Ralf Habel, Michael Wimmer, Stefan Jeschke

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Motivation

Render dense short grass

in real-time

Lawns, meadows

1st person viewpoint

Challenges

Full polygon representation too expensive

- Billboard representation
 - Massive overdraw
 - Spatial aliasing

Properties

- Important visual properties of grass
 - Parallax
 - Occlusion
 - Animation

3

- High frequency structure
 - No need for accuracy

Grass representation

- Dense regular grid of textured billboards
 - Provides approximate parallax and occlusion
- Generate billboard grid and ground plane in the fragment shader
- Polygons act as a carrier

Grass Ray Tracer

- Initialize texture offsets, increments/decrements and first grid planes
 - Dependent on entry point and sign of view direction
- Iterate through different grass billboard textures
- Same texture is seen from both sides

Grass Ray Tracer

- Initialize texture offsets...
- Ray tracing loop
 - Intersect with next axis aligned planes (grass and ground)
 - Increment/decrement hit grid plane
 - Blend current color according to
 α ("over-operator)

- 4-5 fixed iterations
- Early loop exit may be faster on certain hardware

意

Grass Ray Tracer

- Initialize texture offsets...
- Ray tracing loop...
- Fill remaining transparency
 - Fully opaque grass texture or
 - Average color

Result

Result

Additional horizontal plane at half the grass depth.

Visibility interactions

- Correct z-buffer required
 - Avoid clipping at carrier polygon
 - Remember depth from ray entry to the point where a threshold opacity is reached
 - Transform into view space, add to carrier polygon depth
 - \triangleright α -testing instead of α -blending
 - No modification to render pipeline

Overview

- + Confined to a shader
- No additional geometry required
- Front to back compositing
 - Accurate α-blending
 - Reduced or no overdraw
- Performance is not dependent on the number of billboards, but pixels covered and tracing depth
- No silhouettes
- Viewpoint cannot move into the grass

Animating Grass

- Realistic simulation of grass requires two components
 - Gusts of wind cause large areas of grass to bend in the same direction
 - Wind turbulence near the ground causes smaller but erratic movements

Animating Grass

- Simulate this behavior with texture lookup distortion
 - Translate noise map over terrain
 - Offset texture lookups horizontally, scale with height so grass stays fixed on the ground
 - (local shear-transformation)
 - Transport high frequencies
- Noise map
 - low frequencies with high amplitude
 - high frequencies with low amplitude

Performance

Raytraced

- Half the screen covered
- Full view of terrain
- 5 ray tracing loop iterations
- 3.2 GHz, 1024x786

NVIDIA 7900 GT : ~90 fps ~140 fps

◆ NVIDIA 8800 GTS: ~120 fps ~300 fps

(α -tested)

Polys

Future work:

- Derive wind textures from physical simulation of grass
- Adapt higher order surface approximations for silhouettes
- DirectX 10 geometry shader adaptation

Resources:

HLSL implementation and used textures at:

http://www.cg.tuwien.ac.at/research/publications/2007/Habel_2007_IAG/

