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Single View Calibration

� Single View Calibration (SVC) is the process of estimating
the intrinsic calibration parameters (i.e. interior orientation)
of a camera using only one perspective image

� It is a fundamental problem that needs to be solved before
any metric measurements can be made from an image

� It is a key ingredient for single view reconstruction (SVR),
i.e. the task of creating 3D graphical models for scenes for
which only a single image is available

SVR example

http://www.ics.forth.gr/~lourakis
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Single View Calibration (cont’d)

� In contrast to grid based calibration, SVC cannot rely on
the knowledge of the 3D coordinates of certain points in a
world reference frame; a self-calibration paradigm must be
adopted

� SVC also cannot rely on geometric constraints that need
multiple images to be computed (e.g., Kruppa equations,
absolute quadric)

� SVC should rely on geometric properties of the imaged
objects

� Those properties should be supplied via user interaction

http://www.ics.forth.gr/~lourakis
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Previous Work

� A pair of vanishing points corresponding to orthogonal
directions provides one calibration constraint [Caprile and
Torre 1990]

� Dual of the above: A pair of vanishing lines corresponding
to orthogonal planes provides one calibration constraint

� A metric planar homography provides two calibration
constraints [Liebowitz and Zisserman 1998]

� Multiple calibration constraints can be combined in a least
squares manner [Liebowitz and Zisserman 1999]

� Calibration constraints can also arise from surfaces of
revolution [Colombo et al 2005]

http://www.ics.forth.gr/~lourakis
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What this work is about

� The applicability of SVC methods depends on a minimum
number of calibration constraints being available

� This boils down to certain geometric arrangements
occurring in the imaged scene

� Such arrangements are not guaranteed to always be
present, thus an insufficient number of constraints might be
available

� Insufficient constraints force the use of approximate,
simplified camera models

� This work concerns a method for refining an initial
calibration estimate (possibly obtained using a simplified
model) with the aid of a priori known metric measurements

http://www.ics.forth.gr/~lourakis
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Single View Geometry

� Camera calibration is specified by matrix

�

having 5 DOFs:
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� 	 ,

�
� are the focal length in horizontal/vertical
pixels,

� � 
 � �
 �

the image principal point and � relates to the
image axes angle. Usually cameras are natural:
aspect ratio � � ���� � � �

, � � �

� Calibration is performed with the aid of the image of the
absolute conic (IAC)

� The IAC is the image of an imaginary conic that depends
only on the intrinsic parameters and not on camera pose

� A point ! on the IAC satisfies ! "$# ! � �

, where # is a
symmetric matrix # defined as # � � � � " �&% '

http://www.ics.forth.gr/~lourakis
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Single View Geometry (cont’d)

� Calibration through estimating the IAC is convenient since
SVC constraints are linear in the elements of #

� Given # ,

�

can be computed from its Cholesky
decomposition

� The vanishing point (VP) of a 3D line is the point onto
which infinitely far line points are imaged

� # allows certain direct 3D measurements on images

� The VPs of non-parallel coplanar 3D lines lie on the same
vanishing line

http://www.ics.forth.gr/~lourakis


�

Start

Introduction

Background�

Single View Geometry�

Single View Geometry

(cont’d)�

Metric Measurements

Using the IAC

Calibration Refinement

Implementation

Experimental Results

Summary

End

Lourakis & Argyros WSCG’07 - slide #8

Metric Measurements Using the IAC

� Let

( �*) � + �

denote the scalar ) " # +

for vectors ) and
+

� If , ' and ,.- are the vanishing points of two 3D lines, the
acute angle

/

between them can be computed from

012 � / � � 34 5768 9 6: ; 3<4 5 68 9 68 ; 4 5 6: 9 6: ;

� Using the law of sines, the length ratio of four non collinear
points
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http://www.ics.forth.gr/~lourakis
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Refining an Intrinsic Calibration Estimate

� Known angles and length ratios impose high-order
polynomial constraints on #

� Such constraints are not usable for directly obtaining # due
to the problems associated with solving nonlinear
polynomial equations

� Given an initial calibration estimate, known metric
properties can be used for improving it. The idea is to
refine the estimated # in a nonlinear optimization
framework so that metric measurements made with it are in
close agreement with those a priori known

http://www.ics.forth.gr/~lourakis
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Refining an Intrinsic Calibration Estimate
(cont’d)

� Let

I

be a set of line segment pairs with known 3D angles

� Let

J

be a set of line segment quadruples defining two
unknown but equal 3D angles

� Let

K

be a set of line segment pairs with known 3D length
ratios

� Let L �*MON � PN Q # �

be the estimated cosine of the angle
between segments

�M N � PN �SR I

with a priori known angle

TN

� Let U �M.N � PN Q # �
be the estimated length ratio for segments�M.N � PN �R K

with a priori known ratio

VN

http://www.ics.forth.gr/~lourakis
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Refining an Intrinsic Calibration Estimate
(cont’d)

� L �*MN � PN Q # � G 0 12 � TN �

: cosine difference error,

�M N � PN �SR I

� L �*MN � PN Q # � G L �XW N � YN Q # �

: cosine estimates difference error,�M.N � PN � W N � YN �SR J

� U �M.N � PN Q # �HG VN : length ratio difference error,

�*M N � PN �SR K

� A cumulative error term Z � I � J � K Q # �
is defined by summing

the squares of all cosine & length difference errors:

Z � I � J � K Q # � �
5\[] 9 ^] ;`_ a

b L �M.N � PN Q # �HG 012 � TN �c - d

5\[] 9 ^] 9 e] 9 f] ;_ g
b L �*MN � PN Q # �HG L �W N � YN Q # �c - d

5\[] 9 ^] ;`_ h
b � U �MON � PN Q # �HG VN c -

http://www.ics.forth.gr/~lourakis
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Refining an Intrinsic Calibration Estimate
(cont’d)

� Not all line segments involved in the definition ofZ � I � J � K Q # �

should be coplanar

� An arbitrary number of constraints can be accommodated

� The error term can be iteratively minimized over # using a
nonlinear least squares algorithm, e.g. Levenberg -
Marquardt

� The starting point for the numerical minimization is the
initial estimate of #

� Details on the parametrization of # are in the paper; 3 or 4
parameters suffice

http://www.ics.forth.gr/~lourakis
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Implementation Details

� Line segments were defined manually

� ML estimates of the VPs were estimated from groups of
parallel line segments

� Initial calibration estimates were obtained from orthogonal
VPs & metric rectification homographies

� Minimization of the error term was achieved by our free
levmar library
(http://www.ics.forth.gr/˜lourakis/levmar)

� Objective function Jacobian was computed analytically with
symbolic differentiation in MAPLE

http://www.ics.forth.gr/~lourakis
http://www.ics.forth.gr/~lourakis/levmar
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Experiments: Calibration Grid

0

1

2

3

4
5

Image of a calibration object with the lines employed to detect

orthogonal vanishing points (L) and line segments forming equal

angles and known length ratios used for refining calibration (R)
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Experiments: Valbonne Church

0 1 2
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5
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8 9

10 11

A frame from the Valbonne church sequence with the lines employed to

detect orthogonal vanishing points (L) and line segments defining known

scene properties that are used for calibration refinement (R)
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Experiments: Oxford Basement

0 1

2 3

45

An image from the “basement” sequence with the lines employed to detect

orthogonal vanishing points (L) and the line segments of equal lengths that

were used for refining single view calibration (R)
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Conclusions

� Presented a new nonlinear camera calibration refinement
technique

� This technique exploits a priori knowledge of metric scene
properties such as line segment angles and length ratios

� Has been experimentally demonstrated to significantly
improve the accuracy of initial intrinsic calibration estimates

� Has little computational overhead

http://www.ics.forth.gr/~lourakis
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Any questions?

http://www.ics.forth.gr/~lourakis
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