
Evaluation of a Bricked Volume Layout for a Medical

Workstation based on Java

Peter Kohlmann†, Stefan Bruckner†, Armin Kanitsar‡, M. Eduard Gröller†

†Vienna University of Technology

Institute of Computer Graphics and Algorithms

Favoritenstrasse 9-11/E186

1040 Wien, Austria

{kohlmann | bruckner | groeller}@cg.tuwien.ac.at

‡AGFA

Diefenbachgasse 35

1150 Wien, Austria

armin.kanitsar@gwi-ag.com

ABSTRACT

Volumes acquired for medical examination purposes are constantly increasing in size. For this reason, the computer’s memory

is the limiting factor for visualizing the data. Bricking is a well-known concept used for rendering large data sets. The volume

data is subdivided into smaller blocks to achieve better memory utilization. Until now, the vast majority of medical workstations

use a linear volume layout. We implemented a bricked volume layout for such a workstation based on Java as required by our

collaborative company partner to evaluate different common access patterns to the volume data. For rendering, we were mainly

interested to see how the performance will differ from the traditional linear volume layout if we generate images of arbitrarily

oriented slices via Multi-Planar Reformatting (MPR). Furthermore, we tested access patterns which are crucial for segmentation

issues like a random access to data values and a simulated region growing. Our goal was to find out if it makes sense to change

the volume layout of a medical workstation to benefit from bricking. We were also interested to identify the tasks where

problems might occur if bricking is applied. Overall, our results show that it is feasible to use a bricked volume layout in the

stringent context of a medical workstation implemented in Java.

Keywords: Medical Visualization, Bricked Volume Layout, MPR, Medical Workstation.

1 INTRODUCTION

Usually, medical volume data sets are available as

stacks of two-dimensional images (slices). In a linear

volume layout these values are stored in a single

array. The rendering of enormously large data sets

becomes problematic with this storing approach. For

instance, the male data set of the National Library of

Medicine’s Visible Human Project [NLM] consists of

1871 axial anatomical images. Each is composed by

2048 x 1216 pixels with a color depth of 24 bit, which

amounts to about 14 GB. As this is considerably more

than the address space of a typical PC, the data set has

to be stored on hard disk and needs to be transferred

to main memory on demand. Because of limited

bandwidth these transfers are quite costly and result in

undesirable latency.

Bricking is a technique to subdivide the volume into

smaller parts to overcome the mentioned problem. A

single brick contains a fixed number of data values in

x-, y- and z-dimension. Accessing a certain data value

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic

in a bricked volume is inevitably more costly than in a

linear volume layout. After it is determined in which

brick the value is located, its position inside this brick

has to be calculated. Additional computational effort

is necessary if interpolation and gradient calculation

come into play. For instance, if the interpolation at a

certain location needs data values from several bricks,

an intelligent structure to ensure fast access to the

according values is required. Solving this task becomes

especially difficult within a Java-based implementation

as required by our collaborating company partner.

There are efficient addressing solutions implemented

in C++ which require a lot of array accesses. An array

access is quite cheap in C++, but it is significantly

slower in Java because of costly boundary checks.

However, the implementation of a PACS (Picture

Archiving and Communications System) in Java has

several benefits. Java offers tools for a convenient

plug-in development. In addition, it provides platform

independence.

For the evaluation whether a bricked volume layout

is applicable for a medical workstation based on Java

we investigate some common access patterns to the

volume data. Important tasks of such a workstation

are efficient handling, manipulation and display of

images. As most radiologists still prefer to examine

two-dimensional slices, our approach focuses on a

visualization technique called Multi-Planar Reformat-

ting (MPR). MPR provides an arbitrary reformation of

Journal of WSCG ISSN 1213-6972 83 ISBN 978-80-86943-00-8

a given two-dimensional image stack. Basically, a two-

dimensional plane is positioned and oriented inside the

three-dimensional volume and the interpolated data

values are displayed on this plane as shown in Figure 1.

The left image shows a three-dimensional view of the

data set and the slicing plane. In the right image the

corresponding MPR slice is presented.

In various PACSs it is possible to display medical data

by using three two-dimensional planes as shown in

Figure 2. These planes are aligned with the three major

axes to provide the axial, the sagittal and the coronal

view simultaneously.

Figure 1: To generate an MPR-slice, a plane is defined

which intersects the volume (left). Interpolated data

values are shown on this plane (right).

With a linear volume layout the time for computing

these different views varies according to the main data

alignment. As all views are displayed at the same time,

the slowest one is the performance bottleneck. For this

reason, it is important that our approach provides not

only a high, but also a rather constant frame rate for the

different views.

Figure 2: Axial, sagittal and coronal view of a CT

head data set. They are displayed simultaneously by

a PACS. In the lower right part of the display area an

overview image (scout view) is provided.

Segmentation is a very important task in medical vi-

sualization. Only if the access to the values of the data

set is possible in an adequate time it makes sense to

change the volume layout of a medical workstation.

Therefore, we compare the linear and the bricked vol-

ume layout in respect to important access patterns for

segmentation.

The remainder of this paper is structured as follows.

Section 2 provides an overview of the relevant previ-

ous work. In Section 3, our algorithms for the MPR

calculation are presented in more detail. We show the

different steps starting with the generation of the bricks

up to the final MPR image. A discussion of our results

concerning the performance of different access patterns

is provided in Section 4. Finally, Section 5 concludes

the paper and presents some ideas for future work.

2 RELATED WORK

Several approaches address bricking for ray casting.

Law and Yagel [LY96a] presented a distributed ray

tracing system. They identify coherency (data locality)

as a very important factor which highly influences

the performance. As their work employs an object

data-flow approach, objects which are once fetched

have to be fully processed before they are replaced

by other objects. To ensure multi-frame thrashless

ray casting, they divide the volume into equally sized

cells and advance a ray front to generate the image.

In addition, the screen is subdivided into a number of

stripes of equal width, which are distributed to different

available processors. Beside these stripes, each brick is

randomly assigned to a certain processor. A linked-list

data structure handles the information how the rays are

advanced through the cells.

Our work is also inspired by the approach of Grimm

et al. [GBKG04]. They focused on memory-efficient

CPU-based volume rendering and presented several

high-level optimizations for this purpose. As mini-

mization of memory usage is crucial for their approach,

several computations are performed on the fly. A

bricked volume layout is used along with refined data

addressing techniques to accelerate the on-the-fly

computations. Costly computations to address the data

values and performance-decreasing if-else statements

are avoided by using elaborated shift-operations in

addition to look-up tables. Efficient utilization of the

CPU like thread-level parallelism enables a significant

speedup compared to other techniques.

Approaches for interactive ray tracing based on brick-

ing which are optimized for distributed systems have

been presented by Parker et al. [PPL+99] and by

DeMarle et al. [DPH+03]. Guthe et al. [GWGS02]

accomplished an interactive walkthrough of large data

sets on standard PC hardware. They apply wavelet

filters to the subdivided (bricked) volume to get a

compression of the volume data. This representation

can be decompressed on-the-fly. Hardware texture

mapping is used for the rendering.

Weiskopf et al. [WWE04] presented a solution to

maintain constant frame rates in 3D texture-based

volume rendering. For direct volume visualization the

Journal of WSCG ISSN 1213-6972 84 ISBN 978-80-86943-00-8

Figure 3: The MPR pipeline.

performance is highly view-dependent because of the

texture memory layout of current graphics hardware.

Using bricks with alternating orientations helps to

avoid this varying performance.

A rendering pipeline for real-time rendering of isosur-

faces was introduced by Hadwiger et al. [HSS+05].

With bricking and acceleration techniques like empty

space skipping, they achieve interactive frame rates for

large volumes which exceed the GPU texture memory.

3 BASIC ALGORITHMS

Most of the approaches mentioned in the previous sec-

tion are focused on volume ray casting. As many ra-

diologists prefer to examine two-dimensional slices we

decided to evaluate the performance of an MPR imple-

mentation based on the different volume layouts. Our

goal was to achieve an implementation with a high and

rather constant frame rate. In this section, the basic al-

gorithms for the generation of the bricks and the MPR

implementation based on a bricked volume layout are

presented.

3.1 Brick Generation

To benefit from an efficient data addressing, the brick

size has to be a power of two. Grimm et al. [GBKG04]

experimented with various sizes and came to the con-

clusion that 64 KB (32 x 32 x 32 * 16 bit) is an

appropriate size in their hardware setup. Law and

Yagel [LY96b] also showed that this size is a good

choice. If the bricks are smaller, this is helpful for

acceleration techniques such as empty-space skipping.

But as a drawback additional computational effort is

necessary to manage smaller bricks.

In our case a brick is quite a simple data structure with

only few attributes. It has a unique ID to reference the

brick, the min- and the max-value of the contained data

and the information if it is padded. Padding has to be

performed if a certain brick is not completely filled with

data values. This occurs if the number of data values is

not a multiple of the brick dimension (32) in one of the

volume dimensions. As we want to store several bricks

instead of the monolithic volume, an important ques-

tion is how the bricks are generated.

First of all, we consider from where the data is ex-

tracted. The DICOM (Digital Imaging and Commu-

nications in Medicine) format is an open standard for

medical images. It provides a container for image data

and meta information like parameters of the scanner

and patient information and it contains a single file for

every slice. These slices are loaded successively but

not necessarily in the correct order. If a file is read,

its data array is extracted and the values are written to

the corresponding brick arrays. A layer of bricks in

xy-dimension is called a slab. For a volume in which

each slice is recorded with a resolution of 512 x 512,

a slab is built by 256 (16 x 16) bricks. The total num-

ber of slabs corresponds to the number of bricks in the

z-direction. As soon as all the brick arrays for a single

slab are filled with data values a notification is sent out.

Then, the MPR renderer can start to generate part of the

image. With this approach, it is not necessary to wait

until the whole set of DICOM images is loaded to start

the rendering process.

3.2 MPR Computation

After the generation of the bricks we focus on an impor-

tant access pattern to medical volume data. In Figure 3

our MPR pipeline shows the steps which are necessary

to produce the final image. The presented approach is

based on a brick-wise resampling of the volume along

rays. At first, a brick rasterization is performed to iden-

tify the bricks which are intersected by the MPR plane.

In the next step, rays within the plane are cast to deter-

mine enter- and exit points where the rays hit the vol-

ume. Then, the list of intersected bricks is traversed

and trilinear interpolation is performed to calculate the

values at the sample positions along the rays. A ray is

propagated to the next brick as soon as it is completely

processed for the current brick.

To ensure high frame rates we avoid floating-point oper-

ations as much as possible. Therefore, several floating-

point variables are converted into a fix-point represen-

tation via bit shifting. With this approach it is possible

to perform the whole interpolation process and many

intersection tests exclusively based on fix-point arith-

metic. In the following sections, the steps of the MPR

pipeline will be described in detail.

Journal of WSCG ISSN 1213-6972 85 ISBN 978-80-86943-00-8

3.2.1 Brick Rasterization

MPR visualizes the information which is resampled

on an arbitrarily oriented plane that intersects the vol-

ume. It is important to efficiently determine all the

bricks which have to be processed to render the result-

ing image. An efficient method to detect plane and

axis-aligned bounding box intersections, presented by

Möller and Haines [MH99], is used for these calcula-

tions.

At this point we do not need to know where exactly the

bricks are intersected. In a loop over all bricks, the rel-

evant ones are extracted. The used algorithm exploits

the fact that only a single diagonal of the box has to

be tested for intersection. It is the one which is most

closely aligned with the normal of the plane. In Fig-

ure 4 this is illustrated for the two-dimensional case.

The three gray squares represent bricks and the black

line is the two-dimensional version of the plane. The

thickened gray lines are the diagonals of the squares

which are most closely aligned with the plane’s normal

(black vector). It is sufficient to check if the black line

intersects these selected diagonals to determine if the

corresponding square is intersected.

Figure 4: Brick rasterization in the two-dimensional

case. Only the thickened diagonals of the squares (the

ones which are most closely aligned with the normal of

the plane) have to be checked for intersections with the

plane.

In the three-dimensional case we have to identify the

vertices of the diagonal of interest only for a single

brick. The diagonals of the other bricks which need

to be checked are calculated by adding the offset of the

specific brick in x-, y-, and z-direction. With this al-

gorithm the brick rasterization is performed very effi-

ciently.

3.2.2 Basic Ray Setup

This section describes the basic setup of the rays and

introduces some data structures. Two vectors and a

point are used to define the MPR plane as shown in Fig-

ure 5 (top). Position p defines the center of the plane.

The vectors u and v are orthogonal to each other and

span the plane. In Figure 5 (bottom) the mapping of this

plane to the image space is illustrated. A ray which is

lying within the MPR plane is cast through the volume

on each scan line. The pixels in image space are filled

by an equidistant sampling along each ray. In contrast

to ray casting, a ray is not utilized to gather the value for

a single pixel but to collect the values for a complete

scan line. To store some required information for re-

sampling, the rays are initially cast through the volume.

Each ray is an object with the following attributes:

• int enteringBrick

• int firstVolumeSample

• int lastVolumeSample

• int currentSamplePos

Figure 5: The point p and vectors u and v define the

MPR plane in object space (top). This plane is mapped

to the image space and rays are cast through the vol-

ume (bottom). The volume is resampled along these

rays.

Figure 6 illustrates the values which are stored by

these variables. We do a test if the ray intersects

the volume. If this is the case, there is a volume-

entry- and a volume-exit point. The ID of the first hit

brick is assigned to enteringBrick. As resampling is

performed along the ray, the first and the last of the

ray’s sample positions inside the volume are assigned

to f irstVolumeSample and lastVolumeSample. All the

sample positions of a ray which are outside the volume

Journal of WSCG ISSN 1213-6972 86 ISBN 978-80-86943-00-8

are set to the background color. The current sample po-

sition currentSamplePos is initially set to the value of

f irstVolumeSample.

Figure 6: Two-dimensional illustration of a ray which is

initially cast through the volume.

In addition, two arrays are used to store brick-

relevant information:

• short[] brick_fromRay

• short[] brick_toRay

The size of these arrays corresponds to the total num-

ber of bricks. A loop over all rays is performed to deter-

mine the attributes of each ray. Each of these ray tests

results in an update of the two brick arrays. The first ray

which hits a certain brick is stored in brick_ f romRay

and the respective last one is written to brick_toRay.

This structure keeps track of all the rays which intersect

a certain brick. In Figure 7 this is shown for an example

brick. It is intersected by the rays 231 to 235. The ac-

cording entries in the brick_ f romRay and brick_toRay

arrays are set to 231 and 235.

Figure 7: The brick is intersected by a number of

rays. Two brick_ f romRay and brick_toRay arrays

keep track of this by storing the number of the first and

of the last ray.

3.2.3 Brick Prefetching

In the brick rasterization step we identified all the bricks

which are intersected by the defined plane. The bricks

are organized in a cache implementation and they can

be addressed with unique IDs. There is a function call

to fetch and to release a single brick. It is necessary to

minimize the number of function calls as much as pos-

sible to achieve optimal performance. Therefore, we

fetch all the bricks which are needed to calculate an

image before we start with the resampling. After one

image is calculated, all the bricks are released again to

ensure an efficient usage of the available memory.

The image-relevant bricks are those which were iden-

tified by the brick rasterization and all their neighbor-

ing bricks. The brick neighbors are needed for access

patterns to the data during resampling or the computa-

tion of gradients as described by Grimm [Gri05]. In

Figure 8 this is illustrated for the two-dimensional sce-

nario.

Figure 8: Subdivision of the sample positions inside a

brick in 2D for the access patterns during resampling

and gradient computation. For resampling the samples

can be divided into 4 subsets (left). To calculate gradi-

ents 9 subsets can be built (right).

The left image shows that the sample positions of a

brick can be divided into 4 subsets if resampling has to

be performed. This subdivision is based on the fact that

for a resampling operation either only samples from the

same brick suffice or (in 2D) samples from one or three

neighboring bricks are necessary. For the majority of

the sample positions the needed neighboring samples

are available inside the same brick. But for the sam-

ple positions on the top edge, the right edge and the

top-right corner, samples from neighboring bricks are

needed. In three dimensions an 8-neighborhood is used

for resampling. Figure 8 (right) shows the subdivision

of the sample positions for the gradient calculation. An

8-neighborhood is needed for two dimensions. This

leads to 26 neighbors which have to be addressed in

three dimensions.

3.2.4 Brick-Wise Processing

For performance reasons it is not sufficient to traverse

one ray after another. This is very inefficient because it

is likely that consecutive rays partially process the same

data. As the cache size is limited, the same data is read

from main memory several times and slows down the

image computation. It is necessary to process the vol-

ume data brick wise to benefit from the bricked memory

layout and to improve data locality. The bricks, which

were identified during the brick rasterization step, need

Journal of WSCG ISSN 1213-6972 87 ISBN 978-80-86943-00-8

to be ordered in a front-to-back manner according to the

ray direction.

Afterwards, one brick after another is processed in the

determined order. For each brick, references to its

26 neighbors point to the according prefetched bricks.

Now, it is possible to look up the intersecting rays from

the brick_ f romRay and brick_toRay arrays for the cur-

rently active brick. A further loop is used to process this

list of rays. Depending on the three components of the

ray direction, a ray has to be tested with three sides of

the brick to determine how many ray samples are inside

the current brick. In a third loop the samples along the

ray are traversed within the brick. A brick is entirely

processed as soon as the contribution of all sample po-

sitions along its intersecting rays to the final image is

computed.

Grimm et al. [GBKG04] presented a very efficient way

to address the values within a brick. To facilitate tri-

linear interpolation they precompute the offsets for the

eight neighboring samples and store them in a look-up

table. With this approach they avoid to compute several

Boolean conditions in costly if-else constructs. These

look ups are on the one hand used to determine the brick

in which a certain sample position is located and on the

other hand to get the offset inside this brick. However,

they have an implementation in C++ where the access

of array elements is quite cheap. As the number of ar-

ray accesses in their approach is rather large for the in-

terpolation case, it is not applicable to our Java imple-

mentation. The high number of look ups would lead

to poor performance because of the array implementa-

tion of Java. For each access a boundary check is per-

formed, with the result that the performance drawback

compared with an array access in C++ is significant.

Depending on the sample position within a brick, we

can determine if the needed values for the trilinear in-

terpolation are entirely inside the brick or if they are

spread over neighboring bricks. To identify the in-

volved bricks we use a method presented by Grimm

et al. [GBKG04]. We assume to have the x-, y- and

z-position where the sample is located inside a brick.

Then it is possible to calculate the case of the location

inside the brick with the equation

case = 9*(((((x-1)&(b))|1)+1)>>5)

+ 3*(((((y-1)&(b))|1)+1)>>5)

+ (((((z-1)&(b))|1)+1)>>5),

where b is two times the brick dimension (32) mi-

nus 1 and >> 5 corresponds to a division by the

brick dimension. The case represents the subset of the

brick where the specific sample position is located as

shown in Figure 8 (right). Extended to three dimen-

sions there are 27 brick subsets. The case calculation

provides a value within the range [0,26]. This value

defines the location of the sample position inside the

active brick. With this information we know which

neighboring bricks are needed for the resampling

process. The case computation helps to avoid the

evaluation of a number of long Boolean statements

to determine the sample position inside the brick. A

switch/case construct is used to select the adequate

equation for the trilinear interpolation.

3.2.5 Ray Propagation

As soon as all the sample positions along a ray are pro-

cessed for the active brick, this ray is propagated to the

adjacent brick it enters as shown in Figure 9.

Figure 9: A ray is propagated to the adjacent brick

it enters after it is processed for the active brick. To

achieve this, the entries of the corresponding brick ar-

rays brick_ f romRay and brick_toRay are updated.

This has to be done because we have only registered

the rays at the bricks which they are entering first at

their way through the volume. We have already calcu-

lated the number of samples along the ray within the

active brick, the current sample position and the last

sample position of the ray which is inside the volume.

With this information we can determine the position of

the first sample along the ray which is outside the cur-

rent brick. This position is used to calculate the ID of

the next brick which is intersected by the current ray.

Afterwards, the ray is propagated by updating the two

arrays brick_ f romRay and brick_toRay and the current

sample position of the ray.

4 RESULTS

This section provides an overview of the results of the

presented implementation. At first, we will evaluate the

performance of the MPR computation for the bricked

volume layout versus the linear volume layout. Sec-

ondly, we will examine how the bricking influences

other important access patterns like the random access

to data values or a simulated region growing approach.

The PC for the performance tests is configured with an

AMD Athlon 64 Dual Core Processor 4400+, 2 GB

of main memory and an NVIDIA GeForce 7800 GTX

graphics card with 256 MB of internal memory. On the

Journal of WSCG ISSN 1213-6972 88 ISBN 978-80-86943-00-8

software side, the used Java version is the Java Runtime

Environment Version 5.0 Update 6.

4.1 MPR Computation

To compare the performance of an MPR implementa-

tion based on a linear volume layout with our imple-

mentation we measured the time to calculate a single

image. The specifications of the CT data set we used

for these tests are:

• Resolution: 512 x 512 x 333

• Spacing: 0.40/0.40/0.90 mm

We measured the time for the computation of a sin-

gle image for the cases where the slices are parallel

to the xy-plane (coronal), the xz-plane (axial) and the

yz-plane (sagittal). Additionally, the performance for

the computation of an arbitrarily orientated slice is of

interest. For the axial, sagittal and coronal test case

the plane is moved through the volume and the aver-

aged time per slice is calculated. In the case of the arbi-

trarily oriented slice, a plane, which is spanned by two

randomly generated vectors that are orthogonal to each

other, is defined within the volume. The directions of

these vectors are changed in a loop and the averaged

time is taken as the result. The size of the output im-

ages is 512 pixels in height and width. In Figure 10 the

results of these tests are listed.

Figure 10: The averaged time in milliseconds which is

needed to compute one MPR image for the axial, the

sagittal, the coronal and the random case.

Whereas we have a performance loss in the axial and

the coronal case of about 30 %, the sagittal case is ac-

celerated by about 30 %. In the case of the randomly

oriented plane the loss is about 16 %. This rather high

performance gap between the axial and coronal versus

the sagittal case using a linear volume layout is caused

by different memory access patterns. The CT scanner

that recorded the used data set generated primary im-

ages which were axially aligned. Thus, the cache hit

ratio for the calculation of an axial slice is very good in

contrast to the sagittal case. The utilization of a bricked

volume layout offers a much better data locality.

4.2 Random Access

The worst case scenario to access the data values con-

cerning data locality is a random access. We compared

the time to access 512 x 512 values which are randomly

distributed within the volume. The needed time for

this access pattern is 21.4 ms in the monolithic versus

41.4 ms in the bricked case. For a bricked volume lay-

out more address computations have to be performed to

get a certain value. We assume that we have three ran-

dom values x, y and z, the number of values per data di-

mension (xValues, yValues, zValues) and the array with

all the data values (data). For a monolithic volume lay-

out it is easy to access the value through

val = data[z*xValues*yValues

+ y*xValues + x];

Compared to this, the following effort is necessary

to access one value in a bricked volume layout. We

know the number of bricks in the three dimensions

(xBricks, yBricks, zBricks). At first, the number of the

brick (brickNum) which contains the sample position

has to be calculated.

int brickNumX = x >> 5;

int brickNumY = y >> 5;

int brickNumZ = z >> 5;

int brickNum = brickNumX

+ brickNumY*xBricks

+ brickNumZ*xBricks*yBricks;

After this, it is necessary to calculate the position in-

side the active brick (posInBrick) to access the value.

int xPosBrick = x%32;

int yPosBrick = y%32;

int zPosBrick = z%32;

int posInBrick = xPosBrick

+ (yPosBrick << 5)

+ (zPosBrick << 10);

val = bricks[brickNum][posInBrick];

The increased effort for this hierarchical address

computation compared to the simple calculation for the

linear volume layout causes the measured performance

difference of a factor two.

4.3 Spherical Access

The last access pattern we evaluated is a spherical ac-

cess. We used a parameterized sphere to simulate re-

gion growing which is a popular segmentation algo-

rithm to identify homogeneous areas inside the volume.

Therefore, the center of a sphere is randomly placed

inside the volume, with the constraint that the whole

sphere fits into the volume. For the test volume with

resolution 512 x 512 x 333, we measured the time to

access 512 x 512 data values on the parameterized sur-

face of the sphere. To simulate region growing, the ra-

dius of the sphere is varied between 5 and 150. With a

Journal of WSCG ISSN 1213-6972 89 ISBN 978-80-86943-00-8

linear volume layout the access times are quite stable.

They increase from 10.5 ms (radius 5) to 13.6 ms (ra-

dius 150). The reason for this is the worse cache hit

ratio if the values are more widespread within the vol-

ume. With bricking we have a constant access time of

15.5 ms in the case that all the bricks are prefetched.

But this strategy simulates a monolithic volume and

counteracts the benefit of bricking. In another scenario,

only the brick which holds the currently needed value

is fetched. One optimization ensures that no brick is

fetched if consecutive values are inside the same brick.

The needed time for the access of all the values takes

32 ms for a sphere with the radius 5 and increases up to

260 ms with a radius of 150.

5 CONCLUSIONS AND FUTURE

WORK

We have presented an implementation of a bricked

volume layout and evaluated different access patterns

to medical volume data. Our overall goal was to inves-

tigate the question if bricking is a good choice for a

medical workstation based on Java. The previous work

was almost exclusively based on ray casting. As many

radiologists prefer the examination of two-dimensional

slices, we focused on an MPR implementation. Com-

pared to a linear volume layout we achieved a very

good performance for this access pattern. Many PACSs

divide the screen into different sections to display MPR

images. Because of this splitting, the axial, the sagittal

and the coronal view can be displayed simultaneously.

As the computation of the different views can be

easily parallelized if a machine with several CPUs is

available, the view which needs the most time to be

computed is the performance bottleneck. Provided that

this parallelization is done, we can compare the frame

rates of the implementation based on a linear volume

layout with the ones which are based on the bricked

volume layout. Therefore, it is enough to compare the

frame rates of the according slowest views - the sagittal

ones. In this case we have an improvement for the

bricked volume layout from 40 to 57 fps or 42.5 %.

Beside this acceleration, it can be seen that the frame

rates for the different views (axial: 76 fps, sagit-

tal: 40 fps, coronal: 76 fps) are varying quite a lot using

a linear volume layout. With the bricked volume layout

we achieve almost constant frame rates for these views

because of a better data locality. Another important

point is, that the benefits of the bricked layout will

be more pronounced if the data set is large enough so

that it does not fit into the computer’s main memory

anymore.

The performance for the other access patterns is not

yet fully satisfying. Random access to the data values

takes about twice the time when bricking is used. For

the spherical access the radius of the sphere is crucial

for the performance. We are sure that optimizations

by taking into account and prefetching only affected

bricks improve the performance significantly. For

instance, the sphere can be subdivided and the bricks

which contain the surface of one part can be prefetched

and fully processed before moving to the next part.

Overall, we can recommend the application of a

bricked volume layout to medical workstations based

on Java. Future work needs to be done for different

segmentation algorithms like watershed or edge-based

techniques. Furthermore tracking algorithms and the

masking of certain areas of the volume have to be

adapted to ensure good performance for the bricked

volume layout.

ACKNOWLEDGMENTS

The work presented in this paper has been funded by

AGFA in the scope of the DiagVis project. We would

like to thank Rainer Wegenkittl and Lukas Mroz of

AGFA Wien for their collaboration and for providing

different CT data sets.

REFERENCES
[DPH+03] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and

C. Hansen. Distributed interactive ray tracing for large

volume visualization. In Proceedings of IEEE Sym-

posium on Parallel and Large-Data Visualization and

Graphics, pages 87–94, 2003.

[GBKG04] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. A

refined data addressing and processing scheme to ac-

celerate volume raycasting. Computers and Graphics,

28(5):719–729, 2004.

[Gri05] S. Grimm. Real-Time Mono- and Multi-Volume Render-

ing of Large Medical Datasets on Standard PC Hard-

ware. PhD thesis, Vienna University of Technology,

2005.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interac-

tive rendering of large volume data sets. In Proceedings

of IEEE Visualization, pages 53–60, 2002.

[HSS+05] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and

M. Gross. Real-time ray-casting and advanced shading

of discrete isosurfaces. In Proceedings of Eurographics

2005, pages 303–312, 2005.

[LY96a] A. Law and R. Yagel. Multi-frame thrashless ray casting

with advancing ray-front. In Proceedings of Graphics

Interfaces, pages 70–77, 1996.

[LY96b] A. Law and R. Yagel. An optimal ray traversal scheme

for visualizing colossal medical volumes. In Proceed-

ings of Visualization in Biomedical Computing, pages

33–43, 1996.

[MH99] T. Möller and E. Haines. Real-Time Rendering. AK

Peters, Ltd., Natick, MA, 1999.

[NLM] The National Library of Medicine. The Vis-

ible Human Project. Available online at

http://www.nlm.nih.gov/research/visible/.

[PPL+99] S. Parker, M. Parker, Y. Livant, P.-P. Sloan, C. Hansen,

and P. Shirley. Interactive ray tracing for volume visual-

ization. IEEE Transactions on Visualization and Com-

puter Graphics, 5(3):238–250, 1999.

[WWE04] D. Weiskopf, M. Weiler, and T. Ertl. Maintaining con-

stant frame rates in 3D texture-based volume rendering.

In Proceedings of IEEE Computer Graphics Interna-

tional, pages 604–607, 2004.

Journal of WSCG ISSN 1213-6972 90 ISBN 978-80-86943-00-8

	!WSCG2007_Journal_Proceedings_Numbered.pdf
	B07-full.pdf
	G59-full.pdf
	H61-full.pdf
	A47-full.pdf

