ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY

BAKALÁŘSKÁ PRÁCE

Magnetoviskózní jev ve střídavém magnetickém poli

Jan Koliha

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2013/2014

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Jan KOLIHA
Osobní číslo:	E11B0035P
Studijní program:	B2612 Elektrotechnika a informatika
Studijní obor:	Elektrotechnika a energetika
Název tématu:	Magnetoviskózní jev ve střídavém magnetickém poli
Zadávající katedra:	Katedra elektromechaniky a výkonové elektroniky

Zásady pro vypracování:

1. Popište složení, vlastnosti a možné aplikace magnetických kapalin.

- 2. Popište chování magnetických kapalin ve stejnosměrném a střídavém magnetickém poli.
- 3. Seznamte se s charakteristikami dostupných stejnosměrně buzených zařízení využívajících magnetické kapaliny. V případě potřeby je experimentálně ověřte.
- 4. Vyšetřete charakteristiky zařízení s magnetickými kapalinami při střídavém buzení (elektromechanický aktuátor, magnetoreologická brzda). Porovnejte s charakteristikami při stejnosměrném buzení, zhodnoťte pozitiva a negativa střídavého buzení v těchto systémech.

Rozsah grafických prací: podle doporučení vedoucího Rozsah pracovní zprávy:

20 - 30 stran

Forma zpracování bakalářské práce: tištěná/elektronická

Seznam odborné literatury:

- 1. MAYER, D. Magnetické kapaliny a jejich použití. (Elektro. 2007, roč. 17)
- 2. ODENBACH, S. Magnetoviscous effects in ferrofluids. Berlin: Springer, 2002, 151 s. Lecture notes in physics. Monographs. ISBN 3-540-43068-7; ISSN 0940-7677.
- 3. POLCAR, P., MAYER, D. Design of a Stepper Transducer with Ferrofluid. Acta Technica, Institute of Thermomechanics AS CR, 2012, ISSN 0001-7043. 2012, 57(4), s. 421-433.
- 4. Další bude předána při konzultaci

Vedoucí bakalářské práce:

Ing. Petr Polcar Katedra teoretické elektrotechniky

Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: 9. června 2014

14. října 2013

Doc. Ing. Jiří Hammerbauer, Ph.D. děkan

V Plzni dne 14. října 2013

Prof. Ing. Václav Kůs, CSc. vedoucí katedry

Anotace

Tato práce se zabývá výzkumem magnetoviskózního jevu magnetických kapalin při stejnosměrném a střídavém buzení. V úvodní části jsou popsány vlastnosti magnetických kapalin a jejich možné praktické aplikace. Následuje rozbor chování kapalin ve střídavém a stejnosměrném magnetickém poli a studie experimentů zaměřených na danou problematiku. V závěru je u dostupných zařízení, pracujících s magnetickými kapalinami, prakticky zkoumán vliv odlišných druhů buzení na jejich funkci.

Klíčová slova

Magnetická kapalina, magnetoreologická kapalina, ferokapalina, magnetoviskózní jev, střídavé magnetické pole, magnetoreologická brzda, elektromechanický aktuátor

Abstract

This thesis deals with research of magnetoviscous effect of magnetic fluids under direct and alternating excitation. In the introductory part, properties of magnetic fluids and their possible practical applications are described. The analysis of the behavior of these liquids in alternating and direct magnetic field and a study of experiments focused on the issue follows. The influence of different kinds of excitation on the function of available devices operating with magnetic fluids is practically examined in the conclusion.

Key words

Magnetic fluid, magnetorheological fluid, ferrofluid, magnetoviscous effect, alternating magnetic field, magnetorheological brake, electromechanical actuator

Prohlášení

Předkládám tímto k posouzení a obhajobě bakalářskou práci zpracovanou na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto bakalářskou práci na téma *Magnetoviskózní jev ve střídavém magnetickém poli* vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této bakalářské práce.

Dále prohlašuji, že veškerý software, použitý při řešení této bakalářské práce, je legální.

Poděkování

Tímto bych rád poděkoval Ing. Petru Polcarovi, Ph.D. za vedení práce, jeho rady a připomínky a také za vstřícnost a ochotu během provádění praktických experimentů.

Obsah

Úvod	11
1 Seznámení s problematikou magnetických kapalin	12
1.1 Složení a základní vlastnosti magnetických kapalin	12
1.2 Ferokapalina	13
1.2.1 Brownův pohyb	14
1.3 Magnetoreologická kapalina	14
1.3.1 Magnetoviskózní jev	15
1.4 Metody výroby magnetických kapalin	15
1.4.1 Mokré mletí	15
1.4.2 Srážecí metoda	15
1.4.3 Metoda substituce	16
1.4.4 Mikroemulzní technika	16
1.4.5 Rozklad organokovových sloučenin	16
2 Použití magnetických kapalin v praxi	17
2.1 Magnetoreologický tlumič	17
2.1.1 Lineární tlumič	17
2.1.2 Seizmický tlumič	18
2.2 Magnetoreologická brzda	19
2.3 Ferohydrodynamické těsnění	19
2.4 Chladicí kapalina v transformátorech	21
2.5 Reproduktory s ferokapalinou	21
2.6 Neprůstřelná vesta s magnetickou kapalinou	22
2.7 Medicínské aplikace	23
2.7.1 Magnetické cílení léčiv	23
2.7.2 Magnetická hypertermie	23
3 Chování kapalin ve stejnosměrném a střídavém magnetickém poli	24
3.1 Chování kapalin ve stejnosměrném magnetickém poli	24
3.2 Chování kapalin ve střídavém magnetickém poli	25
3.3 Experimenty	26
3.3.1 Ferokapalina v aparatuře Hele-Shaw	26
3.3.2 Magnetoviskózní jev u ferohydrodynamického těsnění	27
3.3.3 Měření točivého momentu	
3.3.4 Přenos tepla pomocí ferokapaliny	

4 Praktická část bakalářské práce	
4.1 Magnetoreologická brzda	
4.1.1 Stejnosměrné buzení	
4.1.2 Střídavé buzení	
4.1.2.1 Generátor signálu	
4.1.2.2 Střídavý zdroj	
4.2 Elektromechanický aktuátor	
4.2.1 Princip činnosti	
4.2.2 Měření	
Závěr	41
Použité zdroje	42
Příloha: Tabulky s naměřenými hodnotami	46

Seznam symbolů a zkratek

Seznam symbolů

Α	zesílení	[dB]
В	magnetická indukce	[T]
С	kapacita	[F]
D	průměr hřídele	[m]
f	frekvence	[Hz]
Н	intenzita magnetického pole	$[A \cdot m^{-1}]$
Ib	proud v budícím obvodu brzdy	[A]
Iz	proud zdroje napájejícího pohon	[A]
L	indukčnost	[H]
М	celkový magnetický moment částic	$[A \cdot m^2]$
M _s	saturační magnetizace	$[A \cdot m^{-1}]$
n	otáčky za minutu	[ot∙min ⁻¹]
р	atmosférický tlak	[Pa]
Р	činný výkon	[W]
R	elektrický odpor	$[\Omega]$
S	zdánlivý výkon	[VA]
T _c	Curieova teplota	[°C]
T _k	kroutící moment	[N· m]
U_{b}	napětí v budícím obvodu brzdy	[V]
U_{T}	součinitel prostupu tepla	$[\mathbf{W} \cdot \mathbf{m}^{-2} \cdot \mathbf{K}^{-1}]$
$U_{ m z}$	napětí zdroje napájejícího pohon	[V]
Ζ	impedance	$[\Omega]$

Seznam řeckých symbolů

η	dynamická viskozita	[Pa·s]
$\eta_{ m r}$	relativní viskozita	[%]
μ_0	permeabilita vakua (4· π · 10 ⁻⁷ H·m ⁻¹)	$[H \cdot m^{-1}]$
π	Ludolfovo číslo	[-]
ω	úhlová rychlost	$[rad \cdot s^{-1}]$

Seznam zkratek

FEL	Fakulta elektrotechnická
KTE	Katedra teoretické elektrotechniky
MR	magnetoreologický

Úvod

Existují kapaliny, ve kterých jsou rozmísené malé kovové částečky. Díky nim pak tyto kapaliny vykazují velmi pozoruhodné změny fyzikálních vlastností, pokud se dostanou do blízkosti magnetického pole. Takové tekutiny označujeme jako magnetické kapaliny. Jejich unikátní vlastnosti dnes umožňují rozvoj nových technologií a zařízení, která mají použití v široké škále průmyslových odvětví.

První pokusy o praktickou aplikaci magnetických kapalin byly prováděny v 60. letech minulého století v NASA. Zde se výzkumní pracovníci pokoušeli vytvořit magnetické raketové palivo, které by při nulové gravitaci bylo dopravováno pomocí silných magnetů do motorů raket. Od tohoto konceptu se později upustilo, ale magnetické kapaliny neupadly v zapomnění, začali se jimi zabývat budoucí zakladatelé jedné z firem, která dnes patří k známým světovým výrobcům magnetických kapalin, Ferrotec. První magnetické kapaliny by v současné době nebyly použitelné pro moderní praktické aplikace, ale položily základ pro výzkum a inovace, které později následovaly [1].

V mojí bakalářské práci popíši vlastnosti, složení a výrobu magnetických kapalin. Poté se zaměřím na jejich praktické použití v různých oborech a přiblížím chování kapalin při působení střídavého a stejnosměrného magnetického pole. Na závěr s pomocí vybavení dostupného v laboratoři FEL KTE experimentálně porovnám, jak se liší vlastnosti magnetických kapalin ve stejnosměrném a střídavém poli. Cílem mé práce je porovnání chování kapalin pod vlivem stejnosměrného a střídavého magnetického pole.

1 Seznámení s problematikou magnetických kapalin

1.1 Složení a základní vlastnosti magnetických kapalin

Magnetické kapaliny se řadí do skupiny takzvaných chytrých materiálů. Ty se vyznačují schopností reagovat na podněty z okolního prostředí podobně jako přirozené biologické systémy. To ve zkratce znamená, že na základě podmínek vnějšího prostředí (světlo, teplo, tlak, elektrické pole...) mohou výrazně a reverzibilně měnit svoje vlastnosti (tvar, barva, viskozita, vodivost...) [2].

Magnetické kapaliny jsou tvořeny velice jemnými feromagnetickými částečkami, které jsou volně rozptýleny v nosné kapalině (obvykle oleje, ale i voda a jiné). Jejich velikost se pohybuje řádově od desítek µm do jednotek nm a podle ní můžeme kapaliny rozlišit na dva základní druhy - magnetoreologická a ferokapalina, které jsou podrobněji popsány dále v kapitole. Látky používané pro výrobu částic jsou zpravidla sloučeniny železa obsahující ionty Fe^{2+} , případně Fe^{3+} . Jeden z běžně používaných materiálů je například magnetit (Fe_3O_4) nebo některý z jeho polymorfů (konkrétní krystalická struktura chemického prvku, který má schopnost vyskytovat se ve více strukturních formách s odlišnými vlastnostmi) - α -Fe₂O₃ (hematit), γ -Fe₂O₃ (maghemit). Jednotlivé formy a jejich základní vlastnosti jsou popsány v tabulce 1.1 [3], [5].

Forma	Ionty Fe ⁿ⁺	Krystalická struktura	Magnetické chování	Barva
Fe ₃ O ₄	Fe ²⁺ /Fe ³⁺	Kubická	Ferimagnetikum	Černá
α-Fe ₂ O ₃	Fe ³⁺	Kubická	Ferimagnetikum	Červená až hnědá
γ-Fe ₂ O ₃	Fe ³⁺	Šestiúhelníková	Anti-feromagnetikum	Cihlově červená
ε-Fe ₂ O ₃	Fe ³⁺	Kosočtverečná	Ferimagnetikum	Načervenalá

Tab. 1.1: Různé formy magnetitu [5]

Aby nedošlo k vzájemnému shlukování částic, je každá z nich pokryta ochranným obalem - surfaktantem, který zabraňuje přímému kontaktu mezi částicemi. Ten je tvořen dlouhými řetězci polárních molekul (mají stálý a nenulový dipólový moment, protože elektrický náboj je v nich rozložen nesymetricky), které jsou na jednom konci pevně vázané s magnetickou částicí a druhým koncem volně přitahovány molekulami nosného média. Délka tohoto řetězce je asi 1 až 2 nm. Takto vytvořená vrstva detergentu poté vyvolá odpudivé síly mezi částicemi, pokud se k sobě přiblíží.

Velice významnou vlastností magnetických kapalin je také jejich viskozita, která hraje klíčovou roli ve většině jejich praktických aplikací. Ta se mění v závislosti na působícím poli, přičemž reakce kapaliny je rozdílná v závislosti na charakteru pole. V časově proměnném poli vznikají při přemagnetování částic ztráty (vířivými proudy a hysterezní), které způsobí ohřátí celé kapaliny. Při střídavém buzení je nezanedbatelný vliv frekvence, kdy se při její určité hodnotě může začít projevovat negativní viskozita (s rostoucí intenzitou pole nastane pokles viskozity). Viskozita je teplotně závislá, s rostoucí teplotou kapaliny přibližně exponenciálně klesá [4].

Obr. 1.1: Struktura magnetické částečky [4]

1.2 Ferokapalina

Ferokapaliny se skládají z nanočástic, jejichž průměr obvykle nepřesahuje 10 nm. Typický poměr obsahu jednotlivých přísad ve ferokapalině je: 5% feromagnetické částečky, 10% surfaktant a 85% nosná kapalina. Z toho vyplývá, že chemické vlastnosti kapaliny určuje převážně nosná kapalina. Elektromagnetické vlastnosti potom závisí na materiálu a koncentraci feromagnetických částeček. Z fyzikálního hlediska se chovají jako paramagnetikum, což znamená, že s rostoucí teplotou ztrácí své magnetické vlastnosti a při dosažení Curieovy teploty (T_c , pro železo 770°C) přijdou o své schopnosti zcela. U ferokapalin, podobně jako u dalších magnetik, dochází k magnetizaci a s narůstající intenzitou magnetického pole se tedy magnetická indukce blíží k hodnotě stavu nasycení (saturace). Maximální možnou velikost magnetizace pro konkrétní materiál označujeme M_s (saturační magnetizace). Ta může u některých kapalin dosáhnout hodnoty až 1,3 T. Rozptýlení nanočástic v nosné kapalině není nutné zajišťovat technologicky, v důsledku jejich malých rozměrů k němu dojde samovolně Brownovým pohybem [7].

1.2.1 Brownův pohyb

Náhodný pohyb mikroskopických částic rozptýlených v kapalném nebo plynném médiu vyúsťuje v jejich srážení - i to probíhá s náhodnou silou a směrem pohybu odražených částic, což způsobí, že jejich poloha je také náhodná. Efekt je pozorován ve všech typech koloidních suspenzí (pevná látka v kapalině, plyn v kapalině, pevná látka v plynu...). Tento faktor je nezávislý na vnějších vlivech a je připisován tepelnému pohybu částic. Tyto molekuly jsou v neustálém neuspořádaném pohybu, s rychlostí úměrnou teplotě systému [6].

Ferokapaliny jsou díky svým malým průměrům koloidně stabilní. To znamená, že pevné částice neaglomerují ani ve velmi silných magnetických polích. Působí na ně totiž Brownův pohyb a zamezuje jejich usazení vlivem gravitace po dny až roky - záleží na přesných rozměrech částeček a na vlastnostech nosné kapaliny. Nicméně surfaktant má tendenci se časem rozkládat a nanočástice poté sedimentují a ztratí své schopnosti výrazně ovlivňovat reakci kapaliny na magnetické pole. U magnetoreologických kapalin se tento jev neprojevuje, vzhledem rozměrům částic (µm) jsou příliš těžké na to, aby se Brownův pohyb projevil, a časem se usadí v důsledku rozdílné hustoty nosné kapaliny a materiálu částic [7].

1.3 Magnetoreologická kapalina

Magnetoreologické (MR) kapaliny mají velikost částeček od 3 do 10 µm a jejich pohyb je zcela závislý na vnějším magnetickém poli – jejich větší hmotnost, způsobená o tři řády větší velikostí kovových částic, neumožňuje rozptýlení částic působením Brownova pohybu. U MR kapalin tedy vyvstává problém se sedimentací, který lze řešit několika způsoby. Zaprvé lze do nosné kapaliny přidat nanočástice, jež se Brownovým pohybem pohybují a vzájemně reagují s mikročásticemi. Ty pak déle zůstanou ve své poloze a neusazují se. Dalším způsobem je přidání surfaktantu. Ten, stejně jako u ferokapalin, na povrchu částic vytvoří obal, který zabrání jejich shlukování. Tak se sice zabrání sedimentaci, obvykle přitom ale dojde k zhoršení vlastností kapaliny při působení magnetického pole. Sedimentaci můžeme také eliminovat přidáním nestékavých látek do nosné kapaliny. Jejich použitím se ovšem zvyšuje viskozita v klidovém stavu (bez magnetického pole), což v některých případech limituje regulační rozsah kapaliny. Ať se pro vyřešení problému sedimentace použije jakýkoli způsob, dojde v aktivovaném stavu ke snížení viskozity a její přiblížení k mezi kluzu. Proto se v praxi musí uvažovat, jestli je pro konkrétní aplikaci požadována spíše větší trvanlivost nebo účinnost MR kapaliny [8], [9].

1.3.1 Magnetoviskózní jev

Tento jev je znázorněn na obrázku 1.2. Pokud na kapalinu nepůsobí vnější vlivy, částečky se neuspořádaně pohybují v nosné kapalině. V blízkosti magnetického pole se mikročástice polarizují a uspořádávají se do řetězců ve směru siločar působícího pole. Polem můžeme měnit tvar i viskozitu kapalin až do stavu, kdy se dočasně mohou stát pevnou látkou. V případě, že kovové částečky nejsou v kapalině dostatečně koncentrovány nebo mají příliš malé rozměry (ferokapaliny), nemá na jejich chování magnetické pole vliv [8].

Obr. 1.2: Magnetoviskózní jev v MR kapalinách [8]

1.4 Metody výroby magnetických kapalin

1.4.1 Mokré mletí

Z historického hlediska je tento způsob výroby MK nejstarší a dnes se již nepoužívá. Výrobní postup obnášel mokré mletí feritů v kulovém mlýnu za přítomnosti vhodného surfaktantu do doby, než ferit dosáhl koloidního stavu. Obvykle se používala i centrifuga, jejíž úkol byl odstranit částice větších rozměrů, které by mohly způsobovat shlukování a sedimentaci. Velkou nevýhodou a hlavním důvodem pro opuštění této výrobní metody byla její velká časová náročnost – celý proces trval okolo 1000 hodin [10], [13].

1.4.2 Srážecí metoda

Srážecí metoda má svoje počátky v 70. letech minulého století, kdy nahradila primitivnější metodu mokrého mletí. Primárně je určena k přípravě nanočástic z magnetitu, maghemitu a feritů, používaných ve ferokapalinách. Rozměry těchto částeček se pohybují mezi 3 - 20 nm. Úpravou molárního poměru iontů Fe²⁺:Fe³⁺, jejich koncentrací a změnou teploty je možné dosáhnout požadovaných velikostí částic. Chemický proces probíhá při

Jan Koliha

teplotě v rozsahu 0 - 100 °C v KOH, NaOH nebo NH₄OH. Reakce probíhá za přítomnosti surfaktantu, který se na částice naváže [10].

1.4.3 Metoda substituce

Touto metodou je možné vyrobit nanočástice vhodné pro použití ve ferokapalině. Její princip spočívá v nahrazení iontu Fe^{2+} jiným kovovým iontem (např. Co^{2+} , Mn^{2+} , Ni^{2+} nebo Zn^{2+}), případně jejich kombinací. Ve své podstatě je velice podobná metodě srážecí, pouze je někdy potřeba použít hydrotermálního stárnutí, aby se z vysráženého hydroxidu dal získat ferit. Pomocí této metody lze vyrobit ferokapaliny s velice odlišnými magnetickými vlastnostmi a můžeme upravit kapalinu pro danou aplikaci [10], [12].

1.4.4 Mikroemulzní technika

Lze ji charakterizovat jako mikroemulzi vody voleji, tzn. smísení dvou nesmísitelných kapalin, které jsou stabilizovány surfaktantem. Magnetické částice získáme smícháním směsi vodného roztoku kovových solí s alkalickým vodným roztokem v určitém poměru. Někdy může vyvstat problém s nekompatibilitou použitého surfaktantu a nosné kapaliny, která je vyžadována pro konkrétní aplikaci. Tuto situaci lze vyřešit buď odstraněním nevhodného surfaktantu a jeho nahrazení kompatibilním, nebo použitím systému se dvěma surfaktanty, což znamená, že původní surfaktant se obalí jiným, který je kompatibilní s nosnou kapalinou [10], [11].

1.4.5 Rozklad organokovových sloučenin

Nejběžnější metoda výroby kovových částic. Výrobní proces je velmi jednoduchý. Obnáší chemickou reakci toluenu a roztoku kovu, který obsahuje uhlovodíky. Po skončení reakce jsou zformovány nanočástice. Výzkum prokázal, že přítomnost surfaktantu reakci urychluje [10].

2 Použití magnetických kapalin v praxi

2.1 Magnetoreologický tlumič

Použití MR tlumiče je velice efektivní způsob, jak vyřešit tlumení nárazů v různých konstrukcích. Ze všech odvětví se jejich vývoji nejvíce věnuje automobilový průmysl, kde se cílí především na zlepšení jízdních vlastností. Tlumiče můžeme rozdělit na dva hlavní typy.

2.1.1 Lineární tlumič

Lineární tlumič se svou konstrukcí velice podobá klasickému tlumiči. Model uvedený na obrázku 2.1 je dvoukomorový, díky čemuž může pracovat jak v průtokovém, tak ve střižném módu (při něm dochází ke skluzu na zlomové ploše). Píst rozděluje tlumič na dvě oddělené komory a obě jsou vyplněny MR kapalinou. Během pohybu pístu zleva doprava MR kapalina protéká mezerou mezi vnitřním válcem a pístem. Magnetické pole, které při průchodu proudu vytváří cívka umístěná v otvorech vnitřního válce, má kolmý směr vzhledem k pohybu pístu a způsobí tak zvýšení viskozity MR kapaliny v mezeře. Tím se brání pohybu pístu. Z toho vyplývá, že velikost tlumící síly, kterou vytváří MR kapalina, lze kontrolovat intenzitou magnetického pole [14].

Obr. 2.1: Lineární tlumič [14]

2.1.2 Seizmický tlumič

Má použití převážně ve stavebnictví, kde se využívá k tlumení vibrací způsobených poryvy větru nebo zemětřesením, nejčastěji u mrakodrapů nebo mostů. Je kombinací dvou druhů tlumičů. Pasivního, který nevyžaduje žádné napájení k provozu, ale není schopný přizpůsobit se změnám požadavků na tlumení, a aktivního. Ten v případě potřeby vytvoří protisílu, která začne působit na strukturu stavby a potlačovat tím vibrace způsobené otřesy. Aktivní tlumič je regulovatelný, ale vyžaduje značné množství energie.

MR tlumiče také fungují na principu protisíly, zároveň ale mají nízké nároky na energii, jejich příkon je obvykle do 50 W. Díky řízení poměrně malými proudy zde nehrozí nebezpečí destabilizace budovy, jako tomu je u aktivních tlumičů, které se při velkém vytížení mohou stát nekontrolovatelnými.

Jak je vidět na obrázku 2.2, seizmický tlumič se skládá z cívky, která je navinuta okolo tří částí pístu. Délka tohoto konkrétního modelu je 1 m, váží 250 kg a dokáže účinně tlumit sílu 200 000 N. Na naplnění komory tohoto tlumiče je potřeba přibližně 5 litrů MR kapaliny. Během zemětřesení senzory umístěné na budově vyšlou do počítače signál s požadavkem, aby aktivoval tlumič. Ten při průchodu proudu cívkou vytvoří magnetické pole, které způsobí ztuhnutí MR kapaliny. Následné vibrace budovy způsobené otřesy mohou vyústit až v několik tisíc požadavků na změnu stavu kapaliny z tekuté na pevnou a naopak za sekundu. Tak časté přemagnetování způsobí vzrůst teploty kapaliny. Proto je k horní části tlumiče připevněn zásobník, který v případě potřeby akumuluje vzniklé teplo. V závislosti na velikosti stavby může být použito až několik stovek tlumičů – u mrakodrapů obvykle do každého patra jeden [15].

Obr. 2.2: Seizmický tlumič od firmy LORD [15]

2.2 Magnetoreologická brzda

Konvenční hydraulické brzdové systémy mají mnoho nevýhod. Především je to velká spotřeba energie, jejich masivní konstrukce a opotřebovávání brzdových destiček, což postupně snižuje efektivitu brždění. MR brzdy nahrazují mechanické spojení brzdového pedálu s brzdným válcem na kole elektronikou. Tak lze chování a vlastnosti brzdy nastavit pomocí softwaru, snadněji integrovat dodatečné funkce jako například protiblokovací systém ABS nebo pomocí řídící jednotky nastavit specifické brzdění pro každé kolo zvlášť. Mezi další výhody MR brzdy patří značně kratší doba odezvy oproti klasickým brzdným systémům, menší rozměry a jednodušší konstrukce díky absenci pomocných hydraulických zařízení. Navíc nepotřebuje brzdové destičky, nedochází zde k žádnému mechanickému opotřebení. Je energeticky nenáročná, rotační brzda má spotřebu jen 10 W (0,8 A 12 V) [16], [17].

Design základní MR brzdy vidíme na obrázku 2.3. Brzdný disk se nachází v mezeře, která je vyplněna MR kapalinou. Ta vytvoří brzdný moment při průchodu proudu budící cívkou.

Obr. 2.3: Magnetoreologická brzda [16]

2.3 Ferohydrodynamické těsnění

Mezi nejstarší aplikace magnetických kapalin se řadí ferohydrodynamické těsnění rotujících hřídelí. Jeho princip je naznačen na obrázku 2.4. V navzájem oddělených prostorách jsou rozdílné tlaky p_1 a p_2 . Na permanentní magnet, který má tvar dutého válce a je magnetován ve směru osy, dosedají pólové nástavce z magneticky měkkého feromagnetika. Mezi pólovými nástavci a hřídelí je vzduchová mezera o velikosti několik desetin milimetru, do které je koncentrováno magnetické pole.

Jan Koliha

2014

Obr. 2.4: Ferohydrodynamické těsnění [19]

Tento typ těsnění se dá použít i při rovnosti tlaků p_1 , p_2 , a sice jako protiprachové těsnění ložisek, jež jsou trvale umístěna v prašném nebo chemicky agresivním prostředí.

Ferohydrodynamické těsnění má dvě omezení - průměr hřídele D (použití do průměru hřídele asi 100 mm) a počet otáček ω (do 6000 min⁻¹). Při použití běžné konstrukce jsou udávané hodnoty součinu D (v mm) $a \omega$ (v ot/min) až 200 000. U vysokých hodnot tohoto součinu je nutné kapalinu chladit, protože vysoká teplota snižuje její životnost.

V porovnání s běžně používaným mechanickým těsněním má systém s ferokapalinou značné výhody. Je spolehlivější, má jednodušší konstrukci (díky čemuž i nižší cenu), vysokou těsnost, dlouhou životnost (výrobci uvádí deset až patnáct let)

a je schopný pracovat v poměrně velkém rozsahu teplot - od -100 °C do 200 °C. Použití je velice různorodé, např. u pohonu pevných disků, vakuových čerpadel v letectví apod. Těsnění se osvědčilo se také při práci v náročných podmínkách, jako jsou jaderné elektrárny nebo zpracování uhlovodíků, kde zabraňují úniku, případně vniku nebezpečných plynů a dalších nečistot [19], [20].

2.4 Chladicí kapalina v transformátorech

Výzkum ukázal, že pokud se do transformátorového oleje přidají feromagnetické nanočástice, které se na něj naváží, výrazně se tím zlepší jeho izolační a tepelné vlastnosti. Také bylo prokázáno, že olej s ferokapalinou má o několik desítek procent vyšší průrazné napětí než běžný transformátorový olej. Jak je vidět na obrázku 2.5, při použití ferokapaliny je teplota kapaliny uvnitř transformátoru o 20 - 30 °C nižší a je rovnoměrněji rozložena, protože není ovlivňována pouze teplotou, ale i působením magnetického pole, které při vyšší teplotě vinutí vypuzuje částečky do oblastí s nižší teplotou [18].

Obr. 2.5: Chladicí kapalina v transformátoru - vlevo transformátorový olej, vpravo ferokapalina [18]

2.5 Reproduktory s ferokapalinou

Konstrukčně jsou řešeny jako klasické reproduktory, pouze s tím rozdílem, že v mezeře magnetického obvodu s permanentním magnetem, kde kmitá zvuková cívka, je místo vzduchu ferokapalina (obrázek 2.6). Ta je v mezeře trvale držena silným magnetickým polem permanentního magnetu. Ferokapalina má oproti vzduchu vyšší tepelnou vodivost a díky tomu lépe odvádí teplo vznikající v cívce. Tím se zvyšuje účinnost reproduktoru s čímž je spojen i růst jeho akustického výkonu. Reproduktory s ferokapalinou se tedy používají pro

velké akustické výkony nebo pro zachování stejného výkonu při menších rozměrech reproduktoru [19].

Obr. 2.6: Reproduktor s ferokapalinou [19]

2.6 Neprůstřelná vesta s magnetickou kapalinou

O aplikace magnetických kapalin se zajímá také armáda. Zkoumá se především magnetoviskózní jev, tj. schopnost kapalin pod vlivem magnetického pole dočasně změnit své skupenství z kapalného na pevné. Tato vlastnost našla využití v ochranném vybavení pro vojáky, především u neprůstřelných vest. Vesta s magnetickou kapalinou má stejný základ jako klasická, tj. je vyrobena z vrstev kevlaru. Její vlákna se ovšem napustí magnetickou kapalinou. Testy ukázaly, že po ztuhnutí kapaliny se energie nárazu rozptýlí na širší plochu a projektil v porovnání s běžnou vestou nepronikne do takové hloubky, přestože oproti ní má poloviční počet vrstev kevlaru - viz obrázek 2.7. U MR kapaliny s kovovými částečkami je ovšem potřeba zabudovat do výstroje spolehlivý zdroj elektrického proudu, který kapalinu vybudí. Navíc je nutné manuálním vypínačem tento zdroj uvést do chodu. Proto byla vyvinuta speciální magnetická kapalina, která kombinuje vlastnosti MR kapaliny a ferokapaliny. Má schopnost ztvrdnout (typické pro MR kapaliny) během několika milisekund při mechanickém namáhání (např. bodnutí nožem) nebo nárazu, ale přitom se v ní nachází pouze nanočástice. Materiál použitý pro výrobu nanočástic je oxid křemičitý a nosnou kapalinou je polyethylglykol. Přestože jsou částečky v kapalině opatřeny surfaktanty, energie dopadající

kulky odpudivé síly působící v kapalině dočasně zruší a částečky se shluknou k sobě, čímž vytvoří pevnou látku. Po absorbování energie nárazu se nanočástice opět rozptýlí [8], [21].

Obr. 2.7: Porovnání neprůstřelných vest - vlevo klasická, vpravo s magnetickou kapalinou [21]

2.7 Medicínské aplikace

2.7.1 Magnetické cílení léčiv

Léčba rakoviny je problematická, zvláště kvůli hrozbě poškození zdravé tkáně v okolí nádoru při jeho likvidaci. Chemoterapie vyžaduje pro zničení rakovinových buněk použití značného množství medikamentu, který může intoxikovat zdravou tkáň. S pomocí magnetických kapalin lze toto riziko eliminovat. Na jejich částečky se naváže léčivo, injekcí se vpraví do nádoru a poté se působením vnějšího magnetického se drží uvnitř, dokud se léčivá látka neuvolní. Takto je vystavení zdravé tkáně toxickému léčivu minimální [22], [23].

2.7.2 Magnetická hypertermie

Pro likvidaci nádorů se také využívá zahřívání ferokapaliny vlivem hysterezních ztrát při přemagnetování. Kapalina se dopraví do místa nádoru, kde se na ni působí střídavým magnetickým polem o vysoké frekvenci (stovky kHz). Teplota kapaliny se udržuje nad běžnou teplotou lidského těla - od 41 do 45 °C, krátkodobě (v řádu minut) se může blížit i 50 °C. Tak se zničí rakovinové buňky bez poškození zdravé lidské tkáně. Pro medicínské aplikace se jako nosná kapalina používají netoxické látky, například voda [22], [23].

3 Chování kapalin ve stejnosměrném a střídavém magnetickém poli

3.1 Chování kapalin ve stejnosměrném magnetickém poli

Ferokapaliny při působení stejnosměrného magnetického pole vytváří vlivem ferohydrodynamické nestability různé křivky a struktury. V závislosti na přiloženém magnetickém poli se začne kapalina tvarovat, což lze pozorovat na obrázku 3.1. Použitá ferokapalina má saturační magnetizací 0,04 T, na obrázku vlevo vystavena poli s indukcí 0,02 T, vpravo 0,033 T. Vrcholy začnou vznikat v momentě, kdy magnetická síla překoná stabilizační účinky hmotnosti kapaliny a jejího povrchového napětí [24].

Obr. 3.1: Vliv stejnosměrného magnetického pole na ferokapalinu [24]

Na obrázku 3.2 je kapalina se saturační magnetizací 0,02 T umístěna mezi mezi dvě skleněné desky a působí se na ni polem o indukci 0,0155 T [25].

Obr. 3.2: Příklad obrazce vytvořeného ferokapalinou [25]

3.2 Chování kapalin ve střídavém magnetickém poli

Ve střídavém magnetickém poli má na pohyb ferokapaliny vliv směr pole a kritická síla magnetického pole. Ta určuje, jestli se bude kapalina pohybovat ve shodném směru s polem, kdy je působící síla větší než kritická nebo v opačném směru, kdy je menší. Hodnota kritické síly závisí na frekvenci, koncentraci rozptýlených nanočástic a dynamické viskozitě kapaliny. Pod vlivem střídavého pole viskozita kapaliny působící na magnetické částečky vytvoří zpoždění mezi magnetickým momentem *M* a intenzitou magnetického pole *H*. Na obrázku 3.3 je tento jev zobrazen. Když frekvence zdroje buzení nabývá hodnot značně převyšujících obrácenou hodnotu magnetické relaxační časové konstanty (čas, za který se částečky v kapalině opět rozptýlí, potom, co byly vybuzeny), začne vznikat zpoždění mezi pohybem nanočástice a intenzitou magnetického pole. Pokud vektory *M* a *H* nejsou kolineární (v jedné přímce), vzniká kroutící moment

$$T_{\rm k} = \mu_0 \cdot (M \ x \ H), \tag{3.1}$$

kde je: μ_0 - permeabilita vakua (4· π · 10⁻⁷ H·m⁻¹) *M* - magnetický moment všech částic v kapalině

H - intenzita magnetického pole

Ten pak způsobuje rotaci nanočástic. Tyto pohyby způsobí pokles viskozity, což se označuje jako negativní viskozita [24], [26].

Obr. 3.3: Negativní viskozita [26]

3.3 Experimenty

3.3.1 Ferokapalina v aparatuře Hele-Shaw

Aparatura Hele-Shaw je zařízení skládající se ze dvou desek (obvykle skleněných) oddělených velice tenkou rozpěrkou. Desky se pomocí svěrek stlačí k sobě, aby mezera mezi nimi byla co nejmenší, stříkačkou se skrz vrchní otvory vpraví do mezery kapalina (případně dvě různé tekutiny) a poté se pozoruje vzájemná reakce kapalin nebo jejich chování při působení různých faktorů [28].

Obr. 3.4: Aparatura Hele-Shaw [28]

Na Massachusettském Institutu Technologií pomocí této aparatury zjišťovali, jak se v závislosti na buzení mění útvary vytvářené ferokapalinou. K buzení střídavým i stejnosměrným polem použili elektromagnet (solenoid), na který navinuli třífázové statorové vinutí cylindrického motoru. Jedno vinutí bylo uzemněné a druhé dvě fázově posunuté o 60°, díky čemuž bylo možné generovat točivé pole o frekvenci 20-35 Hz. Stejnosměrné pole bylo vytvořeno napájením solenoidu ze zdroje. Obrázky 3.5 a) - d) ukazují několik tvarů kapaliny s různými poli a indukcí - detailně zpracováno a popsáno v [27] nebo [31]. Z měření vyplývá, že ferokapalina pod vlivem stejnosměrného pole vytváří křivky, které se po následném vybuzení střídavým polem (za současného působení stejnosměrného) zatočí do spirál. Ty se zkroutí vždy ve směru točivého magnetického pole, stejnosměrné pole na tento jev nemá vliv, i když se při experimentu postupovalo opačně (nejdříve aplikace střídavého, pak stejnosměrného pole) [27].

Obr. 3.5: Tvary vytvářené ferokapalinou [27]

3.3.2 Magnetoviskózní jev u ferohydrodynamického těsnění

Výzkum magnetoviskózního jevu ve stejnosměrném a pod různými frekvencemi střídavého pole prováděli ve Francii. Schéma zapojení lze vidět na obrázku 3.6. Jedna pohyblivá deska je umístěna mezi dalšími stacionárními. Všechny desky jsou odděleny mezerou 0,94 mm. Do těchto mezer se injekcí vpraví ferokapalina, která zde vytvoří ferohydrodynamické těsnění. Na pohybující se desku se pomocí elektromagnetického budiče vibrací působí frekvencí od 10 do 50 Hz. Ve směru osy y je možné vytvořit stejnosměrné magnetické pole o intenzitě 0 až 438 kA/m pomocí změny vzdálenosti dvou permanentních magnetů. V klidovém stavu (bez buzení) se změřila reometrem referenční viskozita η (0,0). Laserovým snímačem působící síly byla získána data pro výpočet okamžité viskozity η (*H*,*f*) v konkrétních bodech měření [29].

Budič vibrací Laserový snímač působící síly

Obr. 3.6: Schéma experimentu [29]

Výsledkem měření je graf (obrázek 3.7) závislosti relativní viskozity (poměr změny okamžité a referenční viskozity) na intenzitě magnetického pole. Relativní viskozita η_r byla získána z rovnice (3.2).

$$\eta_{\rm r} = \frac{\Delta \eta}{\eta} = \frac{\eta(H, f) - \eta(0, 0)}{\eta(0, 0)}, \qquad (3.2)$$

kde je: η (0,0) - referenční viskozita (v klidovém stavu)

 η (*H*,*f*) - okamžitá viskozita

Obr. 3.7: Graf závislosti relativní viskozity na intenzitě magnetického pole [29]

Graf ukazuje, že nejvyšší relativní viskozity dosahovala kapalina při stejnosměrném buzení. Dále můžeme pozorovat, že viskozita roste úměrně se zvyšující se intenzitou magnetického pole a se zvyšující se frekvencí klesá. Negativní viskozita se u kapaliny projevuje, i když na ni nepůsobí žádné magnetické pole [29].

3.3.3 Měření točivého momentu

Při tomto měření byly použity 4 různé kapaliny. Jedna ferokapalina a MR kapalina a poté dvě směsi, kde se MR kapalina smísila s transformátorovým olejem v poměru 25% MR kapalina, 75% transformátorový olej a 50% kapaliny 50% oleje. Točivé magnetické pole bylo vytvořeno statorovým vinutím dvoupólového motoru. Při samotném měření se postupovalo

Obr. 3.8: 10 ml 25% a 50% MR kapaliny [30]

V grafech na obrázku 3.8 můžeme vidět naměřené hodnoty pro objem 10 ml. 25 % MR kapalina vykazuje při nízké frekvenci 5 Hz značně větší točivý moment, než při vyšších frekvencích. Stejný efekt, pouze s pozvolnějším nárůstem momentu můžeme pozorovat i u směsi s 50 % obsahem MR kapaliny.

Z obrázku 3.9 je vidět, že pro MR kapalinu bez přídavku transformátorového oleje je vliv frekvence při nižší intenzitě magnetického pole zanedbatelný a rozdílné frekvence se začínají projevovat až při vyšší magnetické indukci. Ferokapalina naopak vykazuje nárůst točivého momentu s rostoucí frekvencí, což je pravděpodobně způsobeno rozdílnými rozměry kovových částeček v kapalinách. Podrobně je tento experiment popsán v práci [30].

3.3.4 Přenos tepla pomocí ferokapaliny

Cílem tohoto měření bylo prozkoumat vliv střídavého a stejnosměrného magnetického pole na přenos tepla za použití ferokapaliny. Na obrázku 3.10 vidíme schéma zapojení experimentu. Pumpa vhání ferokapalinu z nádrže směrem k měděné trubce s vnitřním průměrem 9 mm a délkou 49 cm. Rychlost proudění je regulovatelná pomocí napěťového kontroléru připojeného k pumpě. Ke generování konstantního teplotního toku je použit ohřívač umístěný na vstupu do trubky. Pro měření teploty byla trubka osazena devíti termočlánky - jeden na vstupu a výstupu a dalších 7 ve vzájemné vzdálenosti 7 cm. Po ukončení testu ferokapalina prochází chladícím okruhem a dopravuje se do sběrné nádrže. Ke generování střídavého pole byly použity magnety (ne permanentní), na které bylo navinuto 2 000 závitů měděného drátu. Termočlánky byly opatřeny magnetickým stíněním, takže nevznikl problém s rušením, které by ovlivňovalo odečítanou teplotu [31].

Obr. 3.10: Blokové schéma pro měření přenosu tepla [31]

Obr. 3.11: Závislost součinitele přestupu tepla na buzení [31]

Obrázek 3.11 zobrazuje graf závislosti součinitele přestupu tepla $U_{\rm T}$ na vzdálenosti od vstupu tekutiny do trubky. Můžeme zde pozorovat, že s rostoucí vzdáleností klesá vliv buzení. Stejnosměrné buzení má na přenos tepla negativní vliv, případně ho vylepšuje jen velmi málo. Střídavé magnetické pole působí na přenos příznivě - $U_{\rm T}$ nabývá nejvyšších hodnot při frekvenci 50 Hz a v průměru se uvádí zlepšení o 27,6 %.

Obr. 3.12: Závislost součinitele přestupu tepla na koncentraci nanočástic [31]

Zároveň bylo pozorováno, že s vyšší koncentrací kovových částeček je střídavé magnetické pole efektivnější, ale při koncentraci 0,6% již nemá prakticky žádný vliv. Na obrázku 3.12 jsou v grafu zobrazeny různé koncentrace nanočástic v kapalině v porovnání s destilovanou vodou, z čehož vyplývá, že použití ferokapaliny příznivě ovlivňuje přenos tepla, i když není pod vlivem magnetického pole [31].

4 Praktická část bakalářské práce

K praktickému ověření chování magnetických kapalin, které demonstrují výše zmíněné práce, jsem v laboratoři KTE použil magnetoreologickou brzdu a elektromechanický aktuátor. Podle dříve prováděných experimentů očekávám, že MR kapalina bude ve stejnosměrném poli dosahovat vyšších hodnot viskozity a ve střídavém bude vliv magnetoviskózního jevu se vzrůstající frekvencí slábnout, ale nezmizí úplně.

4.1 Magnetoreologická brzda

Magnetoreologickou brzdu můžeme vidět na obrázku 4.1. Zařízení se sestává z magnetického obvodu, na který je navinuta budící cívka. K magnetickému obvodu je dále připevněna hřídel s brzdovým diskem, která společně s nádobou na magnetickou kapalinu vyplňuje vzduchovou mezeru. Po vybuzení cívky vzniká v obvodu magnetický tok, který se uzavírá přes mezeru vyplněnou kapalinou. Na kapalinu působí v kolmém směru magnetické pole což olivňuje její viskozitu a zároveň pohyb brzdového kotouče. Brzdění systému je tedy způsobeno změnou viskozity kapaliny v důsledku buzení cívky proudem.

Obr. 4.1: Magnetoreologická brzda

4.1.1 Stejnosměrné buzení

Nejdříve bylo zapotřebí zjistit charakteristiky brzdy při působení stejnosměrného magnetického pole. Blokové schéma zapojení obvodu je vidět na obrázku 4.2. Ze dvou vstupů regulovatelného stejnosměrného zdroje je napájena brzda i její pohon (motor vrtačky). Ten je řemenem spojen s její hřídelí. Schéma zobrazuje také značení měřených veličin. Napájecí napětí pohonu je značeno U_z , napájecí proud pohonu I_z . Obdobně v budícím obvodu brzdy, budící napětí má označení U_b , budící proud I_b . Měřené otáčky brzdy se značí n.

Obr. 4.2: Blokové schéma zapojení pro měření stejnosměrného buzení

Měření probíhalo následovně. Zvolení několika hodnot napájecího napětí pohonu U_z (jeho hodnoty jsou v grafech zobrazeny vpravo v legendě) a poté změření závislosti otáček brzdy *n* na budícím proudu I_b pro všechna tato napětí.

Graf 4.1: Otáčky stejnosměrně buzené brzdy

Graf 4.1 zobrazuje závislost otáček brzdy *n* na budícím proudu I_b při různých hodnotách napětí U_z , jimiž byl napájen pohon. Je z něj vidět, že při vyšším budícím proudu mírně klesají

otáčky brzdy. Poslední tři hodnoty napětí nebyly při vyšším budícím proudu proměřeny, protože vlivem brzdění docházelo ke zvýšenému odběru proudu pohonu a nebezpečnému ohřívání přívodních vodičů.

Graf 4.2: Proud odebíraný pohonem při stejnosměrném buzení

Na grafu 4.2 vidíme proud I_z odebíraný pohonem v závislosti na budícím proudu I_b při různých napájecích napětích pohonu U_z . Od hodnoty budícího proudu 0,4 A Při vyšších hodnotách budícího proudu je patrný strmější nárůst proudu odebíraného pohonem, který musel vynaložit větší mechanický výkon na otáčení brzdou.

4.1.2 Střídavé buzení

4.1.2.1 Generátor signálu

Střídavě byla brzda buzena dvěma různými způsoby, první je zobrazen na obrázku 4.3. Hřídelí brzdy opět otáčel pohon napájený ze stejnosměrného zdroje. Buzení brzdy bylo realizováno generátorem signálu. Na něm byla nastavena sinusoida s amplitudou 10 V peakto-peak (absolutní hodnota vzdálenosti minima a maxima průběhu). Odtud byl signál veden na zesilovač, z kterého pokračoval na vinutí cívky na brzdě. Na přívodní vodiče k budící cívce byl připojen analyzátor sítě, který měřil protékající proud, napětí mezi vodiči a výkony. Značení měřených veličin zůstává při tomto experimentu identické. U_z , I_z – napětí a proud odebíraný pohonem ze zdroje, U_b , I_b – napětí a proud, kterým je buzena brzda a n – otáčky brzdy.

Obr. 4.3: Sestava se střídavým generátorem pro měření střídavého buzení

Měření proběhlo na frekvencích 1, 2, 5, 10, 20 a 50 Hz, v některých případech i podrobněji v rozmezí 1 - 10 Hz. Na zesilovači se nezvyšovalo zesílení nad přibližně 15,5 dB (budící napětí cca 44 V), protože poté začal ořezávat špičky sinusového signálu. Při nízkých otáčkách docházelo k prokluzování řemenu a pohyb brzdy se změnil z plynulého na trhavý, tudíž naměřené hodnoty otáček mohou obsahovat drobné nepřesnosti.

Tento experiment bohužel nemá příliš velkou výpovědní hodnotu, protože s rostoucí frekvencí se zvyšovala impedance cívky. To vyústilo v postupný pokles budícího proudu na vyšších frekvencích, protože zesilovač schopen nebyl skrz vyšší impedanci dodávat konstantní proud. Z naměřených hodnot, které jsou k nahlédnutí v příloze, je vidět, že při 50 Hz již netekl žádný proud, brzda tedy nebyla buzena. Na nízkých frekvencích ovšem vliv střídavého buzení můžeme pozorovat.

Graf 4.3: Otáčky brzdy při buzení 10 V peak-to-peak a frekvenci 1 Hz

Graf 4.3 zobrazuje otáčky brzdy *n* v závislosti na budícím proudu I_b při buzení 10 V peak-topeak a frekvenci 1 Hz. Různá napájecí napětí pohonu U_z jsou zobrazena v pravém sloupci. Je

zde jasně vidět, že MR kapalina velice efektivně brzdí i při vyšším napájecím napětí pohonu.

Graf 4.4: Otáčky brzdy při buzení 10 V peak-to-peak a frekvenci 2 Hz

Z grafu 4.4, který ukazuje otáčky brzdy *n* v závislosti na budícím proudu I_b při buzení 10 V peak-to-peak a frekvenci 2 Hz je patrné, že zvýšení frekvence o jeden Hz má značný vliv na růst otáček při vyšším napájecím napětí pohonu U_z . U nižších hodnot (do 5 V) nemá rostoucí budící proud na otáčky příliš velký vliv.

Graf 4.5: Otáčky brzdy při buzení 10 V peak-to-peak a frekvenci 5 Hz

Na grafu 4.5, zobrazujícím závislost otáček brzdy *n* na budícím proudu I_b při buzení 10 V peak-to-peak a frekvenci 5 Hz je jasně vidět, že oproti přechozím dvěma měřením klesl budící proud. Otáčky brzdy díky tomu vzrostly a silnější buzení již nemá tak velký vliv. Toto není zapříčiněno působením magnetického pole, ale růstem impedance cívky, která je závislá

na frekvenci. Použití této měřící metody pro vyšší frekvence tedy nemá žádnou vypovídající schopnost a je nevhodné.

4.1.2.2 Střídavý zdroj

Při druhém měření, jehož zapojení je vidět na obrázku 4.4, byl použit klasický střídavý zdroj na 50 Hz. U něj nebyl problém s udržením konstantního budícího proudu pro všechna měření. Brzdou otáčel pohon napájený stejnosměrným zdrojem a buzení cívky brzdy bylo řešeno přívodními vodiči přímo ze střídavého zdroje. Do obvodu byl zapojen voltmetr a ampérmetr pro měření hodnot budícího napětí a proudu. Digitální multimetry, které byly k dispozici, měly proudový rozsah 400 mA, proto se pro měření vyšších hodnot budícího proudu musel použít analogový ampérmetr.

Obr. 4.4: Zapojení měření se střídavým zdrojem

Během měření se zvyšovalo napětí na střídavém zdroji, měřily a zapisovaly se hodnoty budícího napětí U_b a proudu I_b . Zároveň se měnilo napájecí napětí pohonu a ze zdroje se odečítal jím odebíraný proud I_z a napětí U_z . Otáčky brzdy *n* se měřily stejným způsobem jako při předchozích měřeních – otáčkoměrem.

Graf 4.6: Otáčky brzdy v závislosti na budícím proudu

Z grafu 4.6, zobrazujícího závislost otáček brzdy *n* na budícím proudu I_b při střídavém buzení o frekvenci 50 Hz a měnících se hodnotách napájecího napětí pohonu U_z (sloupec napravo) je vidět, že při nízkých otáčkách je vliv buzení téměř zanedbatelný. Po zvýšení napájecího napětí pohonu nad hodnotu 5 V je v grafu patrný strmější pokles otáček se vzrůstajícím budícím proudem.

4.2 Elektromechanický aktuátor

Zařízení můžeme vidět na obrázku 4.5. Stejně jako u magnetoreologické brzdy je jeho hlavní částí magnetický obvod, na který je navinuta budící cívka. Má pevnou a pohyblivou část. Pevná se sestává z magnetického obvodu, budící cívky a nádoby na kapalinu. Na nádobě také vidíme číselnou stupnici pro odečítání polohy pohyblivé části. Ta se skládá z vozíku a kolejnice.

Obr. 4.5: Elektromechanický aktuátor

Aktuátor byl zkonstruován z důvodu porovnání výstupních charakteristik (závislost síly působící na pohyblivou část při různých polohách a různých hodnotách budícího proudu) s a bez vzduchové mezery vyplněné ferokapalinou. Proto byl při jeho výrobě kladen důraz na několik vlastností - podrobně popsáno v práci [32]. Lineární pohyb (docíleno spojením pevné a pohyblivé části tak, aby byl umožněn pohyb pouze v jednom směru) a stejnosměrné buzení. To je důležité hlavně z toho důvodu, že v ustáleném stavu se neuplatní skinefekt a vířivé proudy generované vinutím. Magnetický obvod ze stříhaných plechů by vířivé proudy značně omezil, u aktuátoru je ale vyroben z masivu, takže při přechodných dějích budou vznikat [32].

4.2.1 Princip činnosti

Funkce aktuátoru je znázorněna na obrázku 4.6. Spočívá ve vtažení vozíku na kolejnici do prostoru vzduchové mezery. Cívka po vybuzení vytvoří v obvodu magnetický tok uzavírající se skrz vzduchovou mezeru. Při určité hodnotě budícího proudu (v tomto případě 1,51 A stejnosměrného proudu) je vozík z počáteční polohy (vlevo) vtažen dovnitř obvodu.

Obr. 4.6: Princip činnosti elektromechanického aktuátoru

4.2.2 Měření

Po zkušenostech z přechozího měření bylo na místě nejdříve ověřit správnou funkci zařízení se střídavým buzením. Zde ovšem nastaly komplikace. Ukázalo se, že impedance cívky při frekvenci 50 Hz je poměrně vysoká a vzniká tak problém s dosažením dostatečně velkého budícího proudu (pro uvedení zařízení do chodu je potřeba je cca 1,5 A nebo více). Po vyzkoušení všech dostupných zdrojů v laboratoři (několik střídavých zdrojů a frekvenční měnič) bez uspokojivého výsledku vznikl návrh vypočítat pomocí symbolicko - komplexní metody indkčnost cívky a pokusit se ji vykompenzovat kapacitní dekádou. Naměřené hodnoty napětí a proudu byly 100 V a 0,25 A. Při výpočtech se vycházelo ze vzorce

$$I = \frac{U}{Z},\tag{4.1}$$

kde U je změřené napětí, I změřený proud a Z impedance určená vztahem:

$$Z = \sqrt{R^2 + (\omega \cdot L)^2}, \qquad (4.2)$$

kde *R* je odpor budící cívky aktuátoru (známý) a $\omega \cdot L$ označuje reaktanci cívky. Po dosazení všech hodnot do vzorce a použití vztahu pro úhlovou rychlost

$$\omega = 2 \cdot \pi \cdot f , \qquad (4.3)$$

kde f je frekvence sítě (50 Hz) a π je Ludolfovo číslo (3,14159), dostáváme:

$$0,25 = \frac{100}{\sqrt{16^2 + 314,159^2 \cdot L^2}}$$

Po matematických úpravách získáváme vztah pro výpočet indukčnosti.

$$\frac{100}{0,25} = \sqrt{16^2 + 314^2 \cdot L^2} \Rightarrow \left(\frac{100}{0,25}\right)^2 = 16^2 + 314^2 \cdot L^2 \Rightarrow \frac{159744}{314^2} \Rightarrow L = \sqrt{1,62} = \underbrace{1,27H}_{1,62}$$

Pro určení hodnoty kompenzační kapacity vycházíme ze vzorce pro rezonanci

$$\omega \cdot L = \frac{1}{\omega \cdot C},\tag{4.4}$$

kde $\omega \cdot L$ je reaktance cívky a $\omega \cdot C$ reaktance kompenzačního kondenzátoru. Po jednoduchých úpravách získáme hodnotu kapacity potřebnou pro kompenzaci indukčnosti cívky.

$$\omega \cdot L \cdot \omega \cdot C = 1 \Longrightarrow 398,98 \cdot 314,16 \cdot C = 1 \Longrightarrow C = \frac{1}{398,98 \cdot 314,16} = 7,978 \cdot 10^{-6} = \underbrace{8\mu F}_{\underline{\mu}F}$$

Do obvodu se tedy zapojila kapacitní dekáda, na které se navolila hodnota 8 μ F. Ani toto bohužel nebylo dostačující pro získání potřebné hodnoty budícího proudu. Maximální proud s kompenzací indukčnosti byl přibližně 700 mA, což je asi polovina potřebné minimální hodnoty.

Tento stav je pravděpodobně způsoben konstrukcí zařízení. Aktuátor byl vyroben s důrazem kladeným na stejnosměrné buzení, v době konstruování se tedy neuvažovalo nad možností buzení střídavého. Vliv na velikost budícího proudu má také magnetický obvod, který není vyroben ze stříhaných plechů, ale z masivu. Proto v něm vznikaly ztráty vířivými proudu, které také mohly přispět k poklesu proudu. Vzhledem k tomu, že zařízení se nepodařilo pod střídavým buzením uvést do chodu, nebyl u něj vliv magnetoviskózního jevu zkoumán. V práci [32] jsou k nahlédnutí výstupní charakteristiky pro stejnosměrné buzení.

Závěr

Tato bakalářská práce se zabývala výzkumem problematiky magnetických kapalin, což zahrnuje jejich vlastnosti, výrobu a využití v praxi. Z výzkumu vyplývá, že magnetické kapaliny jsou perspektivním vědním odvětvím s širokou škálou aplikací v technických i netechnických oborech. Pokud se podaří vyřešit některé jejich současné nedostatky, mají do budoucna velký potenciál. Dále je zde provedena studie chování magnetických kapalin pod vlivem stejnosměrného a střídavého magnetického pole. Zkoumané pokusy (obrazce vytvářené ferokapalinou v aparatuře Hele-Shaw, magnetoviskózního jev u ferohydrodynamického těsnění, měření točivého momentu a přenos tepla pomocí ferokapaliny) ukazují, že ferokapaliny a magnetoreologické kapaliny reagují odlišně na různé buzení a jejich vlastnosti jsou do jisté míry ovlivňovány frekvencí střídavého pole.

Náplní praktické části práce bylo experimentální ověření vlivu magnetoviskózního jevu na magnetoreologickou kapalinu buzenou střídavě a poté porovnání výsledných charakteristik s výsledky získanými při stejnosměrném buzení. K tomu byla v laboratoři na KTE použita magnetoreologická brzda a elektromechanický aktuátor.

U magnetoreologické brzdy se porovnávaly otáčky za minutu jejího brzdového kotouče. Nastal zde problém se střídavým buzením, kdy se při zkoumání vlivu různých frekvencí budícího proudu nedařilo při frekvencích přesahujících 5 Hz udržet konstantní proud. To bylo zapříčiněno rostoucí impedancí budící cívky, která je na frekvenci závislá. Při použití střídavého zdroje na 50 Hz bylo měření úspěšně provedeno, ale ze zřejmých důvodů se s tímto zdrojem nedal zkoumat vliv různých frekvencí. Z použitelných naměřených hodnot (stejnosměrné buzení a střídavé při 1, 2 a 50 Hz) lze vyvodit, že nejvýhodnější je budit brzdu stejnosměrně. Otáčky změřené se stejnosměrným buzením a při buzení střídavým zdrojem na 50 Hz byly prakticky shodné, ale u stejnosměrného zdroje budící proud dosahoval hodnoty 1,1 A již při napětí 30 V, zatímco u střídavého zdroje se proud při napětí 280 V nedostal přes 0,7 A. Nižší frekvence (1, 2 Hz) způsobí strmější pokles otáček i při nižším budícím proudu, ale v praxi nemají příliš velké využití. Závěrem tohoto experimentu tedy je, že magnetoviskózní jev se u brzdy projevuje i při střídavém buzení, její provoz je pak ale značně energeticky nevýhodný.

Elektromechanický aktuátor se střídavým buzením se dostupnými prostředky nepodařilo zprovoznit, výzkum vlivu magnetoviskózního jevu u něj tedy neproběhl. Pokud dojde k vyřešení problémů se střídavým buzením, které jsou v práci popsány, doporučuji se touto problematikou dále zabývat.

Použité zdroje

- [1] About Ferrotec's Ferrofluid Business. *Ferrotec Corporation. All Rights Reserved*.
 [online]. [cit. 2013-08-15]. Dostupné z: http://ferrofluid.ferrotec.com/about/ferrofluid/
- [2] Smart materiály. *Happy Materials* [online]. 2009 [cit. 2013-08-15]. Dostupné z: http://www.happymaterials.com/clanek/Smart-materialy
- [3] Polymorphism (materials science). In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2013-08-15]. Dostupné z: http://en.wikipedia.org/wiki/Polymorphism_(materials_science)
- [4] MAYER, D. Magnetické kapaliny a jejich použití (1. Část), Elektro Roč. 17, č. 3 (2007), s. 78-79
- [5] CABELLOS, E. T. Synthesis of nanoparticles. Barcelona, 2009. Dostupné z: www.tdx.cat/bitstream/handle/10803/32134/et1de1.pdf. Dizertační práce. Universat Autonóma de Barcelona.
- [6] Brownian movement. *Infoplease* [online]. 2012 [cit. 2013-08-16]. Dostupné z: http://www.infoplease.com/encyclopedia/science/brownian-movement.html
- [7] FRANKLIN, T. A. *Ferrofluid Flow Phenomena* [online]. Cambridge, 2003
 [cit. 2013-08-16]. Dostupné z: http://hdl.handle.net/1721.1/16937. Diplomová práce.
 Massachusetts Institute of Technology.
- [8] WILSON, T. V. How Liquid Body Armor Works. In: *HowStuffWorks* [online]. 2007
 [cit. 2013-08-16]. Dostupné z: http://science.howstuffworks.com/
 liquid-body-armor2.htm

- [9] Magnetorheological fluid. Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2013-08-17]. Dostupné z: http://en.wikipedia.org/wiki/Magnetorheological_fluid
- [10] CHARLES, S. V. The Preparation of Magnetic Fluids [online]. [cit. 2013-08-17]
 Dostupné z: http://pages.csam.montclair.edu/~yecko/ferro/oldpapers/
 DIRECTORY_LNP594/Charles_Prep.pdf
- [11] NOVÁČEK, V. Technologie výroby magnetoreologických kapalin [online]. Brno,
 2009 [cit. 2013-08-17]. Dostupné z: http://dspace.vutbr.cz/xmlui/bitstream/handle/
 11012/11381/BAKAL%C3%81%C5%98KA.pdf. Bakalářská práce. Vysoké učení
 technické v Brně.
- [12] GUBIN, S. P., KOKSHAROV, Y. A., KHOMUTOV, G. B., YURKOV, G. Y.
 Magnetic nanoparticles: preparation, structure and properties. In: *Russian Chemical Reviews* [online]. 2005 [cit. 2013-08-18]. Dostupné z: http://www.uninano.ru/db/2004/09012004_00004827.PDF
- [13] KHALAFALLA, S. E., REIMERS, G. W. Magnetofluids and their manufacture.[patent]. USA. 3,764,540. Uděleno 1973.
- [14] YU, M., DONG, X. M., CHOI, S. B., LIAO, C. R. Human simulated intelligent control of vehicle suspension system with MR dampers, In: *Journal of Sound and Vibration*, January 2009, vol. 319, no. 3-5, s. 753-767.
- BONSOR, K. How Smart Structures Will Work. *HowStuffWorks* [online]. 2001
 [cit. 2013-10-12]. Dostupné z: http://science.howstuffworks.com/engineering/structural/smart-structure2.htm
- [16] HUDHA, K. Magnetorheological (MR) Brake System. [online]. 2009
 [cit. 2013-10-12]. Dostupné z: http://enlightenments.files.wordpress.com/2009/01/
 magnetorheological-mr-brake-system.ppt
- [17] J. WANG, J., MENG, G. Magnetoreological fluid devices: Principles, characteristics

and applications in mechanical engineering. *Proceedings of the Institution of Mechanical Engineers: Part L: Journal of Materials: Design and Applications*. 2001, č. 215, s. 165-174.

- [18] MOREGA, A. M., MOREGA, M., PISLARU-DANESCU, L., STOICA, V., NOURAS, F., STOIAN, F.D. A novel, ferrofluid-cooled transformer. electromagnetic field and heat transfer by numerical simulation. In: *Optimization of Electrical and Electronic Equipment: 2010 12th International Conference.* 2010, s. 140-146.
- [19] Mayer, D. Magnetické kapaliny a jejich použití (2. Část dokončení),
 Elektro Roč. 17, č. 4 (2007), s. 4-8
- [20] Seals for Specialized Applications. Ferrotec Corporation. All Rights Reserved.
 [online]. [cit. 2013-10-15]. Dostupné z: https://seals.ferrotec.com/products/ferrofluidic/seals/specialty/
- [21] DRURY, I. Bullet-proof custard: British soldiers could be wearing revolutionary new liquid body armour within two years. *Mail Online* [online]. 2011 [cit. 2013-08-11]. Dostupné z: http://www.dailymail.co.uk/sciencetech/article-1346877/Bullet-proofcustard-British-soldiers-wearing-revolutionary-new-liquid-body-armour-years.html
- [22] PARTON, E., DE PALMA, R., BORGHS, G. Biomedical applications using magnetic nanoparticles. In: *Solid State Technology* [online]. 2007 [cit. 2013-10-20].
 Dostupné z: http://electroiq.com/blog/2008/02/
 bbiomedical-applications-using-magnetic-nanoparticles-b/
- [23] MULLER, R., HERGT, R., DUTZ, S., ZEISBERGER, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. In: *Journal of Physics: Condensed Matter* [online]. 2006 [cit. 2013-10-20]. Dostupné z: http://iopscience.iop.org/0953-8984/18/38/S26/
- [24] ZAHN, M. Magnetic fluid and nanoparticle applications to nanotechnology. [online].
 2001 [cit. 2013-02-10]. Dostupné z: http://www.rle.mit.edu/cehv/documents/75-JournalofNanoparticleResearch.pdf

- [25] RHODES, S., HE, X., ELBORAI, S., LEE, S., ZAHN, M. Magnetic fluid behavior in uniform DC, AC, and rotating magnetic fields. In: *Journal of Electrostatics*. 2005. č. 64, s. 513-519.
- [26] CANTILLION-MURPHY, P., ADALSTEINSSON, E., ZAHN, M. The Dynamics of Ferrofluids in the MRI Environment. 2007.
- [27] ORJI, U. A. Ferrofluid dynamics in a Hele-Shaw cell simultaneously stressed by DC and rotating magnetic fields [online]. Cambridge, 2007 [cit. 2014-02-12]. Dostupné z: http://dspace.mit.edu/handle/1721.1/41666. Diplomová práce.
 Massachusetts Institute of Technology.
- [28] Viscous fingering. KELLAY, H. Encyclopedia of Mathematics [online].
 2011 [cit. 2014-02-12]. Dostupné z: http://www.encyclopediaofmath.org/index.php/Viscous_fingering
- [29] PINHOA, M., BROUARDA, B., GÉNEVAUXA, J. M., DAUCHEZB, N., VOLKOVA, O., MÉZIÈREA, H., COLLASA, P. Investigation into ferrofluid magnetoviscous effects under an oscillating shear flow. In: *Journal of Magnetism and Magnetic Materials*. 2011, č. 323, s. 2386–2390.
- [30] RHODES, S. E. Magnetic fluid flow phenomena in DC and rotating magnetic fields
 [online]. Cambridge, 2004 [cit. 2014-05-31]. Dostupné z: http://dspace.mit.edu/handle/1721.1/17670. Diplomová práce.
 Massachusetts Institute of Technology.
- [31] GHOFRANI, A., DIBAEI, M. H., SIMA, A. H., SHAFII, M.B. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. In: *Experimental Thermal and Fluid Science*. 2013, č. 49, s. 193-200.
- [32] POLCAR, P. Elektromechanický systém s magnetickou kapalinou. Plzeň, 2013.
 Dizertační práce. Západočeská univerzita v Plzni.

Příloha: Tabulky s naměřenými hodnotami

$\frac{\text{Bez buzeni}}{U(\text{Pohon}) - U(\text{Pohon}) - v(\text{Pohon})} = v(\text{Pohon}) - v(\text{Pohon})$					U _b =1,5 V	; <i>I</i> _b =0,06 A	
$U_{\rm z}$ (Pohon)	Iz (Pohon)	n (Pohon)	n (Brzda)	$U_{\rm z}$ (Pohon)	Iz (Pohon)	n (Pohon)	n (Brzda)
[V]	[A]	[ot/min]	[ot/min]	[V]	[A]	[ot/min]	[ot/min]
1,2	0,73	12,43	7,3	1,2	0,79	17,98	10,24
3,1	0,8	49,5	25,32	3,1	0,86	44,67	24,46
4,5	0,85	79,23	39,9	4,5	0,89	68,25	37,74
6,9	0,89	121,3	66,9	6,9	0,91	110,5	62,19
8,1	0,94	139	73,53	8,1	0,95	141,4	71,4
9,8	0,95	167	92,7	9,8	1	164,5	89,5
11,6	1,06	201,3	112,2	11,6	1,09	200,9	111,4
	U _b =10,6 V	V; <i>I</i> _b =0,4 A			U _b =20,1 V	∕; <i>I</i> _b =0,77 A	
U _z (Pohon) [V]	I _z (Pohon) [A]	<i>n</i> (Pohon) [ot/min]	n (Brzda) [ot/min]	U _z (Pohon) [V]	I _z (Pohon) [A]	<i>n</i> (Pohon) [ot/min]	n (Brzda) [ot/min]
1,2	0,83	18,38	7,84	1,2	0,85	18,83	7,51
3,1	0,86	45,3	21,3	3,1	0,89	44,9	21,25
4,5	0,89	72,6	32,72	4,5	0,93	69,84	30,98
6,9	0,97	114,5	53,06	6,9	1,03	113,6	48,72
8,1	0,99	139,6	68,7	8,1	1,06	138,6	60,87
9,8	1,01	166,7	81,05	9,8	1,12	165,7	74,87
11,6	1,1	194,7	100,8	11,6	1,19	191,6	88,77
	U _b =30,4 V	/; <i>I</i> _b =1,1 A					
U _z (Pohon)	<i>I</i> _z (Pohon)	n (Pohon)	n (Brzda)				
[V]	[A]	[ot/min]	[ot/min]				
1,2	0,97	16,07	7,43				
3,1	1,02	37,97	15,39				
4,5	1,05	65	26,95				
6,9	1,15	116,1	43,04				

Tab. P.1: Měření magnetoreologické brzdy se stejnosměrným buzením

	U_{π} (Pohon):	= konst.= 1.2 V [.] Buzer	ní 10 V peak-to-peak S	in (5V amp	lituda): 1	Hz	
A [dB]	I_{z} (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]		<u></u> [А]	<i>P</i> [W]	S [VA]
7	0.7	12.65	6.39	0	0	0	0
9	0,74	12,39	6,32	6,9	0,2	1,3	1,3
12	0,75	11,84	5,71	15,2	0,4	6,4	6,5
13,5	0,76	11,66	5,65	20,6	0,6	11,4	11,6
15,5	0,77	11,65	5,57	24,5	0,7	16,1	16,3
	U _z (Pohon) =	= konst.= 1,2 V; Buzer	ní 10 V peak-to-peak S	in (5V amp	lituda); 2	Hz	
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,7	12,82	6,44	7	0,2	1,3	1,3
9	0,71	12,14	6,24	13,5	0,3	4,3	4,5
12	0,72	12,1	6,23	20,8	0,5	10,2	10,8
13,5	0,73	12,07	6,16	28,4	0,7	18,6	19,8
15,5	0,74	11,75	5,93	36,6	0,9	31,4	33,5
	$U_{\rm z}$ (Pohon) =	= konst.= 1,2 V; Buzer	ní 10 V peak-to-peak S	in (5V amp	lituda); 3	Hz	
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}\left[{ m V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,7	12,86	6,92	7,4	0,2	1	1,2
9	0,71	12,63	6,69	15	0,3	4	4,7
12	0,72	12,38	6,47	24,6	0,5	10,4	12,5
13,5	0,72	12,17	6,2	31,7	0,7	17,4	21,1
15,5	0,73	11,95	6,11	40,3	0,8	27,5	33,4
	$U_{\rm z}$ (Pohon) =	= konst.= 1,2 V; Buzer	ní 10 V peak-to-peak S	in (5V amp	lituda); 4	Hz	
A [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	$I_{\rm b}$ [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,68	13,63	7,18	10,6	0,2	1	1,2
9	0,69	13,56	6,96	12,6	0,3	2,5	3,3
12	0,71	13,38	6,84	27,2	0,4	7,3	9,8
13,5	0,71	13,24	6,71	35,2	0,5	13,7	18,7
15,5	0,72	13,02	6,66	41,2	0,7	21,8	29,8
	$U_{\rm z}$ (Pohon) =	= konst.= 1,2 V; Buzer	ní 10 V peak-to-peak S	in (5V amp	lituda); 5	Hz	
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,68	13,97	7,4	8,5	0,2	1	1,1
9	0,68	13,81	7,16	12,3	0,2	1,7	2,4
12	0,69	13,49	7,03	22,7	0,3	5,2	7,7
13,5	0,69	13,31	6,95	32	0,5	9,7	14,6
15,5	0,7	13,11	6,72	41,2	0,6	16,4	24,9
	$U_{\rm z}$ (Pohon) =	= konst.= 1,2 V; Buzer	ní 10 V peak-to-peak S	in (5V amp	lituda); 6	Hz	
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,67	14,09	7,82	10,6	0,2	1,1	1,8
9	0,68	14,02	7,64	12,6	0,3	3	4,9
12	0,68	13,93	7,29	27,2	0,4	6,7	11,2
13,5	0,69	13,61	7,02	35,2	0,5	10,9	18,4
15,5	0,69	13,2	6,92	41,2	0,6	14,7	24,9

Tah	P 2.	Měřen	í MR	hrzdy c	huzaním z	ganaratory	sianáhi	nanájocí no	mětí nahom	12V
I uv.	1.4.	wichen	i IVIII.	UI2uy s	Duzenim z	generaiora	signuiu –	парајест па	ιρειι ροποπι	· 1,2 /

20	1 /
- 20	14

	$U_{\rm z}$ (Pohon) =	= konst.= 1,2 V; Buzen	í 10 V peak-to-peak Si	n (5V ampl	lituda); 10	Hz	
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,65	14,14	8,02	9,6	0	0	0
9	0,67	14,09	7,95	15,8	0,2	1,2	2,2
12	0,68	13,96	7,74	27,5	0,3	2,9	7,6
13,5	0,69	13,72	7,59	35,8	0,4	6,4	12,8
15,5	0,69	13,69	7,29	40,7	0,4	8,1	16,3
	$U_{\rm z}$ (Pohon) =	= konst.= 1,2 V; Buzen	í 10 V peak-to-peak Si	n (5V ampl	lituda); 15	Hz	
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]
7	0,65	15,05	8,13	6,8	0	0	0
9	0,65	14,42	7,98	13,7	0	0	0
12	0,66	14,27	7,84	26,2	0,2	2,9	5,1
13,5	0,67	13,97	7,67	35,5	0,3	4,6	9,1
15,5	0,68	13,79	7,32	44	0,3	5,6	13,7
	U _z (Pohon) =	= konst.= 1,2 V; Buzen	í 10 V peak-to-peak Si	n (5V amp	lituda); 20	Hz	
A [dB]	U_{z} (Pohon) = I_{z} (Pohon) [A]	= konst.= 1,2 V; Buzen <i>n</i> (Pohon) [ot/min]	í 10 V peak-to-peak Si n (Brzda) [ot/min]	n (5V amp <i>U</i> _b [V]	lituda); 20 I _b [A]	Hz <i>P</i> [W]	<i>S</i> [VA]
A [dB]	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ $0,64$	= konst.= 1,2 V; Buzen <i>n</i> (Pohon) [ot/min] 15,25	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33	n (5V ampl U _b [V] 11,7	lituda); 20 I _b [A] 0	Hz <i>P</i> [W] 0	<i>S</i> [VA]
A [dB] 7 9	U_{z} (Pohon) = I_{z} (Pohon) [A] 0,64 0,65	= konst.= 1,2 V; Buzen <i>n</i> (Pohon) [ot/min] 15,25 14,8	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12	n (5V ampl U _b [V] 11,7 15,4	lituda); 20 <i>I</i> _b [A] 0 0	Hz P [W] 0 0	<i>S</i> [VA] 0 0
A [dB] 7 9 12	U_z (Pohon) = I_z (Pohon) [A] 0,64 0,65 0,65	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89	n (5V amp) U _b [V] 11,7 15,4 23,1	lituda); 20 <i>I</i> _b [A] 0 0 0	Hz P [W] 0 0 0	<i>S</i> [VA] 0 0
A [dB] 7 9 12 13,5	$U_{z} (Pohon) = I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75	n (5V amp) U _b [V] 11,7 15,4 23,1 33,1	lituda); 20 <i>I</i> _b [A] 0 0 0 0,2	Hz P [W] 0 0 0 2,9	<i>S</i> [VA] 0 0 0 6,4
A [dB] 7 9 12 13,5 15,5	$U_{z} (Pohon) = I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,66	konst.= 1,2 V; Buzen <i>n</i> (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67	n (5V amp) U _b [V] 11,7 15,4 23,1 33,1 44,1	lituda); 20 I _b [A] 0 0 0 0,2 0,3	Hz P [W] 0 0 0 2,9 4,6	<i>S</i> [VA] 0 0 0 6,4 10,1
A [dB] 7 9 12 13,5 15,5	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,66 0,67 $U_{z} (Pohon) =$	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99 = konst.= 1,2 V; Buzen</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67 í 10 V peak-to-peak Si	n (5V amp) U _b [V] 11,7 15,4 23,1 33,1 44,1 n (5V amp)	lituda); 20 I_{b} [A] 0 0 0 0,2 0,3 lituda); 50	Hz P [W] 0 0 2,9 4,6 Hz	<i>S</i> [VA] 0 0 6,4 10,1
A [dB] 7 9 12 13,5 15,5 A [dB]	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,66 0,67 $U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99 = konst.= 1,2 V; Buzen n (Pohon) [ot/min]</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67 í 10 V peak-to-peak Si n (Brzda) [ot/min]	$ \begin{array}{c} \text{n} (5\text{V ampl}) \\ \hline U_{\text{b}} [\text{V}] \\ \hline 11,7 \\ \hline 15,4 \\ \hline 23,1 \\ \hline 33,1 \\ \hline 44,1 \\ \text{n} (5\text{V ampl}) \\ \hline U_{\text{b}} [\text{V}] \end{array} $	[ituda); 20 Ib [A] 0 0 0 0,2 0,3 [ituda); 50 Ib [A]	Hz P [W] 0 0 0 2,9 4,6 Hz P [W]	<i>S</i> [VA] 0 0 6,4 10,1 <i>S</i> [VA]
A [dB] 7 9 12 13,5 15,5 A [dB] 7	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,66 0,67 $U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,63	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99 = konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,8</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67 í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,5	n (5V amp) U _b [V] 11,7 15,4 23,1 33,1 44,1 n (5V amp) U _b [V] 8,4	$ \begin{array}{c} \text{lituda}; 20\\ I_b [A]\\ 0\\ 0\\ 0\\ 0,2\\ 0,3\\ \text{lituda}; 50\\ I_b [A]\\ 0\\ \end{array} $	Hz P [W] 0 0 2,9 4,6 Hz P [W] 0	<i>S</i> [VA] 0 0 6,4 10,1 <i>S</i> [VA] 0
A [dB] 7 9 12 13,5 15,5 A [dB] 7 9	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,67 $U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,63 0,64	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99 = konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,8 15,72</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67 í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,5 8,26	$\begin{array}{c} \text{n} (5\text{V ampl}) \\ \hline U_{\text{b}} [\text{V}] \\ \hline 11,7 \\ \hline 15,4 \\ \hline 23,1 \\ \hline 33,1 \\ \hline 44,1 \\ \text{n} (5\text{V ampl}) \\ \hline U_{\text{b}} [\text{V}] \\ \hline 8,4 \\ \hline 18,9 \end{array}$	[ituda); 20 Ib [A] 0 0 0 0,2 0,3 [ituda); 50 Ib [A] 0 0	Hz P [W] 0 0 2,9 4,6 Hz P [W] 0 0 0	<i>S</i> [VA] 0 0 6,4 10,1 <i>S</i> [VA] 0 0
A [dB] 7 9 12 13,5 15,5 A [dB] 7 9 12	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,67 $U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,63 0,64 0,64	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99 = konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,8 15,72 15,04</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67 í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,5 8,26 8,08	$\begin{array}{c} \text{n} (5\text{V ampl}) \\ \hline U_{b} [\text{V}] \\ \hline 11,7 \\ \hline 15,4 \\ \hline 23,1 \\ \hline 33,1 \\ \hline 44,1 \\ \text{n} (5\text{V ampl}) \\ \hline U_{b} [\text{V}] \\ \hline 8,4 \\ \hline 18,9 \\ \hline 25 \end{array}$	lituda); 20 I_b [A] 0 0 0 0 0 0 0 0,2 0,3 lituda); 50 I_b [A] 0 0 0 0 0 0 0 0 0 0 0 0	Hz P [W] 0 0 2,9 4,6 Hz P [W] 0 0 0 0 0	<i>S</i> [VA] 0 0 6,4 10,1 <i>S</i> [VA] 0 0 0
A [dB] 7 9 12 13,5 15,5 A [dB] 7 9 12 13,5	$U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,64 0,65 0,65 0,66 0,67 $U_{z} (Pohon) =$ $I_{z} (Pohon) [A]$ 0,63 0,64 0,64 0,65	<pre>= konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,25 14,8 14,39 14,16 13,99 = konst.= 1,2 V; Buzen n (Pohon) [ot/min] 15,8 15,72 15,04 14,93</pre>	í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,33 8,12 7,89 7,75 7,67 í 10 V peak-to-peak Si n (Brzda) [ot/min] 8,5 8,26 8,08 7,91	$\begin{array}{c} \text{n} (5\text{V ampl}) \\ \hline U_{b} [\text{V}] \\ \hline 11,7 \\ \hline 15,4 \\ 23,1 \\ 33,1 \\ 44,1 \\ \hline n (5\text{V ampl}) \\ \hline U_{b} [\text{V}] \\ \hline 8,4 \\ \hline 18,9 \\ 25 \\ 32,5 \\ \end{array}$	$[ituda); 20 I_b [A] 0 0 0 0 0,2 0,3 [ituda); 50 I_b [A] 0 0 0 0 0 0 0 0$	Hz P [W] 0 0 2,9 4,6 Hz P [W] 0 0 0 0 0 0 0 0	<i>S</i> [VA] 0 0 6,4 10,1 <i>S</i> [VA] 0 0 0 0

	U_z (Pohon) = konst.= 3 V; Buzení 10 V peak-to-peak Sin (5V amplituda); 1 Hz										
<i>A</i> [dB]	I_{z} (Pohon) [A]	<i>n</i> (Pohon) [ot/min]	<i>n</i> (Brzda) [ot/min]	$U_{\rm h}$ [V]	$I_{\rm h}$ [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,8	43,3	22,67	8,9	0,3	2,4	2,5				
9	0,84	43,58	22,52	11,4	0,4	4,1	4,1				
12	0,87	43,26	20,61	16,5	0,5	8,6	8,7				
13,5	0,94	40,8	20,43	21,9	0,7	15,1	15,2				
15,5	0,97	40,1	20,14	24,5	0,8	19,1	19,2				
	U _z (Pohon)	= konst.= 3 V; Buzení	10 V peak-to-peak; Si	n (5V ampl	ituda); 2]	Hz					
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,77	47,38	24,48	7,2	0,2	1,4	1,4				
9	0,81	43,97	22,65	14	0,4	5	5,3				
12	0,85	42,61	21,61	20,9	0,6	11	11,7				
13,5	0,86	40,62	21,35	27,8	0,7	19	20,5				
15,5	0,89	40,35	20,86	35,3	0,9	30,3	32,6				
	Uz (Pohon)	= konst.= 3 V; Buzení	10 V peak-to-peak; Si	n (5V ampl	ituda); 5 l	Hz					
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,75	47,64	25,46	10,8	0,2	1,4	2				
9	0,76	47,4	25,33	15,3	0,3	3,2	4,7				
12	0,78	46,19	24,16	24,9	0,4	6,6	9,9				
13,5	0,82	45,94	23,33	33,2	0,5	11,4	17,3				
15,5	0,83	45,39	22,24	41,8	0,6	17,7	27,1				
	U_z (Pohon) = konst.= 3 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 10 Hz										
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,72	48,3	26,05	11,5	0	0	0				
9	0,73	48,16	25,92	16,7	0,2	1,4	2,8				
12	0,76	47,64	25,55	26,1	0,2	3,3	6,4				
13,5	0,77	47,51	24,46	34,3	0,3	5,6	10,9				
15,5	0,79	47,49	23,81	40,2	0,4	7,6	14,8				
	U _z (Pohon) =	= konst.= 3 V; Buzení	10 V peak-to-peak; Sii	n (5V ampli	tuda); 20	Hz					
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	$I_{\rm b}\left[{\rm A} ight]$	<i>P</i> [W]	<i>S</i> [VA]				
7	0,71	48,73	26,18	11,8	0	0	0				
9	0,72	48,5	26,02	19,6	0	0	0				
12	0,72	48,35	25,92	27,1	0,2	1,9	4,1				
13,5	0,73	47,47	25,62	33,5	0,2	2,8	6,1				
15,5	0,75	47,13	25,44	41,4	0,2	4,2	9				
	Uz (Pohon)	= konst.= 3; Buzení 1	0 V peak-to-peak; Sin	(5V amplit	uda); 50 H	Iz					
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	$I_{\rm b}\left[{\rm A} ight]$	<i>P</i> [W]	<i>S</i> [VA]				
7	0,72	49,3	26,35	11,9	0	0	0				
9	0,72	49,25	26,29	20,9	0	0	0				
12	0,72	49,17	26,19	29	0	0	0				
13,5	0,73	49,16	26,17	36,6	0	0	0				
15.5	0,73	49,1	25,84	41,7	0	0	0				

Tab. P.3: Měření MR brzdy s buzením z generátoru signálu – napájecí napětí pohonu 3 V

$U_{\rm c}$ (Pohon) = konst = 4.5 V: Buzení 10 V peak-to-peak Sin (5V amplituda): 1 Hz									
A [dB]	L (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$\frac{11}{11}$ (5 V amp			S [VA]		
7	I_z (1 0101) [A]	72.76	38 14	83	$1_b [A]$	10			
, 0	0,82	72,70	36,52	11.8	0,2	1,9			
12	0,85	72,17	35,32	11,0	0,5	78	7		
12	1.04	70,47	30,01	20.5	0,5	12.3	12.7		
15,5	1,04	70,47	30,91	20,5	0,0	17.2	12,7		
15,5	I,07	$-konst - 4.5 \text{ V} \cdot \text{Buzen}$	i 10 V peak to peak: S	24,5	lituda): 7	ц,2 Ца	17,0		
A [dB]	U_z (Pohon) [A]	= Kollst. = 4,5 V, Buzell	n (Brzda) [ot/min]		I [A]		S IVA1		
	I_z (FOHOII) [A]	72.21	20.52	$\frac{1}{2052} = \frac{1}{20} \frac{1}{10} \frac{1}{1$		1 [W]			
/	0,78	73,21	39,33	0,4	0,2	1,7	1,0		
9	0,82	72,5	38,30	22.2	0,4	4,5	4,0		
12	0,85	71,70	37,1	22,5	0,0	12,4	15,2		
15,5	0,86	71,59	35,49	28,9	0,7	20,5	22		
15,5	0,88	/1,55	54,5	52,9	0,9	20,4	28,4		
	U_z (Ponon) =	= $KORSL = 4,5 V$; Buzen	110 v peak-to-peak; s	u cv			C DVA I		
	I_z (Ponon) [A]	<i>n</i> (Ponon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[V]$	$I_{\rm b}[{\rm A}]$	P[w]	S [VA]		
7	0,76	75,82	40,95	8,4	0	0	0		
9	0,78	74,57	39,69	14,7	0,2	2,5	3,6		
12	0,82	73,04	37,71	26,7	0,4	7,5	11,3		
13,5	0,84	72,49	37,08	33,1	0,5	11,4	17,1		
15,5 0,85 72,22 35,37 40,4		40,4	0,6	16,5	25,2				
U_z (Pohon) = konst.= 4,5 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 10 Hz									
<i>A</i> [dB]	$I_{\rm z}$ (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,76	76,73	41,37	9,9	0	0	0		
9	0,77	75,75	41,3	17	0,2	1,5	2,9		
12	0,79	74,2	39,35	26,9	0,3	3,5	6,7		
13,5	0,8	74,15	39,11	33,4	0,3	5,2	10,2		
15,5	0,82	73,99	39,08	42,7	0,4	8,4	16,5		
	$U_{\rm z}$ (Pohon) =	konst.= 4,5 V; Buzení	10 V peak-to-peak; S	in (5V amp	lituda); 2 0	Hz			
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,75	77,12	42,25	10,2	0	0	0		
9	0,75	76,91	42,18	15,1	0	0	0		
12	0,76	76,8	41,79	26,5	0	0	0		
13,5	0,76	76,34	41,09	34,3	0,2	3	6,4		
15,5	0,77	76,01	40,72	41,7	0,2	4,4	9,6		
	$U_{\rm z}$ (Pohon)	= konst.= 4,5; Buzení	10 V peak-to-peak; Sir	ı (5V ampli	tuda); 50	Hz			
A [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,75	77,68	42,47	12,7	0	0	0		
9	0,75	77,6	42,45	20,6	0	0	0		
12	0,75	77,06	42,43	30,3	0	0	0		
13,5	0,75	77,05	42,42	35,4	0	0	0		
15,5	0,75	77	42,35	46,6	0	0	0		

Tab. P.4: Měření MR brzdy s buzením z generátoru signálu – napájecí napětí pohonu 4,5 V

U_z (Pohon) = konst.= 6.9 V: Buzení 10 V peak-to-peak Sin (5V amplituda): 1 Hz									
A [dB]	I (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm L}$ [V]		P [W]	S [VA]		
7	0.94	115.7	59.87	66	1_{b} $[11]$	13	14		
9	0,94	113,7	56.68	9.9	0,2	3	3		
12	1.05	113.7	38.33	16.7	0,5	87	8.8		
13.5	1,09	113,7	30,12	21.5	0,5	14.4	13.5		
15,5	1.1	112,1	30,02	21,3	0.8	18.2	18.3		
$\frac{10,0}{10,0} = \frac{10,0}{10,0} = \frac{10,0}{10,0$									
A [dB]	L (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]		L [A]	P [W]	S [VA]		
7	0.89	116	60 78	10.6	03	29	31		
9	0,89	0,02 114.6 57.91		15.7	0,3	6.5	6.9		
12	0,99	113.8	/8.5	22.5	0,6 13.1		14.1		
13.5	1.01	112.3	46.44	22,3	0,0	22	23.7		
15,5	1,01	112,5	40.08	35	1	0,8 22 1 31.4			
15,5	U_{-} (Pohon) =	= konst = 6.9 V Buzen	í 10 V peak-to-peak: S	in (5V amr	lituda): 3	Hz	55,7		
<i>A</i> [dB]	I_{τ} (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm h}$ [V]	$I_{\rm h}$ [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0.84	118.1	63.71	8.1	0.2	1.4	1.6		
9	0,89	116,3	59,59	15.3	0,4	4,6	5,5		
12	0.93	115.3	55.74	24.6	0.6	11.3	13.9		
13,5	0,97	114,4	51,05	33,2	0,8	20,2	25		
15,5	0,98	113,8	48,61	38	0,9	26,3	32,7		
U_z (Pohon) = konst.= 6,9 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 4 Hz									
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,83	118,2	65,56	8,1	0,2	1,2	1,5		
9	0,86	117,8	62,76	15,3	0,3	3,9	5,2		
12	0,9	116,5	58,81	24,6	0,5	8,6	11,8		
13,5	0,94	115,8	57,86	33,2	0,6	13,8	19,6		
15,5	0,97	114,6	53,87	39,5	0,7	21,1	29,3		
	U _z (Pohon) =	= konst.= 6,9 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	olituda); 5	Hz			
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,82	118,2	66,4	8,5	0,2	0,9	1,3		
9	0,86	118	62,81	16,5	0,3	3,1	46		
12	0,89	117,7	59,07	25,2	0,4	7,3	11,1		
13,5	0,92	117,2	58,46	31,8	0,5	10,7	16,4		
15,5	0,94	115,6	58,23	39,5	0,6	15,5	23,9		
	$U_{\rm z}$ (Pohon) =	konst.= 6,9 V; Buzeni	10 V peak-to-peak; S	in (5V amp	lituda); 1 0	Hz			
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,81	118,6	65,93	8,5	0	0	0		
9	0,82	118	64,13	17,7	0,2	1,7	3,2		
12	0,85	117,6	63,54	25,4	0,2	3,3	6,3		
13,5	0,86	117,1	62,85	33,1	0,3	5,3	10,5		
15.5	0,89	117	61,68	40,6	0,4	7,9	15,6		

Tab. P.5: Měření MR brzdy s buzením z generátoru signálu – napájecí napětí pohonu 6,9 V

U_z (Pohon) = konst.= 6,9 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 20 Hz									
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,8	118,7	67,64	10,5	0	0	0		
9	0,81	118,4	65,4	19,6	0	0	0		
12	0,82	118,2	65,27	26,9	0,2	2,1	4,6		
13,5	0,83 118,1		64,76	34,9	0,2	3,1	6,8		
15,5	0,83	118	64,46	42,5	0,2	4,5	9,9		
	$U_{\rm z}$ (Pohon) =	konst.= 6,9 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	lituda); 5 () Hz			
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,79	119,4	67,65	0	0	0	0		
9	0,8	119,3	67,33	0	0	0	0		
12	0,81	119,2	67,26	0	0	0	0		
13,5	0,81	118,8	67,2	0	0	0	0		
15,5	0,82	118,7	67,14	0	0	0	0		

	U_{z} (Pohon) = konst.= 8.1 V: Buzení 10 V peak-to-peak Sin (5V amplituda): 1 Hz										
A [dB]	I_{z} (Pohon) [A]	<i>n</i> (Pohon) [ot/min]	n (Brzda) [ot/min]		<i>I</i> ь [A]	<i>P</i> [W]	S [VA]				
7	0.91	142	75.05	6.5	0.2	1.2	1.3				
9	0.97	140.9	67.51	10.6	0.3	3.3	3.4				
12	1,03	137,8	38.08	16,8	0,5	8,6	9.2				
13,5	1,09	135,4	31,45	20,7	0,6	13	13,1				
15,5	1,11	135,6	31,41	24,6	0,7	18,6	18,7				
U_z (Pohon) = konst.= 8,1 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 2 Hz											
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,84	142,7	76,36	7,9	0,2	1,7	1,7				
9	0,91	142	68,54	14,7	0,4	5,7	6				
12	0,99	139,3	56,4	22,8	0,6	13,4	14,3				
13,5	1,02	138,6	47,74	29,2	0,8	21,8	23,4				
15,5	1,06	137,8	41,75	34,3	0,9	30,1	32,4				
	U _z (Pohon) =	= konst.= 8,1 V; Buzen	í 10 V peak-to-peak; S	sin (5V amp	olituda); 5	Hz					
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,82	142,8	78,23	9,1	0,2	1,1	1,5				
9	0,85	141,7	75,2	15,8	0,3	2,8	4,2				
12	0,92	141,2	69,41	27,3	0,4	8	12,1				
13,5	0,96	140,6	66,68	36	0,6	13,7	20,9				
15,5	0,99	139,8	65,96	40,6	0,6	17,1	26,3				
	$U_{\rm z}$ (Pohon) =	konst.= 8,1 V; Buzeni	10 V peak-to-peak; S	in (5V amp	lituda); 1 0	Hz					
A [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,81	144,5	79,08	10,5	0	0	0				
9	0,82	144	78,72	14,8	0,2	1,6	3,1				
12	0,84	142,8	77,41	23,8	0,2	3,5	6,7				
13,5	0,88	141,5	76,76	35,7	0,3	6,2	12,1				
15,5	0,9	141	72,37	42	0,4	8,4	16,6				
	$U_{\rm z}$ (Pohon) =	konst.= 8,1 V; Buzeni	10 V peak-to-peak; Si	in (5V amp	lituda); 2 0	Hz					
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,81	144,9	80,13	12,9	0	0	0				
9	0,82	144,3	79,3	18,3	0	0	0				
12	0,82	144,2	79,16	27,1	0,2	2	4,4				
13,5	0,83	144,1	78,71	34,5	0,2	3	6,7				
15,5	0,83	144	78,64	42,4	0,2	4,5	9,9				
	$U_{\rm z}$ (Pohon) =	konst.= 8,1 V; Buzeni	10 V peak-to-peak; S	in (5V amp	lituda); 50	Hz					
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]				
7	0,8	145	80,69	12,7	0	0	0				
9	0,81	144,6	79,96	20,6	0	0	0				
12	0,81	144,5	79,87	30,3	0	0	0				
13,5	0,81	144,4	79,54	35,4	0	0	0				
15.5	0.81	144.4	79.52	46,6	0	0	0				

Tab. P.6: Měření MR brzdy s buzením z generátoru signálu – napájecí napětí pohonu 8,1 V

	U (Pohon) = konst = 9.8 V Buzení 10 V peak-to-peak Sin (5V amplituda): 1 Hz									
4 [dB]	I (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$\frac{11}{11}$ (5 V amp		P [W]	S [VA]			
7	0.96	168	88.88	64	$1_b [A]$	12				
, 0	1.01	167.4	78.92	10.4	0,2	3.3	3.3			
12	1,01	166.5	/8,92	15,4	0,5	7.5	7.6			
13.5	1,12	165.7	40.83	10.3	0,5	11.4	11.5			
15,5	1,14	165.5	35.17	24.2	0,0	17.8	17.9			
$\frac{1}{100} = \frac{1}{1000} = \frac{1}$										
A [dB]	U_z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]		$L [\Delta]$		S IVA1			
7	I_z (1 0101) [A]	168 7	00.63			16				
0	0,83	167.7	70,63	1,7	0,2	6.1	6.3			
9	1.02	166.7	<i>19,02</i>	21.9	0,4	12.2	12.1			
12	1,05	165.0	40.27	21,0	0,0	20.4	21.0			
15,5	1,00	165.2	49,27	26,2	1	20,4	21,9			
15,5	1,08	103,2	43,53	50,1	1	33,2 H-	55,7			
	U_z (Ponon) =	= KONSL = 9,8 V; BUZEN	1 10 V peak-to-peak; S	u ry			C [VA]			
	I_{z} (Ponon) [A]	<i>n</i> (Ponon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[\mathbf{v}]$	$I_{b}[A]$	P[W]	S [VA]			
7	0,83	170,1	92,51	8,1	0,2	1,6	1,6			
9	0,87	168,8	85	14,1	0,3	3,8	4,6			
12	0,95	168,1	72,36	25,6	0,5	12,2	14,8			
13,5	0,99	168	60,95	32,3	0,6	19,1	23,4			
15,5	15,5 1,02 1		59,21	37,1	0,7	25,8	31,7			
	$U_{\rm z}$ (Pohon) =	= konst.= 9,8 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	olituda); 4	Hz				
<i>A</i> [dB]	$I_{\rm z}$ (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}\left[{ m V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,82	169,4	92,67	8,4	0,2	1	1,3			
9	0,87	169,1	89,82	16,3	0,3	4,2	5,4			
12	0,81	168,9	80,83	23,2	0,5	8	10,7			
13,5	0,93	168,4	71,03	33,5	0,6	15,2	21			
15,5	1,02	167,8	65,77	40,3	0,7	22,1	30,6			
	$U_{\rm z}$ (Pohon) =	= konst.= 9,8 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	olituda); 5	Hz				
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,82	170,1	93,65	8,7	0,2	1	1,4			
9	0,85	169,9	91,4	17,3	0,3	3,3	4,9			
12	0,9	168,1	84,17	25,6	0,4	7,2	10,8			
13,5	0,91	168,5	81,34	32,7	0,5	11,3	17,2			
15,5	0,98	168,1	75,06	38,8	0,6	15,7	24			
	$U_{\rm z}$ (Pohon) =	konst.= 9,8 V; Buzeni	10 V peak-to-peak; S	in (5V amp	lituda); 10	Hz				
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,81	170,9	93,8	10,5	0	0	0			
9	0,82	170,6	92,26	16,9	0,2	1,5	2,9			
12	0,82	170,3	90,81	24,8	0,2	3,1	6			
13,5	0,85	169,6	88,34	29,7	0,3	5,6	11			
15.5	0,87	169,9	85,23	39,9	0,4	7,6	15			

Tab. P.7: Měření MR brzdy s buzením z generátoru signálu – napájecí napětí pohonu 9,8 V

U_z (Pohon) = konst.= 9,8 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 20 Hz									
<i>A</i> [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,8	170,8	95,65	11,4	0	0	0		
9	0,8	170,6 94,06 17,7 0				0	0		
12	2 0,81 170,5 91,86 25,7		0	0	0				
13,5	0,81	169,8	91,24	33,8	0,2	2,9	6,4		
15,5	0,82	169,7	91,13	41,2	0,2	4,4	9,5		
	$U_{\rm z}$ (Pohon) =	konst.= 9,8 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	lituda); 5 0) Hz			
A [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]		
7	0,79	171	96,16	13,7	0	0	0		
9	0,79	170,8	96,04	20,1	0	0	0		
12	0,8	170,7	95,86	28,9	0	0	0		
13,5	0,8	170,6	95,76	34,6	0	0	0		
15,5	0,8	170,3	95,69	44	0	0	0		

	U_{r} (Pohon) = konst = 11.6 V Buzení 10 V peak-to-peak Sin (5V amplituda): 1 Hz									
A [dB]	I (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm h}$ [V]		P [W]	S [VA]			
7	0.93	203.6	107	71	0.2	14	15			
9	0.97	202.8	83.2	10.1	0.3	2.9	3			
12	1.1	201.8	55.43	17.6	0.5	9.3	9.4			
13.5	1.17	201.3	41.74	20.7	0.6	12.9	12.9			
15,5	1,23	200,6	38,24	24,4	0,7	17,9	18			
U_{τ} (Pohon) = konst.= 11.6 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 2 Hz										
<i>A</i> [dB]	I _z (Pohon) [A]	<i>n</i> (Pohon) [ot/min]	<i>n</i> (Brzda) [ot/min]	$U_{\rm b}$ [V]	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,91	206,2	110,7	8	0,2	1,7	1,8			
9	0,96	205,6	95,12	15,6	0,4	6,3	6,7			
12	1,07	202,5	71,2	23,1	0,6	13,7	14,6			
13,5	1,13	201,5	58,83	28,7	0,8	20,9	22,4			
15,5	1,15	200,8	48,69	34,2	0,9	29,7	31,8			
	$U_{\rm z}$ (Pohon) =	konst.= 11,6 V; Buzer	ní 10 V peak-to-peak;	Sin (5V am	plituda); 5	Hz				
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,92	208,6	111,3	11,8	0,2	1,7	2,4			
9	0,95	208,1	107,8	14,9	0,3	2,9	4,2			
12	1,04	205,7	96,97	25,5	0,4	7,1	10,7			
13,5	1,08	205,5	96,72	32,9	0,5	11,5	17,5			
15,5	1,13	205,1	84,33	41,5	0,7	27,9	27,4			
U_z (Pohon) = konst.= 11,6 V; Buzení 10 V peak-to-peak; Sin (5V amplituda); 10 Hz										
A [dB]	I _z (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,91	208,5	115,8	11,9	0	0	0			
9	0,93	207,7	113	16,6	0,2	1,5	2,9			
12	0,95	206,1	110,7	26,4	0,3	3,5	6,8			
13,5	0,97	206	109,5	33	0,3	4,6	9			
15,5	1	205,3	105,3	41,5	0,4	7,9	15,4			
	$U_{\rm z}$ (Pohon) =	konst.= 11,6 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	olituda); 2	0 Hz				
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\rm b}\left[{ m V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,91	209,2	115,9	12,5	0	0	0			
9	0,92	208,7	115,4	17,6	0	0	0			
12	0,92	208,5	114,8	26,8	0	0	0			
13,5	0,92	208	114,3	33,1	0,2	3	5,9			
15,5	0,94	207,6	113,8	42,1	0,2	4,5	9,2			
	$U_{\rm z}$ (Pohon) =	konst.= 11,6 V; Buzen	í 10 V peak-to-peak; S	in (5V amp	olituda); 5	0 Hz				
<i>A</i> [dB]	Iz (Pohon) [A]	n (Pohon) [ot/min]	n (Brzda) [ot/min]	$U_{\mathrm{b}}\left[\mathrm{V} ight]$	<i>I</i> _b [A]	<i>P</i> [W]	<i>S</i> [VA]			
7	0,9	210,6	117,6	13	0	0	0			
9	0,91	209,4	117,5	18,1	0	0	0			
12	0,91	209,3	117,4	27	0	0	0			
13,5	0,91	209,1	117,3	33,3	0	0	0			
15,5	0,91	208,9	117,2	43,1	0	0	0			

Tab. P.8: Měření MR brzdy s buzením z generátoru signálu – napájecí napětí pohonu 11,6 V

20	1	1
-70		4
20		

$U_{\rm r} = 1.5$ V· Frekvence zdroje buzení 50 Hz									
$U_{\rm b}$ [V]	<i>I</i> . [A]	I_{-} (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	S(Brz)[VA]	S (Poh.) [VA]			
10	0.03	0.69	8 51	17 71	0.32	1 04			
20	0.06	0.70	8,21	17,61	1.14	1,05			
50	0.12	0.70	7.97	17.43	6.1	1,05			
80	0.19	0.71	7,81	16.83	15.36	1.07			
100	0.24	0.73	7.56	16.32	24	1.10			
120	0,28	0,74	7,46	15,93	33.6	1,11			
150	0,35	0.75	7,36	15,9	52,5	1,13			
180	0,42	0,76	6,74	15,16	75,6	1,14			
200	0,46	0,78	5,92	14,99	92,2	1,17			
220	0,52	0,79	5,53	14,82	114,4	1,19			
250	0,59	0,80	5,31	14,78	147,5	1,20			
280	0,67	0,81	4,75	14,65	186,76	1,22			
	$U_z = 3.1$ V; Frekvence zdroje buzení 50 Hz								
$U_{\rm b}[{ m V}]$	$I_{\rm b}$ [A]	Iz (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	<i>S</i> (Brz.) [VA]	S (Poh.) [VA]			
10	0,0315	0,74	27,63	47,23	0,32	2,29			
20	0,057	0,74	25,61	46,43	1,14	2,29			
50	0,122	0,75	24,48	45,46	6,1	2,33			
80	0,192	0,76	23,69	45,09	15,36	2,36			
100	0,24	0,77	23,33	43,78	24	2,39			
120	0,28	0,78	22,94	43,15	33,6	2,42			
150	0,35	0,78	22,66	42,99	52,5	2,42			
180	0,42	0,78	22,09	42,12	75,6	2,42			
200	0,461	0,79	21,91	41,95	92,2	2,45			
220	0,52	0,80	21,75	41,72	114,4	2,48			
250	0,59	0,81	21,56	41,68	147,5	2,51			
280	0,667	0,82	21,51	41,57	186,76	2,54			
		U_{z}	= 4,6 V; Frekvence	zdroje buzení 50 Hz	1	1			
$U_{\rm b}[{ m V}]$	<i>I</i> _b [A]	I _z (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	S (Brz.) [VA]	S (Poh.) [VA]			
10	0,03	0,75	40,97	77,27	0,32	3,45			
20	0,06	0,75	40,92	74,77	1,14	3,45			
50	0,12	0,75	40,08	72,63	6,1	3,45			
80	0,19	0,76	39,07	72,48	15,36	3,50			
100	0,24	0,77	38,94	72,02	24	3,54			
120	0,28	0,78	38,6	69,75	33,6	3,59			
150	0,35	0,80	38,13	69,47	52,5	3,68			
180	0,42	0,81	36,82	69,28	75,6	3,73			
200	0,46	0,82	36,15	68,27	92,2	3,77			
220	0,52	0,83	34,92	68,02	114,4	3,82			
250	0,59	0,84	34,81	67,83	147,5	3,86			
280	0,67	0,85	33,63	67,54	186,76	3,91			

Tab.	P.9 :	Měření Ml	R brzdy s	buzením	ze střídavého	zdroje
------	--------------	-----------	-----------	---------	---------------	--------

 $U_{\rm b}$ [V]

 $U_{\rm b}\,[{
m V}]$

 $U_{\rm b}\,[{
m V}]$

0,67

1,02

9,79

186,76

U _z = 6,9 V; Frekvence zdroje buzení 50 Hz										
<i>I</i> _b [A]	Iz (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	S (Brz.) [VA]	S (Poh.) [VA]					
0,03	0,77	68,00	121,4	0,32	5,31					
0,06	0,77	67,15	119,5	1,14	5,31					
0,12	0,78	66,86	119,2	6,1	5,38					
0,19	0,78	65,32	118,0	15,36	5,38					
0,24	0,80	64,82	117,5	24	5,52					
0,28	0,81	64,07	116,8	33,6	5,59					
0,35	0,83	62,87	114,6	52,5	5,73					
0,42	0,86	57,38	114,2	75,6	5,93					
0,46	0,88	57,33	114,0	92,2	6,07					
0,52	0,89	55,60	113,7	114,4	6,14					
0,59	0,93	53,50	113,2	147,5	6,42					
0,67	0,96	52,29	112,6	186,76	6,62					
$U_z = 8,1$ V; Frekvence zdroje buzení 50 Hz										
<i>I</i> _b [A]	I _z (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	S (Brz.) [VA]	S (Poh.) [VA]					
0,03	0,79	81,09	144,5	0,32	6,40					
0,06	0,79	80,18	144,1	1,14	6,40					
0,12	0,79	79,48	143,2	6,1	6,40					
0,19	0,80	77,48	142,2	15,36	6,48					
0,24	0,81	75,85	142,0	24	6,56					
0,28	0,83	74,34	141,6	33,6	6,72					
0,35	0,86	71,61	140,7	52,5	6,97					
0,42	0,91	68,55	138,7	75,6	7,37					
0,46	0,92	67,75	135,7	92,2	7,45					
0,52	0,94	65,61	134,8	114,4	7,61					
0,59	0,96	63,84	134,6	147,5	7,78					
0,67	1,01	61,77	133,8	186,76	8,18					
	Uz	= 9,6 V; Frekvence	zdroje buzení 50 Hz		1					
<i>I</i> _b [A]	I _z (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	S (Brz.) [VA]	S (Poh.) [VA]					
0,03	0,80	95,48	171,1	0,32	7,68					
0,06	0,80	94,80	170,4	1,14	7,68					
0,12	0,80	93,91	169,4	6,1	7,68					
0,19	0,82	92,12	168,8	15,36	7,87					
0,24	0,83	90,94	168,2	24	7,97					
0,28	0,85	89,63	167,3	33,6	8,16					
0,35	0,87	86,15	167,0	52,5	8,35					
0,42	0,91	83,71	166,7	75,6	8,74					
0,46	0,93	80,60	165,2	92,2	8,93					
0,52	0,95	79,47	164,8	114,4	9,12					
0,59	0,98	78,94	164,5	147,5	9,41					

163,9

77,19

20	1	- 1
- 70		4
~~~		-

$U_z = 11,6 \text{ V}$ ; Frekvence zdroje buzení 50 Hz										
$U_{\rm b}[{ m V}]$	$I_{\rm b}\left[{\rm A} ight]$	Iz (Pohon) [A]	n (Brzda) [ot/min]	n (Pohon) [ot/min]	S (Brz.) [VA]	S (Poh.) [VA]				
10	0,03	0,90	114,7	208,1	0,32	10,44				
20	0,06	0,90	114,4	207,2	1,14	10,44				
50	0,12	0,91	113,7	205,8	6,1	10,56				
80	0,19	0,92	111,6	204,7	15,36	10,67				
100	0,24	0,95	110,5	202,5	24	11,02				
120	0,28	0,97	108,3	201,3	33,6	11,25				
150	0,35	1,00	105,3	200,1	52,5	11,60				
180	0,42	1,02	102,0	199,7	75,6	11,83				
200	0,46	1,03	99,34	199,4	92,2	11,95				
220	0,52	1,05	97,79	199,0	114,4	12,18				
250	0,59	1,09	93,55	198,7	147,5	12,64				
280	0,67	1,12	90,57	198,4	186,76	12,99				