Transportation Research Record 1935, 93-100.

102

[12] Greenfeld, J.S. (2002). “Matching GPS observations to locations on a digital map”.
In proceedings of the 81st Annual Meeting of the Transportation Research Board,
January, Washington D.C.

[13] White, C.E., Bernstein, D., Kornhauser, A.L. (2000). “Some map-matching algorithms
for personal navigation assistants”. Transportation Research Part C 8, 91-108.

[14] Ochieng, W.Y., Quddus, M.A., Noland, R.B. (2004). Map-matching in complex urban
road networks. Brazilian Journal of Cartography (Revista Brasileira de Cartografia)
55 (2), 1-18.

[15] NVS Technologies (2013), NV08C-CSM datasheet [Online]. Available (17 July 2014):
http://www.nvs-gnss.com/products/receivers/item/download/58.html

[16] ISO standard 15031-5:2006, “Road vehicles - Communication between vehicle and
external equipment for emissions-related diagnostics, Part 5: Emissions-related diag-
nostic services”.

[17] NVS Technologies (2013), “BINR Protocol Specification” [Online]. Available (17 July
2014): http://www.nvs-gnss.com/support/documentation/item/download/39.html

[18] Atmel Corporation (2007). “AT91SAM7X and AT91SAM7XC Microcontroller Se-
ries Schematic Check List”. Application Note [Online]. Available (17 July 2014):
http://www.atmel.com/Images/doc6260.pdf

[19] Texas Instruments (2013). “USB 2.0 Board Design and Layout Guidelines”.
Application report [Online]. Available (17 July 2014): http://www.ti.com/
lit/an/spraar7b/spraar7b.pdf

[20] Atmel Corporation (2011). “AT91SAM7X512/526/128 product datasheet” [Online].
Available (17 July 2014): www.atmel.com/Images/Atmel 32-bit-ARM7TDMI-Flash-
Microcontroller SAM7X512-256-128 Datasheet.pdf

[21] ISO standard 11898-1:2003, “Road vehicles - Controller area network (CAN), Part 1:
Data link layer and physical signalling”.

[22] National Maritime Electronics Association (2002). “NMEA 0183 - Standard For In-
terfacing Marine Electronic Devices”, Version 3.01.

[23] InvenSense, Inc. (2013). “MPU-9150 Product Specification” [Online]. Avail-
able (17 July 2014): www.invensense.com/mems/gyro/documents/PS-MPU-9150A-
00v4 3.pdf

[24] Freescale Semiconductor (2013). “Xtrinsic MPL3115A2 I2C Precision Al-
timeter”. Data Sheet: Technical Data [Online]. Available (17 July 2014):
http://www.freescale.com/ webapp/sps/site/prod summary.jsp?code=MPL3115A2

[25] Mapsforge - free mapping and navigation tools. Project home [Online]. Available (17
July 2014): http://code.google.com/p/mapsforge/

[26] Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Prob-
lems”x. Journal of Basic Engineering 82 (1): 3545. doi:10.1115/1.3662552

103

