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ABSTRACT

We present different approaches for accelerating the process of continuous collision detection for deformable triangle meshes.

The main focus is upon the collision detection for simulated virtual clothing, especially for situations involving a high number

of contact points between the triangle meshes, such as multi-layered garments. We show how the culling efficiency of bounding

volume hierarchies may be increased by introducing additional bounding volumes for edges and vertices of the triangle mesh.

We present optimized formulas for computing the time of collision for these primitives analytically, and describe an efficient

iterative scheme that ensures that all collisions are treated in the correct chronological order.

Keywords: collision detection, cloth simulation, continuous collision detection

1 INTRODUCTION

In physically based simulation, collision detection is es-

sential for a realistic behavior of the simulated objects.

Efficient solutions for collision detection of rigid bod-

ies have been developed, but in the simulation of de-

formable objects, collision detection is still the bottle-

neck. Especially for two-manifold surfaces like cloth,

there arise some major difficulties: These objects are

infinitely thin, and even small interpenetrations, for ex-

ample, between two layers of simulated cloth, may

cause visually distracting artifacts. Modeling a realistic

cloth thickness makes it necessary to check the objects

for close proximity rather than for contact, but still this

technique limits the size of the simulation time step, or

analogously, the maximum velocity of the objects. One

solution for this problem is continuous collision detec-

tion. It allows all collisions and proximities to be de-

tected even for large simulation time steps. Of course,

this robustness may only be achieved with higher com-

putational cost.

One major objective of this paper is to show how ro-

bust continuous collision detection can be made more

efficient, in order to employ it for the simulation of

cloth and multilayered virtual garments. We show how

the number of collision tests between triangle meshes

in close proximity can be significantly reduced by in-

troducing additional bounding volumes for the primi-

tives. We also present optimized formulas for continu-

ous collision tests. Another contribution is a method for

increasing the speed of the iterative collision detection,
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which marks the parts of the triangle mesh in which

further collision tests have to be performed, and thus

allows us to skip large areas where all collisions have

already been resolved.

2 RELATED WORK

The problem of collision detection has recently been

addressed by many authors, since its importance for

physically based simulation has become obvious [12].

Common strategies for accelerating the process of col-

lision detection have been studied in detail, especially

the use of bounding volume hierarchies [11, 10, 28],

and the application of different types of bounding

volumes, such as bounding spheres [13], oriented

bounding boxes (OBB) [4], axis-aligned bounding

boxes (AABB) [20], polytopes with k discrete face

orientations (k-DOP) [9] and combinations of these

[15]. Alternative approaches, like spatial hashing [19],

voronoi diagrams [17] or GPU-accelerated hierarchical

techniques [6] have also been examined. In order to

accelerate the process of collision detection, stochastic

methods have also been applied [8, 27].

For the challenging field of collision detection of

deformable objects like cloth, different approaches

have been suggested. These approaches deal with

the optimization of bounding volume hierarchies for

deformable objects, and the exploitation of special

geometric properties of such objects, in order to in-

crease the efficiency of self-collision detection. These

properties include curvature criteria [23, 14, 26] or

special adjacency information for triangle meshes [5].

Some authors described methods for correcting invalid

simulation states that occur due to non-robust collision

detection [22, 1, 25], whereas others focused on the

robust continuous collision detection, which preserves

an intersection-free state throughout the whole simula-

tion [2, 7]. A recent comprehensive survey on collision
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detection for deformable objects can be found in the

paper Collision Detection for Deformable Objects [18].

3 OVERVIEW

In Section 4, we give a short outline of the simulation

process and show how the collision detection is applied

during the simulation cycle. Additionally, we intro-

duce some basic concepts for collision detection, and

describe which problems occur when these concepts

are employed for the collision detection of multilayered

garments.

In Section 5, we show how these concepts may be

improved in order to increase the efficiency for situ-

ations involving multiple layers of triangle meshes in

close proximity.

Optimizations for continuous collision detection are

presented in Section 6. These include optimized for-

mulas for a single continuous collision test, as well as

optimizations for the iterative scheme that is applied for

continuous collision detection.

Section 7 summarizes the results of the presented ap-

proaches for several test cases, and Section 8 contains

the conclusions and a short outlook on future develop-

ments.

4 SIMULATION AND COLLISION DE-

TECTION

4.1 Simulation

We use a simulation scheme similar to that proposed

by Bridson et al. [2], who emphasized that the colli-

sion detection and response should be applied to a can-

didate state that is obtained from the simulator, in or-

der to cleanly separate the simulation process from the

collision detection. Given a state consisting of particle

positions and velocities of the simulated particle sys-

tem (xn,vn) at time tn, the candidate velocities vn+ 1
2

for the next time step are computed by the simulator.

Then collision detection is applied, and the collision re-

sponses solely affect the candidate state: The candidate

velocities are modified in order to prevent collisions or

interpenetration. Finally, a velocity vn+1 is obtained,

which describes a collision-free movement, and the par-

ticle positions for the next time step may be computed

as xn+1 = vn+1
·∆t.

4.2 Collision Detection

The task of checking two static objects for collisions

may by accomplished by checking each pair of primi-

tives if they have a distance that is smaller than a cer-

tain threshold. This process has an inherent worst-case

complexity of O(n2), but since this worst case hardly

ever occurs in a realistic scenario, the process of col-

lision detection is usually divided into two phases: In

the broad phase, conservative tests are performed in

order to cull away many pairs of primitives that may

not collide. In the narrow phase, exact tests between

relatively few pairs of primitives are performed. It is

sufficient to perform the collision tests for pairs con-

sisting of a vertex and a triangle, or two edges. Ro-

bust and efficient techniques for computing the closest

points between primitives are, for example, described in

the book Geometric Tools for Computer Graphics [16].

If the distance between these primitives is too small, a

collision response is applied in order to maintain the

distance that is given by the thickness of the simulated

material. This collision response may consist of a stiff

spring or a collision impulse that is applied between the

closest points of the primitives.

Bounding Volume Hierarchies (BVH)

The most common and efficient approach for the broad

phase of the collision detection are bounding volume

hierarchies (BVH). The basic idea is to hierarchically

divide a set of primitives into subsets, where the leaves

of a BVH usually contain single triangles. The subsets

of primitives are approximated with bounding volumes.

The bounding volumes may be ’blown up’ by the thick-

ness of the simulated material, in order to detect not

only intersections, but also close proximities between

pairs of primitives. Traversing the hierarchy and per-

forming overlap tests between the bounding volumes

allows us to cull away many pairs of primitives that

may not collide, exploiting the fact that collisions be-

tween the primitives of two sets may only occur if their

bounding volumes overlap. Usually there is a trade-

off between the quality of the approximation of the un-

derlying geometry, and the cost for the creation of the

bounding volume and single intersection test. For de-

formable objects, the BVH has to be refitted according

to the deformation the geometry is undergoing in each

time step, and in these cases the cost for updating the

bounding volumes also has to be taken into account.

Despite the high cost for intersection tests and updat-

ing, our tests have shown that k-DOPs are the most ef-

ficient choice for tasks like cloth simulation, because

the tighter approximation of the (typically heavily non-

convex) geometry reduces the number of false positives

in the broad phase, and thus, fewer exact collision tests

have to be performed.

Two major problems occur when BVHs are em-

ployed for the collision detection of deformable

triangle meshes:

• A high number of false positives during self-

collision detection.

Self-collision detection is usually performed by clip-

ping a BVH against itself. Due to the fact that

the bounding volumes of two adjacent triangles al-

ways overlap, the traversal often reaches pairs of

leaf nodes only because the triangles contained in
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these nodes are adjacent. The methods suggested by

Volino and Magnenat-Thalmann [23], Provot [14],

Wong and Baciu [26] and Govindaraju et al. [5] al-

leviated these problems and increased the efficiency

of self-collision detection, so that the second prob-

lem drew more attention:

• A high number of false positives between multi-

ple layers

Collision detection between different objects that

are given as deformable triangle meshes is per-

formed by clipping the BVH of the respective

objects against each other. When the meshes are

similarly triangulated, and form multiple layers

in close proximity, the bounding volume of each

leaf node of one mesh on average intersects six

bounding volumes of triangles of each adjacent

layer.

4.3 Continuous Collision Detection

For the simulation with deformable 2-manifold trian-

gle meshes, the collision tests are usually performed in

each time step. But checking for proximity does not

prevent two objects passing through each other in a sin-

gle time step. In order to detect all collisions, contin-

uous collision tests have to be performed. These will

allow us to prevent interpenetration of the objects re-

gardless of the size of the time step, the velocity of the

objects, and the thickness of the material. For each pair

of primitives, one has to detect if they will collide in the

current time step, and at which time this collision will

occur.

Two problems arise when continuous collision detec-

tion is used:

• Collisions that occur later in time may be detected

earlier in the collision detection process. For an ac-

curate collision response and for a plausible behav-

ior of the simulated objects, the collisions should be

treated in the correct chronological order.

• Collision responses may cause new, secondary col-

lisions. These collisions may cause interpenetration,

if they are not detected and resolved.

In order to alleviate the problem of secondary colli-

sions caused by the responses to preceding collisions,

some authors (e.g. [21, 2]) suggested to use an iterative

process. A method for treating the collisions in the cor-

rect chronological order was suggested by Eberle [7].

For each triangle, only the earliest collision that oc-

cured should be taken into account. Combining these

techniques allows a robust and plausible treatment of

all collisions that occur in one time step.

5 BOUNDING VOLUMES FOR PRIMI-

TIVES

When the BVH is traversed and the bounding volumes

of two triangles overlap, for each vertex of one triangle

the closest point on the other triangle has to be com-

puted, yielding 6 point-triangle collision tests. Addi-

tionally, the closest points between each edge of one

triangle and each edge of the other triangle have to

be computed, yielding 9 edge-edge collision tests. As

mentioned above, the bounding volume of each trian-

gle of one mesh on average intersects six bounding vol-

umes of triangles of a layer in close proximity. Without

further precautions, this would cause 6 · (6 particle-

triangle-tests + 9 edge-edge-tests), yielding 90 exact

collision tests between pairs of primitives.

Since on average each edge is contained in two tri-

angles, and each particle is contained in six triangles,

some of these collision tests are redundant. In order

to avoid these redundant tests, we store the informa-

tion about the collision tests that have already been per-

formed in the primitives they involve, similar to the

method described by Wong and Baciu [26]. But still,

for each triangle of one layer that lies flat on another

layer, approximately 60 collision tests are performed.

In order to further reduce the number of collision

tests that are caused by the false positives of the BVH,

we propose introducing additional bounding volumes

for the edges and vertices of the triangle meshes. These

primitive bounding volumes may directly be stored in

the edges and vertices, whereas the bounding volumes

of the triangles are equal to the bounding volumes of

the leaf nodes of the BVH, as depicted in Figure 1.

Figure 1: Additional bounding volumes for primitives:

For two triangles of a triangle mesh, the bounding vol-

umes are shown. The additional bounding volumes for

the vertices and edges are shown with bold lines. The

primitives that are shared among the two triangles are

shaded.

For our implementation, we used 18-DOPs as bound-

ing volumes for the primitives and the BVH. In each

simulation step, the bounding volumes of the vertices

are updated according to their current positions. The

bounding volumes for the edges and triangles are up-

dated by merging the bounding volumes of their ver-

tices. Finally, the bounding volumes of the inner nodes
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of the BVH are updated bottom-up, by merging the

bounding volumes of their child nodes.

Although the bounding volumes for the vertices in

this case only contain a single point, this yields a small

advantage in the further update process: Combining a

k-DOP with the pre-computed k-DOP of the vertex is

in every case (with k > 6) computationally cheaper than

combining the k-DOP with a single point describing the

vertex position. Additionally, for the continuous colli-

sion detection discussed later, the vertex bounding vol-

umes have to be extended so that they contain the posi-

tions of the vertices at the beginning and at the end of

the time step. In this case the advantage of the vertex

bounding volumes becomes even more obvious.

Best Average Worst

Figure 2: Different cases of triangles in close proximity

Case Total NR PBV NR+PBV Coll.

Best 15 15 3 3 3

Avg. 90 61 23 11 10

Worst 195 123 102 54 54

Table 1: Number of exact collision tests for the cases

depicted in Figure 2

• Total : Implied by the overlapping triangle bound-

ing volumes

• NR : When no redundant tests are performed

• PBV : When primitive bounding volumes are used

• Coll : Number of collisions that actually occurred

Table 1 shows the number of collision tests per-

formed for a single triangle, lying flat on a piece of

another triangle mesh, for the different cases depicted

in Figure 2. Of course, in the worst case one trian-

gle may span an arbitrarily high number of triangles in

another layer, but for similar triangulations, it should

hardly span more than 13 triangles, as shown in the fig-

ure.

Approximately one third of the collision tests implied

by the overlapping bounding volumes of triangles are

redundant, and may easily be avoided. The use of prim-

itive bounding volumes additionally decreases the num-

ber of false positives. Note that the exact number of col-

lision tests that may be saved depends on the type of the

bounding volumes. For 18-DOPs, the number of tests

also depends on the orientation of the edges relative to

the 18 directions of the DOP.

Since the number of edges is large for usual cloth

triangle meshes (#edges = #vertices + #triangles - 1),

some time for the update of the bounding volumes may

be saved when the bounding volumes for the edges are

only updated on demand. That means that the bounding

volumes for edges are only updated when the bounding

volumes of two triangles containing these edges over-

lap, and the bounding volumes of these edges have not

yet been updated in the current time step.

6 EFFICIENT CONTINUOUS COLLI-

SION DETECTION

Preventing all intersections between triangle meshes is

very time-consuming. The primitive bounding volumes

described in the previous section may also be applied

for continuous collision detection, and dramatically re-

duce the number of collision tests that have to be per-

formed. But still, the collision tests themselves and the

iterative procedure allow further optimizations, which

we will describe in the following sections.

6.1 Continuous Collision Tests

Exact collision tests are usually performed between ver-

tices and triangles, and between pairs of edges. Both

cases have in common that they involve four vertices. In

each case, a necessary condition for a collision is, that

the involved vertices are coplanar. Provot [14] showed

that for four points with positions x1...x4 and constant

velocities v1...v4, with xi j = xi − x j and vi j = vi − v j,

the times ti when the points are coplanar are the solu-

tions of the equation

(x21 + t ·v21)× (x31 + t ·v31) · (x41 + t ·v41) = 0 (1)

For the algebraic solution, the monomial form of the

polynomial is required. Computing the coefficients

for this polynomial by simply expanding the differ-

ences, dot- and cross-products, and grouping the result-

ing terms by powers of t yields expressions that involve

188 additions, 192 multiplications, and are far from op-

timal (see [7]).

The coefficients may be computed with only 50

additions and 48 multiplications, by grouping equal

terms and rewriting the coefficients as dot- and

cross-products.

a3 = v21 ·v31 ×v41

a2 = x21 ·v31 ×v41 −v41 ·x31 ×v21 −v21 ·x41 ×v31

a1 = v41 ·x21 ×x31 −x21 ·x41 ×v31 −x41 ·x31 ×v21

a0 = x41 ·x21 ×x31 (2)

Note that each cross product occurs twice, but obvi-

ously has to be computed only once. The times ti when

the four points are coplanar may now be computed as

the the real roots of the polynomial

P(t) = a3 · t
3 +a2 · t

2 +a1 · t +a0 (3)
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Since the coplanarity is a necessary but not sufficient

condition for a collision, the distance between the prim-

itives is computed for each time ti, in ascending order.

If the distance is below a certain threshold, a collision

will be registered.

6.2 The Iterative Procedure

An iterative collision detection scheme suggested by

Bridson et al. [2] works as follows: After the veloc-

ities of the particles for the next time step have been

computed, the BVH is updated and traversed. When

the bounding volumes of two leaf nodes overlap, the

corresponding primitives are checked for close proxim-

ity. If their distance is below the material thickness, a

collision response is applied.

Then the iterative procedure for the continuous col-

lision detection starts. In each iteration, the BVH is

updated so that the bounding volumes contain the start-

and end position of the contained particles. Then the

BVH is traversed, and for the primitives whose bound-

ing volumes overlap, continuous collision tests are per-

formed. All imminent collisions are detected, and col-

lision responses are applied, which alter the candidate

velocities of the particles. Then the next iteration starts.

This step is repeated until no new collisions are de-

tected, and the particles are free to move with the cur-

rent velocities and without causing interpenetrations.

This process of iteratively traversing the whole BVH,

registering the earliest collisions for all triangles, and

updating the whole BVH may be very time-consuming.

So we present a method which allows us to perform this

task more efficiently.

A Single Iteration

After the iteration started, the BVH is traversed, and the

continuous collision tests for the primitives of triangles

with overlapping bounding volumes are performed, as

described above. The distance between the primitives

is computed for each time ti, in ascending order. If the

primitives actually collide at a time ti, subsequent times

t j > ti are ignored. The collision for time ti is registered,

and associated with the particles it involves.

For each new collision test, the involved particles are

examined. The earliest time t0 of the collisions that al-

ready involve one of the particles is retrieved. Then,

the times ti for the new collision test are computed. But

only for times ti < t0, the distance between the prim-

itives has to be actually computed. When a collision

at a time ti < t0 is registered, all collisions that are as-

sociated with particles of the collision that occurred at

time t0 are discarded. Thus, while in the method by

Eberle [7] only the earliest collision for each triangle is

treated in each iteration, we store the earliest collision

for each particle, which still ensures that the collisions

are treated in the correct chronological order.

Modification Marking

Usually, the number of collisions that are registered de-

creases rapidly within a few iterations. Thus, it is not

necessary to update and traverse the whole BVH in each

iteration, as possibly only very few particles received a

collision response.

To prevent unnecessary updates and traversals, we

suggest a scheme of “modification marking” for the

BVH. First, we mark the particles that have been in-

volved in a collision. Each particle stores the iteration

in which it has been modified. This information is prop-

agated bottom-up into the BVH, so that each node of

the BVH contains the last iteration in which any of the

particles it contains has been modified. In the next it-

eration, we update only the parts of the BVH that have

been modified in the previous iteration. Additionally,

the traversal may be restricted to those parts of the BVH

in which new collisions may have occurred. So, during

the traversal, we only check the bounding volumes of

BVH nodes for overlap if at least one of the nodes con-

tains a particle that has been modified in the previous

iteration. Otherwise, the traversal may stop. This also

allows us to skip the time-consuming collision tests that

already failed in the previous iterations.

7 IMPLEMENTATION AND RESULTS

We have implemented the algorithms described in this

paper in Java and employed them in a cloth simulation

system. The patterns of the clothes are divided recur-

sively, creating a BVH with degree 16. The bounding

volumes for the BVH and for the primitives are 18-

DOPs in each case. The tests were run on a standard

Pentium 4 with 3.6 GHz and 3.25 GB RAM, using the

Java Runtime Environment 1.5.0.

7.1 Test cases

The algorithms presented in this paper focus on acceler-

ating the collision detection process for multiple layers

of deformable triangle meshes in close proximity. Thus,

we compared the speed of the different implementa-

tions with scenes involving multiple layers of cloth.

Cloth pile

Figure 3 shows images of 10 sheets of cloth falling on

the floor, creating a pile of cloth with 10 layers. Each

sheet consists of 100 particles and 164 triangles. The

cloth is modeled with a realistic thickness of 1 mm.

When all sheets lie on the floor, there are many primi-

tives in close proximity. Note that the sheets are slightly

shifted against each other at the beginning. Otherwise,

the worst case depicted in Figure 2 would occur for ev-

ery triangle, and the number of collision tests (and thus,

the effect of the additional primitive bounding volumes)

would be unrealistically high.
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Figure 3: ’Cloth Pile’: A pile of 10 sheets of cloth

Tumbling Torus

Figure 4 shows images of 50 sheets of cloth that fall

upon a tumbling torus. The scene contains 5k particles

and 8.2k triangles, and shows the interaction of high-

velocity cloth with other layers: Many sheets are falling

on the torus and hitting other layers, which are already

moved and crumpled by the torus.

Figure 4: ’Tumbling Torus’: A tumbling torus in a

shower of 50 sheets of cloth

Garment

A scene from the garment simulation system described

in the paper by Fuhrmann et al. [3] is shown in Figure 5.

A woman is wearing a bodysuit, a blouse and trousers.

The scene contains 8k particles and 13k triangles. In the

area of the chest there are two layers of clothing, and

three layers on the hips, where the trousers are pressing

the other clothes against the body.

7.2 Results

We compared the speed of the overall collision detec-

tion process for the scenes described above. We also

compared the number of collision tests to the number

of collisions that actually occurred, and thus, the rate

of ’false positives’ that were reported by the BVH with

Figure 5: ’Garment’: A woman wearing a bodysuit, a

blouse and trousers

and without the additional bounding volumes for prim-

itives.

For a usual cloth triangle mesh, our method on aver-

age requires two additional bounding volumes for each

triangle, since #vertices + #edges ≈ 2 · #triangles. But

even for large triangle meshes, this memory overhead is

small and justified by the speedup that can be achieved.

By default, we stored the information about the colli-

sion tests that had already been performed in the prim-

itives, in order to avoid redundant collision tests. Com-

pared to the total number of tests implied by overlap-

ping triangle bounding volumes, this reduced the num-

ber of tests for all scenes by approximately one third,

and thus complies with the results of the average case

example from Figure 2.

Figure 6 shows the total time required for the colli-

sion detection in each frame in the ’Cloth Pile’ scene.

One can clearly see the times when each of the sheets

falls on the pile of sheets that already lie on the floor,

and that the time required for the collision detection in-

creases with each layer.
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Figure 6: Total collision detection time per frame for

scene ’Cloth Pile’
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At the end of the simulation, when the sheets lie flat

on each other, and no redundant collision tests are per-

formed, approximately 5k collisions occur in each time

step. Introducing additional bounding volumes for the

primitives reduces the number of collision tests that are

required to detect these collisions from more than 160k

to only 22k. The ratio between the collision tests and

the collisions that actually occur is shown in Figure 7.

0

20

40

60

80

100

Default Primitive Bounding Volumes

Figure 7: Ratio between number of collision tests and

collisions for scene ’Cloth Pile’

Similar results can be achieved for the more complex

scene, ’Tumbling Torus’, as depicted in Figure 8. There

are some situations where multiple layers of cloth hit

other layers with high velocity, and a higher number

of iterations is required to resolve all collisions, which

causes the ’peaks’ in the time required for the collision

detection. Marking the parts of the BVH that contain

particles which have been involved in a collision helps

to avoid these peaks.
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Figure 8: Total collision detection time per frame for

scene ’Tumbling Torus’

The ’Garment’ scene is the most complex and real-

istic test case. The three layers around the hips are

pressed against the body, and many iterations are re-

quired to resolve all collisions. Restricting the update

of the BVH and the collision tests to those parts that

are actually modified by collision responses, by mark-

ing the modified parts of the BVH, brings a significant

speedup in this scene, which can be seen in figure 9.

Performance

Table 2 summarizes the results for the three test cases.

The additional bounding volumes cause a higher cost

for updating the BVH. Additionally, more intersection

tests between bounding volumes have to be performed.

But the higher cost for updating the BVH is more than

0
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6

Default Primitive Bounding Volumes Modification Marking

[s]

Figure 9: Total collision detection time per frame for

scene ’Garment’

compensated by the benefit from the reduced number

of exact collision tests, since an overlap test between

bounding volumes is much cheaper than an exact colli-

sion test. Due to the reduced number of exact collision

tests, the total time that is required for the collision de-

tection in each frame can be reduced by a factor of 2.5

to 3.0.

The time that is required for the collision detection

increases with the number of iterations that is necessary

to resolve all collisions. By marking the modified parts

of the BVH, the collision detection time less depends

on the number of iterations, but more of the number

of collisions that actually have to be resolved in each

iteration. Thus, the complex garment scene runs more

than 4 times faster, because only small parts of the cloth

are involved in complex collision situations.

Scene Default PBV Mod. Mark.

Cloth Pile 188 63 62

Tumbling Torus 379 150 110

Garment 4633 1713 407

Table 2: Average total time required for the collision de-

tection in each frame, in milliseconds. PBV: With prim-

itive bounding volumes. Mod. Mark.: With primitive

bounding volumes and modification marking

8 CONCLUSION AND FUTURE

WORK

We have shown how the process of continuous col-

lision detection for deformable triangle meshes could

be accelerated by the effective technique of introduc-

ing additional bounding volumes for the primitives of

the triangle meshes. Making the broad phase a little

bit more narrow saves a significant amount of compu-

tation time, especially for multiple layers of triangle

meshes in close proximity. An efficient scheme for it-

eratively resolving collisions in complex collision sit-

uations yields plausible simulation results, and allows

us to employ the robust, continuous collision detection

even for complex scenes, with a frame rate suitable for

interactive applications.

Future work will include the implementation of a

more sophisticated collision response scheme. For ex-
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ample, Volino and Magnenat-Thalmann [24] suggested

a scheme which will probably help to decrease the num-

ber of iterations required for the collision detection. Ex-

amining the benefits of performing the updates and in-

tersection tests of the primitive bounding volumes on

the GPU could also be worthwhile, according to the re-

search done by Greß et al. [6] on hierarchical collision

detection. Another focus is on the creation of simula-

tion states that are intersection-free, even when the ini-

tial state is not. This is crucial for applying the robust

collision detection, as it would otherwise preserve and

not remove the intersections. Further research also has

to be done for a suitable user interaction, which does not

violate the robustness, but still allows interactive drap-

ing of the simulated garments.
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