
Real-Time Rendering of Planets with Atmospheres

Tobias Schafhitzel Martin Falk Thomas Ertl

Visualization and Interactive Systems, Universität Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

{schafhitzel|falkmn|ertl}@vis.uni-stuttgart.de

ABSTRACT

This paper presents a real time technique for planetary rendering and atmospheric scattering effects. Our implementation

is based on Nishita’s atmospheric model which describes actual physical phenomena, taking into account air molecules and

aerosols, and on a continuous level-of-detail planetary renderer. We obtain interactive frame rates by combining the CPU

bound spherical terrain rendering with the GPU computation of the atmospheric scattering. In contrast to volume rendering

approaches, the parametrization of the light attenuation integral we use makes it possible to pre-compute it completely. The

GPU is used for determining the texture coordinates of the pre computed 3D texture, taking into account the actual spatial

parameters. Our approach benefits from its independence of the rendered terrain geometry. Therefore, we demonstrate the

utility of our approach showing planetary renderings of Earth and Mars.

Keywords: Atmospheric scattering; Ray Tracing; Planets; Terrain Rendering; Multiresolution; GPU Programming;

1 INTRODUCTION

Realistic image synthesis plays a crucial role in mod-

ern computer graphics. One topic is the light scattering

and absorbtion of small particles in the air, called at-

mospheric scattering. In the last years, several methods

were developed to simulate this effect. These meth-

ods make it possible to simulate light beams4, the

sky8;15(including the colors of sunrise and sunset) and

the Earth viewed from space12. Also, the application

area of these methods is very broad, reaching from ed-

ucational programs, CAD applications and terrain rep-

resentations to driving, space or flight simulations in

games. However, all these methods have to overcome

the high computational costs, caused by the complexity

of solving the scattering integral.

In this paper, we discuss a fast and precise method for

physically based image synthesis of atmospheric scat-

tering. Exact integration is provided by a pre computa-

tion step, where the whole scattering integral is solved.

This unloads the graphics hardware in a way, that the

GPU is only used for transforming the actual spatial

parameters to fetch the pre computed values. In con-

trast to volume rendering approaches, we simulate the

atmospheric scattering effect from each point of view

by rendering only two spheres.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen,
Czech Republic.

First, the light intensity reaching the observer’s eye

is pre computed for each point inside and outside the

atmosphere. This is followed by a fast evaluation of

the scattering integral for each rendered vertex easily

by fetching the pre computed texture. This fast compu-

tation makes this method applicable to rendering scenes

consisting of a larger amount of vertices, as they occur

in terrain rendering. Therefor, we prove our method

by combining atmospheric scattering and a continuous

level of detail planetary terrain renderer. Due to the

fact, that the pre computed light scattering values are

valid for planar spheres only, applying a rough planet’s

surface would implicate several problems. Thereby, the

integration distances change depending on the planet’s

structure, as well as the light contribution of the terrain

itself, which has to be accounted additionally. To ad-

dress this issues, we discuss the correct use of the pre

computed lookup texture using a minimal number of

shader instructions.

2 PREVIOUS WORK

Since physical phenomena are one of the most interest-

ing research topics in computer graphics, there has been

a considerably large amount of work on atmospheric

scattering in the last years. Most of the earlier work are

based on ray tracing, which is an appropriate method

for the creation of photo-realistic representations of the

atmosphere. But due to the high computational costs,

an interactive visualization was not realizable this time.

In previous work7;10;18, the scattering and absorbtion

of light is discussed. In 1993, Nishita et al.12 discussed

the basic equations of Rayleigh and Mie scattering ef-

fects. In this work, the attenuation of the incident light

was considered at each point of the atmosphere as well

as the attenuation from this point to the viewer. Further-

Journal of WSCG ISSN 1213-6972 91 ISBN 978-80-86943-00-8

P Pb

Pa

sl

sv

Pv

atmosphere

earth

Pc

Figure 1: Calculation of light reaching Pv.

more, additional to the sky’s color, the colors of clouds

and sea were discussed. Another model for rendering

the sky in the daytime was proposed by Preetham15

and Hoffman6, a physics based night model was de-

scribed by Jensen8. An extension of Preethams’s model

was proposed by Nielsen11 by considering a varying

density inside the atmosphere. In 2002, Dobashi et

al.4 proposed a GPU based method to implement at-

mospheric scattering using a spherical volume render-

ing. They solved the discrete form of the light scatter-

ing integral by sampling it with slices. Depending on

the shape of the slices, which are planar or spherical,

atmospheric scattering effects as well as shafts of light,

as occurring between clouds can be visualized. Later,

in 2004, O’Neil13 proposed an interactive CPU imple-

mentation, solving the scattering integral by ray cast-

ing. This method avoids expensive volume rendering

by representing the atmosphere by only two spheres,

one for the outer and one the inner boundary of the at-

mosphere. Ray casting is used to solve the discrete form

of the scattering integral by separating the ray into seg-

ments and calculate the attenuation of the light and to

the viewer for each sample point. As the connection be-

tween the vertices of the two spheres and the viewer is

used as view ray, this approach strongly depends on the

complexity of the scene. A vertex shader implementa-

tion was published by O’Neil14.

One of the main topics in terrain visualization con-

sists of the application of continuous level of detail

methods5;9;16. Cignoni et al.1 as well as Röttger et al.17

used a quadtree based approach to achieve an adaptive

mesh refinement of the terrain data. An adaption of the

BDAM approach for the application of planetary height

fields was published by Cignioni2. In our approach,

the method of Roettger is extended for planetary terrain

rendering.

3 ATMOSPHERIC SCATTERING

In this section, the basic equations of Rayleigh and

Mie scattering are considered (according to Nishita12).

First, we discuss the scattering of air molecules, de-

scribed by the Rayleigh scattering equation:

Ip(λ ,θ) = I0(λ)KρFr(θ)/λ 4, (1)

which describes the light scattered in a sample point P,

in dependence of λ , the wavelength of the incident light

at P and θ , the scattering angle between the viewer and

the incident light at P. I0 stands for the incident light,

ρ for the density ratio (given by ρ = exp(−h
H0

)), de-

pending on the altitude h and scale height H0 = 7994m,

and Fr for the scattering phase function, which indi-

cates the directional characteristic of scattering (Fr =
3
4
(1+ cos2(θ))).
K describes the constant molecular density at sea

level

K =
2π2(n2 −1)2

3Ns

, (2)

with Ns, the molecular number density of the standard

atmosphere and n, the index of refraction of the air.

In equation 1, the relation between the scattered light

and the wavelength of the incident light describes the

strong attenuation of short wavelengths. This is due to

the wavelength’s inversely proportional behavior to the

light attenuation. To determine the light intensity reach-

ing Pv in Figure 1, we have to consider two steps. First,

for each point P between Pa and Pb, the light reaching

this point needs to be attenuated. Second, the resulting

light intensity on each point P needs to be attenuated

a second time on its way to the viewer at Pv. The at-

tenuation between two points inside the atmosphere is

determined by the optical length, which is computed by

integrating the attenuation coefficient standing for the

extinction ratio per unit length, along the distance sv.

The attenuation coefficient β is given by:

β =
8π3(n2 −1)2

3Nsλ 4
=

4πK

λ 4
, (3)

which is integrated along the distance S and yields

t(S,λ) =
∫ S

0
β (s)ρ(s)ds =

4πK

λ 4

∫ S

0
ρ(s)ds. (4)

The scattering of aerosols is described with a differ-

ent phase function. Therefor, the improved Henyey-

Greenstein function by Cornette3 is used. To adjust

the rate of decrease of the aerosol’s density ratio, the

scale height H0 has to be 1.2km19. The optical length

of aerosols is the same as for air molecules, except for

the 1
λ 4 dependance. According to Nishita12, if the equa-

tions above are applied to Equation 1, the light intensity

at Pv leads to:

Iv(λ) = Is(λ)
KFr(θ)

λ 4
· (5)

∫ Pb

Pa

ρ exp(−t(PPc,λ)− t(PPa,λ))ds.

Journal of WSCG ISSN 1213-6972 92 ISBN 978-80-86943-00-8

4 REAL-TIME ATMOSPHERIC SCAT-

TERING

In current approaches for computing atmospheric scat-

tering effects, the performance mainly depends on the

complexity of the scene. Therefor, the scattering in-

tegral of Equation 5 is solved for each vertex belong-

ing to the scene geometry. By applying modern graph-

ics hardware, this approaches are quite fast, especially

when planets are restricted to simple spheres, consisting

only of few vertices. But an increasing complexity of

the scene makes it impossible to compute the scattering

integral for each vertex in real time anymore. This is

the case if you intend to render the structure of planets.

We avoid this lack of performance, by sourcing out the

scattering integral. Therefor, we pre compute the scat-

tering integral and store it in a 3D texture, and thereby,

we reduce the number of instructions which are neces-

sary to obtain the light attenuation value. The following

sections describe the creation of the lookup texture and

its use at the rendering stage.

4.1 Creating the Scattering Texture

As we aim to pre compute the light scattering inte-

gral, we have to reconsider Equation 5. It defines the

light contribution reaching the observers eye, when it

is placed at a position Pv and his view ray penetrates

the atmosphere from the point Pa to the point Pb. Basi-

cally, the light is attenuated two times, for each point on

PaPb. The first time from the light source to a position

P on the view ray, and the second time from P to the

observer’s position Pv. In accordance with this obser-

vation, the resulting light contribution depends on four

variables: the observer’s position Pv, the position of the

light source Pc and the entry and exit position of the at-

mosphere Pa and Pb. Furthermore, approximating the

integral as a Riemann sum requires an additional sam-

ple variable P. If we naively pre compute the scattering

integral, we have to compute the light intensity for each

point in the atmosphere, looking in each direction. This

means that we have to consider several distances PaPb.

And we also have to keep in mind, that all this pre com-

putations have to be done for each position of the light

source. This would result in nine scalar values when

the distance PaPb is represented by a three dimensional

vector.

O’Neil13 suggested to simplify the computation of

the optical depth (Eq. 4) from the light source to P by

parameterizing each point P by its height and its angle

to the Sun. This simplifies Equation 5 enormously, be-

cause the pre computed values can be used to determine

the optical depth from the light source to the sample

point t(PPc,λ) as well as for the attenuation from the

sample point to the observer. Nevertheless, the integral

from Pv to P remains. For dealing with this expensive

computation, we have extended O’Neils approach by

additionally considering the view direction.

The algorithm works as follows: first, we define the

parametrization of our 3D texture. As discussed above,

we have to consider a number of parameters, which

have to be reformulated in a way they can be used to

parameterize a three dimensional lookup table. For the

sake of simplicity, we now assume the observer to be

situated inside the atmosphere, and discuss the general

case later in this section. Basically, the observer can

be situated at an arbitrary position, looking in an ar-

bitrary direction at an arbitrary daytime. Considering

the observer’s position Pv and his view direction Rv at a

specific daytime we can assume that if P′
v = (0, |Pv|,0)T

and R′
v = (sin(θ),cos(θ),0)T then

cos(θ) =
1

|Pv||Rv|
< Pv,Rv >=

1

|P′
v|

< P′
v,R

′
v > . (6)

This means, that each actual position and the corre-

sponding view direction can be described by its height

h = |Pv| and the view angle θ . Exploiting this behav-

ior, we place the camera at each height inside the at-

mosphere to send out the view rays in each direction.

Based on the fact, that the boundaries of the atmosphere

are considered as spherical, also the distance PaPb is the

same for every view ray with angle θ with respect to the

current position P′
v. While computing PaPb, it is quite

important to test R′
v for intersection with the inner and

the outer boundary sphere. We also have to consider,

that the pre computation regards the planet’s surface as

a simple sphere. How to deal with structured surfaces

is described in Section 4.2.

To complete this formulation, we have to introduce

a light source to our model. As discussed above, the

attenuation from a light source to an arbitrary position

can also be described by the height of the sample point

and the angle δ to the light source. For solving equation

5 for a position P′
v and a view ray R′

v, the light attenua-

tion t(PPc,λ) and t(PPa,λ) can easily be computed by

sampling along R′
v and computing the values according

to the height of the sample point and its angle to the

light source. Finally, we introduce the daytime to our

model, by applying the pre computation for all angles

to the sun. Thus, the angle δ builds the third parameter

of the 3D texture.

Special consideration should be taken for the case,

when the observer is situated outside the atmosphere.

Since there is no light scattering outside the planet’s

atmosphere, the distance of the observer to the planet

is not accounted in our pre computation step. Never-

theless, viewing the planet from outside builds a spe-

cial case, in which the computation can be considered

the same for each position, even if the camera is sit-

uated on the atmosphere’s outer boundary or the cam-

era is far away. Thus, the camera has to be virtually

moved towards the planet, until it hits the outer bound-

ary of the atmosphere. Afterwards, we start the compu-

tation. Thus, we only need to consider one additional

Journal of WSCG ISSN 1213-6972 93 ISBN 978-80-86943-00-8

height in our pre computation: the height if the cam-

era is outside the atmosphere, which the height of the

atmosphere plus an additional, minimal offset.

// Loop over all view angles to the

camera

foreach angleViewer < resZ do1

// Get angle θ

θ = GetViewAngle(angleViewer);2

// Generate a view vector

R′
v = vec3d(sin(θ),cos(θ),0);3

// Loop over all view angles to the

light source

foreach angleSun < resY do4

// Get angle δ

δ = GetLightAngle(angleSun);5

// Loop over all heights of the

camera

foreach height < resX do6

// Get current height inside

the atmosphere

h = f RadIn+((f RadOut − f RadIn) ·7

height)/(resX −1);
// Generate the position

vector

Pv = vec3d(0,h,0);8

// Finally, compute the light

scattering

color = ComputeScattering(Pv, δ , Rv);9

end10

end11

end12

The code sample above shows how simple the 3D

lookup texture is created. The texture is given with

its sizes in the x,y and z direction. For each voxel,

the corresponding angles and the height is used for

computing the light intensity, by evaluating the light

scattering integral. Therefor, we solve the discrete

form of Equation 5:

Iv(λ) = Is(λ)
KFr(θ)

λ 4

k

∑
i=0

ρ exp(−tl − tv) (7)

Due to the fact that the whole scattering integral is pre

comuted, the sample rate k as well as the sample rate

for the optical depth tl and tv can be set very high.

4.2 Applying the Scattering Texture

Since the lookup texture is computed, the calculation of

the light intensity is quite simple and needs only few in-

structions on the GPU. During the rendering phase, two

independent scene objects are drawn: a sphere, repre-

senting the sky and the planet’s surface. In Section 5,

the rendering of the terrain is discussed in more detail.

To demonstrate how the light intensity influences our

scene, we first consider the rendering of the sky.

Actually, the sky is represented by rendering only

one tesselated sphere, which is placed nearby the outer

PVPV

Pg

Pb

Figure 2: Obtaining the wrong light intensity: instead

of PgPv the distance PvPb was used for the pre compu-

tation

boundary of the atmosphere. Furthermore, we enable

front face culling to ensure, that the ray between the

observer and the sphere is penetrating the atmosphere

before the intersection. In contrast to the atmosphere,

the terrain is rendered with back face culling enabled,

because we are only interested in the visible part of

the planet’s surface. To obtain the light contribution,

first the view ray Rv = Pg − Pv is computed, where

Pg stands for the position of the current vertex. If

the observer is outside the atmosphere, the camera is

moved to the outer boundary. Then, the height is ob-

tained by h = |Pv| as well as the cosine of the view

angle cos(θ) = 1
|Pv||Rv|

< Rv,Pv > and the sun angle

cos(δ) =< Pc,Pv >. After rescaling this three para-

meters to [0,1], the lookup texture is fetched. Because

of the nonlinear behavior of the scattering function, it

makes sense to implement the texture fetch as a frag-

ment program, instead of a vertex program, with trilin-

ear interpolation enabled. This minimizes the interpo-

lation error, since the sample frequency of the fragment

shader is much higher and much faster than a compara-

ble vertex shader implementation.

In contrast to the sky, the computation of the terrain

needs some more consideration. If we simply apply the

texture lookup to any other vertices of the scene geom-

etry, like the vertices representing the terrain, the com-

putation fails. Figure 2 shows this case. This behav-

ior results from the pre computation, which treats the

ray to intersect a simple sphere without considering the

height field of the terrain. Thus, the light scattering is

computed for the whole distance PvPb. To discuss how

it is possible to compute the light scattering along the

distance PgPv, the pre computed values have to be an-

alyzed. The pre computed light scattering along PvPb

can be formulated as the scattering along PgPv plus the

scattering along PgPb. Rewriting Equation 5 to obtain

the light scattering along PgPv would lead to

I′v(λ) = Is(λ)
KFr(θ)

λ 4
· (8)

(

∫ Pb

Pv

ρ exp(−tl − tv)−
∫ Pb

Pg

ρ exp(−tl − tv)

)

,

Journal of WSCG ISSN 1213-6972 94 ISBN 978-80-86943-00-8

where both terms can be obtained fetching the pre com-

puted texture. In fact, the first term is obtained any-

way, simply using the current parameters as input. The

second light contribution can be determined easily by

moving the camera to the intersection point Pg without

changing the view angle. Then we access the lookup

texture a second time and subtract the result from the

color value of the first texture lookup. By using this

mechanism, it is possible to obtain the light contribution

for any point inside the atmosphere considering several

kinds of geometry.

Finally, we discuss the correct illumination of the ter-

rain. As we are able to compute the light scattering be-

tween the object and the viewer, the contribution of the

illuminated terrain has been not considered yet. Similar

to the air molecules and aerosols, the light illuminat-

ing the terrain is attenuated two times. While the atten-

uation from the light source to the terrain is even the

same, the spectral shift of the illuminated terrain to the

observer needs to be discussed in more detail: first, we

only consider the light intensity Ig reaching the terrain

geometry. Mathematically it is defined as

Ig(λ) = Is(λ)
KFr(θ)

λ 4
·ρ exp(−t(PgPc,λ))ds. (9)

The resulting Ig is used as incident light intensity for

illuminating the terrain geometry. We have applied a

Lambert reflection, which considers the cosine of the

angle ϕ between the incident light and the terrain nor-

mal as the intensity of the light absorbed by the terrain.

Introducing the diffuse reflection to equation 9 yields

Ig(λ) = Is(λ)
KFr(θ)

λ 4
·ρcos(ϕ)exp(−t(PgPc,λ))ds. (10)

Additionally, the attenuation of the reflected color

needs to be attenuated on its way to the viewer. As de-

fined by Nishita12, the attenuation has to be multiplied

with the intensity of the terrain geometry

Igv(λ) = Ig exp(−t(PgPv,λ))ds. (11)

This equation describes the light contribution of the ter-

rain, without considering the light scattering along the

distance PgPv. Since the light contributions of all sam-

ple points are accumulated to determine the intensity

reaching the observer, Equation 8 has to be accounted

as

I′′v (λ) = Igv + I′v, (12)

where I′′v stands for the overall intensity reaching the

observer’s eye if he is looking on the rough surface

of a planet. While Equation 8 is implemented as two

fetches of the pre computed 3D texture, the easiest way

to obtain Ig and Igv, is to adopt the 2D lookup texture

described in O’Neil13. As this texture stores the op-

tical depth for each point inside the atmosphere, the

light attenuation between the light and the geometry can

fetched as well as the attenuation between the geome-

try and the observer. For the other parameters shader

constants are used, excepting the phase function Fr(θ)
which is pre computed as 1D texture. The follow-

ing pseudo fragment shader code demonstrates the low

number of instructions used for this complex computa-

tion.

// Compute Rv

Rv = normalize(Pg −Pv);1

// If the camera is outside the

atmosphere, move it to the outer

boundary

dist = Intersect(Pv, Rv, SphereOut));2

if dist > 0 then3

Pv = Pv +Rv ·dist;4

end5

// Compute h, θ and δ

h = MapToUnit(|Pv|);6

θ = MapToUnit(< Pv,Rv >);7

δ = MapToUnit(< Pc,Pv >);8

// Get the light intensity without

considering the height field

Iv = tex3D(texPre3D, vec3d(h,δ ,θ));9

// Move the camera to the intersection

point to obtain the offset

h′ = MapToUnit(|Pg|);10

δ ′ = MapToUnit(< Pc,Pg >);11

Io f f = tex3D(texPre3D, vec3d(h′,δ ′,θ));12

// Correct the intensity

I′v = Iv − Io f f ;13

// Now compute the light contribution

of the terrain

Fr = tex1D(texPhase, θ);14

tgc = tex2D(texPre2D, h′, δ ′);15

tgv = tex2D(texPre2D, h′, MapToUnit(< Pg,Rv >));16

Igv = IsKFr1/λ 4 ·ρ· < Ng,Pc > ·exp(−tgc − tgv);17

// Finally, get the overall light

intensity at Pv

I′′v = Igv + I′v;18

return I′′v ;19

Please keep in mind, that in the case the camera is sit-

uated inside the atmosphere, the computation of tgv re-

quires one additional lookup (see O’Neil13).

5 PLANETARY TERRAIN RENDER-

ING

In this section we discuss the terrain renderer we have

optimized for the visualization of round shapes, like

planets. Therefor, we extended an existing planar ter-

rain renderer 17 to render spherical objects. Indeed, the

extension to achieve the round shape of a planet is quite

easy, simply applying a spherical mapping of the ver-

tices. However, this modification implicates a number

of further necessary adaptations.

Journal of WSCG ISSN 1213-6972 95 ISBN 978-80-86943-00-8

Figure 3: A two stage clipping algorithm is applied on

the whole planet. Upper left: the corresponding image

reaching the observer.

One adaption consists of the dynamic mesh refine-

ment (geomorphing). As defined in17, the mesh refine-

ment criterion f is defined by:

f =
l

d ·C ·max(c ·d2,1)
, (13)

where l is the distance to the viewer and d is the length

of the block, which needs to be refined. The constant

values C and c are standing for minimum global res-

olution and the desired global resolution. The surface

roughness value is defined as d2 = 1
d

max |dhi|, where

dhi is the elevation difference between two refinement

levels. If f < l, the mesh needs to be refined. Applying

this criterion to a spherical terrain representation, the

viewpoint and the vertices needs to be in the same coor-

dinate system. To obtain a correct length l, the spherical

transformation of the terrain needs to be attended (see

Figure 4(i)). Therefore, if we assume the position Pv

of the viewer given in world space, an inverse spherical

mapping of Pv is necessary.

For further optimization, we introduced a spherical

view frustum clipping: the terrain consists of several

tiles, which can differ in the resolution of their local

height field, but not in their size in world space. Thus,

a tile with a higher local resolution implicates a higher

level of refinement in world space. Due to their con-

stant size, these tiles are well suited as input for the

clipping algorithm. The clipping algorithm consists of

two stages: in the first stage, all non-visible tiles are

clipped. This stage is accomplished before the mesh

refinement, by a comparison of the vector of the view

direction and the four vertices, building the border of

the tile to be tested. If the cosine between this vectors

is negative, the tile can be considered as visible. Thus,

the first stage can be considered like a kind of crude

back face culling, just working with whole terrain tiles.

The second stage implements a smoother clipping, tak-

ing into account the grid refinement. Therefor, the quad

tree (for further information see17), in which the geom-

etry is stored, is traversed down and each vertex, situ-

ated in the center of the current quad, is tested against

the four clipping planes. If the visibility test fails, the

Earth Dataset Mars Dataset

domain size 2572×24×12 652×24×12

outside 67.26 83.51

inside 30.31 56.02

only terrain

outside 76.44 102.37

inside 35.83 61.19

Table 1: Performance outside and inside the at-

mosphere (in fps).

Resolution Optimized Vertex Shader

1282 608.49 151.06

2562 181.54 35.92

5122 48.67 9.97

Table 2: Performance of the atmosphere only, (in fps).

quad is clipped, by removing the entry of the quad tree.

Figure 3 shows the two-stage clipping (center) and the

resulting visualization (upper left).

6 RESULTS

Table 1 shows the measured performance in frames per

seconds. All the measurements are made on an AMD

Athlon64 X2 Dualcore 4800+ 2.4 GHz machine with a

GeForce 7900 GT graphics card with 256 MB of mem-

ory and a viewport of 800 × 600. First, the planets

are viewed from "outside" the atmosphere, as in Fig-

ure 4(a) and (g). The "inside" measurement considers

the frames per second when the camera is situated in-

side the atmosphere, like in Figure 4 (c) and (h). Both

data sets are divided into 24 tiles with respect to the

longitude and 12 tiles with respect to the latitude. The

quadratic value stands for the size of the tile. The reso-

lution of the pre computed 3D texture was chosen with

1283. This size can be considered as sufficient. Further-

more, it is noticeable, that larger sizes of this texture

are not really influencing the performance. If we con-

sider the measurements of Table 1, we can see that the

rendering outside the atmosphere is much faster than

inside. This is due to the adaptive refinement of the ter-

rain mesh, which is inactive, when the observer’s dis-

tance to the planet is too large. In this case, only a tes-

selated sphere is rendered. In contrast to this case, the

number of triangles increases extremely if the camera is

situated nearby the planet’s surface. In order to demon-

strate that the resulting frames per second strongly de-

pends on the performance of the terrain renderer, we re-

placed the 10 tiles representing the focused mountains,

with high resolution height fields of 1800×1800 cells.

This allows us to increase the number of drawn trian-

gles to compare it with the achieved rendering speed, if

Journal of WSCG ISSN 1213-6972 96 ISBN 978-80-86943-00-8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a) the Earth viewed from space, (b) South America after the sunrise, (c) sunrise over the Alps, (d)

sunrise (e) early morning, (f) midday, (g) Mars viewed from space, (h) Valles Marineris with martian atmosphere,

(i) adaptive mesh refinement

only the terrain is rendered without any atmospheric ef-

fects. The mean value of the rendering power, required

for the atmospheric scattering effects, is about 15%.

Table 2 shows the increase in performance, when the

evaluation of the scattering integral is optimized by our

method. The frames per second of our implementation

are compared with a vertex shader implementation. For

this measurements, only the atmosphere is rendered ap-

plying 2 spheres with the given number of vertices per

sphere. The resolution of the pre computed 3D texture

is also 1283. The table shows, that our method is 4 - 5.3

times faster than the vertex shader implementation. It is

also perceptible, that this ratio increases proportional to

the number of rendered triangles, what can be ascribed

to the high number of vertex shader instructions and the

costs of vertex texture fetches.

Figure 4 (g) and (h) demonstrate the flexibility of the

applied light scattering method, by replacing the Earth’s

atmosphere with the Martian atmosphere by simply

modifying the molecular density and the wavelength

of the incident light. Additional dust particles, which

mainly influences the color of the Martian atmosphere,

are unaccounted. Figure 4 (d), (e) and (f) show the Alps

viewed from Italy at different day times, starting with

the sunrise, over to the early morning hours to mid-

day. This sequence illustrates the dependency of the

light scattering and the angle to the sun. Finally, (i)

demonstrates how our spherical refinement mechanism

works.

7 CONCLUSION AND FUTURE

WORK

We have presented an interactive technique for plane-

tary rendering taking into account atmospheric scatter-

ing effects. High efficiency is achieved by combining

the CPU based terrain renderer with the atmospheric

rendering. Therefor, the complete scattering integral,

described by Nishita12, is evaluated in a separate pre

Journal of WSCG ISSN 1213-6972 97 ISBN 978-80-86943-00-8

computation step. This is done by computing the at-

mospheric scattering for each position inside the at-

mosphere, parameterized by its height and the angles

to the viewer and to the Sun. The results are stored

into one 3D texture. The GPU is used to compute the

light intensity reaching the observer’s eye, regarding the

structure of the planet’s surface and the correct illumi-

nation of the terrain geometry. We have discussed, how

the pre computed 3D texture can be used to solve the

problems mentioned above. Finally, a planetary terrain

renderer was introduced for the adaptive mesh gener-

ation and rendering of height fields on spherical ob-

jects. The results shows clearly, that the evaluation of

the scattering integral is absolutely independent of the

scene complexity, what makes it attractive to utilize it

with large scale renderings.

In the future, the 3D texture can also be used for

rendering other scenes, like snow or rain simulations. It

is also thinkable to use it as part of a complete weather

simulation or to illuminate large outdoor scenes in

games.

8 ACKNOWLEDGMENTS

We would like to thank the NASA for providing the

earth textures and the MOLA datasets of Earth and

Mars.

REFERENCES

[1] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchio, and R. Scopigno. BDAM – batched
dynamic adaptive meshes for high performance
terrain visualization. Computer Graphics Forum,
22(2):505–514, 2003.

[2] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchio, and R. Scopigno. Planet-sized batched
dynamic adaptive meshes (P-BDAM). In Proc.
IEEE Visualization, pages 147–155, 2003.

[3] W.M. Cornette and J.G. Shanks. Physical reason-
able analytic expression for the single-scattering
phase function. Applied Optics, 31(16):3152–
3160, 1992.

[4] Y. Dobashi, T. Yamamoto, and T. Nishita. Inter-
active rendering of atmospheric scattering effects
using graphics hardware. In HWWS ’02: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 99–107,
2002.

[5] M.H. Gross, R. Gatti, and O. Staadt. Fast multires-
olution surface meshing. In VIS ’95: Proceedings
of the 6th conference on Visualization ’95, page
135, 1995.

[6] N. Hoffman and A.J. Preetham. Real-time
light-atmosphere interactions for outdoor scenes.
Graphics programming methods, pages 337–352,
2003.

[7] H.W. Jensen and P.H. Christensen. Efficient sim-
ulation of light transport in scences with partici-
pating media using photon maps. In SIGGRAPH
’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques,
pages 311–320, 1998.

[8] H.W. Jensen, F. Durand, J. Dorsey, M.M. Stark,
P. Shirley, and S. Premoze. A physically-based
night sky model. In SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer
graphics and interactive techniques, pages 399–
408, 2001.

[9] P. Lindstrom, D. Koller, W. Ribarsky, L. F.
Hodges, N. Faust, and G.A. Turner. Real-time,
continuous level of detail rendering of height
fields. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics
and interactive techniques, pages 109–118, 1996.

[10] N.L. Max. Atmospheric illumination and shad-
ows. In SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and in-
teractive techniques, pages 117–124, 1986.

[11] R.S. Nielsen. Real time rendering of atmospheric
scattering effects for flight simulators. Master’s
thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2003.

[12] T. Nishita, T. Sirai, K. Tadamura, and E. Naka-
mae. Display of the earth taking into account at-
mospheric scattering. In SIGGRAPH ’93: Pro-
ceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages
175–182, 1993.

[13] S. O’Neal. Real-time atmospheric scattering.
www.gamedev.net/reference/articles/article2093.asp,
2004.

[14] S. O’Neal. Accurate atmospheric scattering. GPU
Gems, 2:253–268, 2005.

[15] A.J. Preetham, P. Shirley, and B. Smits. A prac-
tical analytic model for daylight. In SIGGRAPH
’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques,
pages 91–100, 1999.

[16] E. Puppo. Variable resolution terrain surfaces. In
Proceedings of the 8th Canadian Conference on
Computational Geometry, pages 202–210, 1996.

[17] S. Röttger, W. Heidrich, P. Slusallek, and H.-P.
Seidel. Real-time generation of continuous lev-
els of detail for height fields. In Proc. WSCG ’98,
pages 315–322, 1998.

[18] H.E. Rushmeier and K.E. Torrance. The zonal
method for calculating light intensities in the pres-
ence of a participating medium. In SIGGRAPH
’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques,
pages 293–302, 1987.

[19] S. Sekine. Optical characteristics of turbid at-
mosphere. J Illum Eng Int Jpn, 71(6):333, 1992.

Journal of WSCG ISSN 1213-6972 98 ISBN 978-80-86943-00-8

	!WSCG2007_Journal_Proceedings_Numbered.pdf
	B07-full.pdf
	G59-full.pdf
	H61-full.pdf
	A47-full.pdf

