MIT-SHM (MIT Shared Memory Extension) facilitates memory-sharing for cer-
tain data on one machine between the server and client. Input extension (X1J
Input Extension Protocol Specification and X1f Input Eztension Library Specifi-
cation) is the standard mechanism for the definition and use of additional-input
devices. Support for 3-D graphics introduced in the current release X11R5 is imple-
mented as an extension of the X server as well. The X3D-PEX (PHIGS extension
to X) extension is defined in the draft X standard.

Some vendors provide their own extensions of the X servet. The MIT X Consortium
controls the registration and standardization of these extensions. Currently, there
are more than 40 different extensions of the X server registered. Some of them are
limited to one platform; others are widely available. A well-known frequent ex-
tension is support for the Display PostScript language (Adobe-DPS-Extension).
Special hardware and software of Silicon Graphics workstations can be used by
means of the SGI-XGL extension.

References

[1} Asente, P. - Swick, R.R.: X Windov. System Toolkit. The Complele Program-
mer’s Guide and Specification. X Version 11, Release 4. Digital Press, Bedford,
MA, 1990.

[2] Barkakati, N.: UNIX Deskiop Guide to OPEN LOOK. SAMS, Carmel, IN,
1992.

{3} Limpouch, A.: X Window System - programovéni aplikaci. Grada, Praha, 1993.

[4) McCormack, J. — Asente, P.: An Overview of the X Toolkit. Proceedings of the
ACM SIGGRAPH Symposium on User Interface Software (Banfl, Oct. 17-19,
1988), ACM Press, 1988, pp. 46--55.

[5] Mikes, S.: X Window System Program Design and Developmeni. Addison-
Wesley, Reading, MA, 1992.

[6] Scheifler, R.W. - Gettys, J.: X Window System. The Complete Reference
to Xlib, X Protocol, ICCM, XLFD. X Version 11, Release 4. Digital Press,
Bedford, MA, 1990.

[7) Young, D.A.: X Window Systems: Progr ing and Applications with X1.
Prentice Hall, Englewood Clifis, NJ, 1989.

[8] Peterson, Ch.D.: Athena Widget Set - C Language Interface. X Window Sys-
tem. X Version 11, Release 5. MIT, Cambridge, MA, 1991.

[9] Rosenthal, D.: Inter~Client C ication C. tions Mansal. Version 1.1.
MIT X Consortium Standard. X Version 11, Release 5. MIT, Cambridge, MA,
1991. .

[10) Flowers, 1.: X Logical Font Description Conventions. Version 1.4. MIT X Con-
sortium Standard. X Version 11, Release 5. MIT, Cambridge, MA, 1991.

[11] Gettys, J. - Scheifier, R.W.: Xlib - C Language Interface. MIT X Consortium
Standard. X Version 11, Release 5. First Revision. MIT, Cambridge, MA, 1991.

[12] McCormack, J. - Asente, P. ~ Swick, R.R.: X Toolkit Intrinsics - C Language
Interface. X Window System. X Version 11, Release 5. First Revision, MIT,
Cambridge, MA, 1991.

206

-

An Algorithm for Fast Voxel Scene Traversal

Milo3 Srémek*
Institute of Measurement Science
Slovak Academy of Sciences,
Dibravské cesta 9, 842 19 Bratislava,CSFR

Abstract

Together with improvement of tomographic methods of scanning 3]? data, r;
siding in an increase of distinguishing ability of the scanners, ‘the qua.hty. ?f fin
3D reconstruction of the data comes into foreground. An inevnablg co.nd.ltlon for
visualization of small details, comparable with the voxel size is application of such
algorithms, which enables to define a surface of the scannec"l object on subvoxel level.
Coming out from paper published at previous year of Winter School on Computeetl'
Graphics and CAD Systems we present an algorithm for fast .traversal c?f the vox:
scene, which enables to find a nearest intersection of a ray with t.he object surface
defined in such a way. High speed of the algorithm utilizes object coherency f’f
the scene, which means that voxels belonging to the object are usually grouped in

nected regions.
conThe a.lgroer?thm consists from two steps: preprocessing and scene traversal. In th'e
preprocessing phase we assign 10 each background voxel of the segmentfed s;e;:e &
value equal to its chessboard distance from the nearest object vo'xel, wh‘xch e ne:<
a cubic macro region with no object voxels inside. While generating a discrete 1'3 ,
we can jump over this region, which results in up to 6-fold speed up of t.h.e traversal.
The algorithm has no additional demands on memory, since the distance is stored in
originally "empty” background voxels.

1 Introduction

Together with improvement of tomographic methods of si:anning 3D data, resxdmgt in a.r;
increase of distinguishing ability of the scanners, the quality 9{ ﬁnal 3,D reconstruc(1 ion 1o
the data comes into foreground. An inevitable condition for vxsuahgatlon of small e;: S
comparable with the voxel size is application of such algorithm., which 'enables toddeLC;7a
surface of the scanned object on subvoxel level. Traditionally, tr.langula.tlon metho sL ceu}
are used, which approximate object surface defined within a neighborhood of 8 voxe (cell)

207

by up to 4 triangles. In the first phase a triangular model of the surface is constructed {(up
to 10° triangles, according to complexity of the object), which is subsequently rendered by
standard tools. Without a hardware accelerator, rendering of such amount of triangles can
be very slow.

Different approach is direct surface rendering based on ray casting which assumes:

o defining an object surface approximation within a cell,
o finding the cell, where the ray-surface intersection can be found and

e exact computation of the intersection position.

In the fist part of the paper we shall deal with a question of suitable surface approxima-
tion function and in the second we shall describe an algorithm for fast background voxel
traversal, which is aimed to find first such cell, where intersection ray-surface can be found.

2 Definitions

Let 3D image P be a set of K x L x M values, which represent samples of some measured
property in vertices of regular unit grid:

P={pjr ER:0Li<K,0<j<L0Sk< M}
where i, j and k are integers.

Let us segment P into n subsets w;, such that
Uwu=8 A Nwu=0
i !
Let w; be I* object and [its identifier. Let 7 = {0,1,...n—1} be a set of object identifiers
and let | € 7. Binary image B is the set
B={b;_,'kEI:OSi(K,0$j<L,OSk<M},

Without any loss of generality we can assume, that border values of B, i.e. such, for which
at least one of coordinates ¢, j or k is either equal 0 or K ~1, L—1and M—1 respectively,
belongs to the 0" object.

Voxel let be a tuple Vijx = (viji, hiji), where v;j; is voxel volume
vip =< i+ DX <, +1)x <k k+1)

and hqjy is its value, hijx € {0,1}. Point [i,j,] is voxel vertex and similarly point i+
0.5,7 + 0.5,k + 0.5] is voxel center. Voxel value h;; will bave the following meaning:

208

o

2

L

hije = 0 means certainty that none of the object surfaces pass through this voxel and

hijx = 1 means, that we are not sure with this.

The voxel value depends on the binary image B and on a choice of the surface approxima-
tion. Voxel with value equal to 0(1) we denote 0-voxel(1-voxel).

The set S(p,q,r) = {Vijs : 0< i< p,0 < j <q,0 <k <r} we denote voxel scene and the
set of points

D={(i,j:k): 0<i<p0<j<g0<k<r)
voxe] scene domain.

The scene SS(M,N,0) will be a center representation of image P(B), if the sample
pise(biji) will be assigned to the voxel Vi center (Fig. 1a). Analogously, if the sample
will be assigned to voxel vertex, the vertex representation will be the scene SY(M =1, N —
1,0 = 1)(Fig. 1b). It is obvious that size of scene S V along each axis is 1 voxel smaller
than size of SC.

Let us the voxels with corresponding bi;x = 0 denote background voxels (in both represen-
tations) and the rest foreground voxels. .

-

N samples

N N samples
6 e | e | e e—6—6—=©6
® e | e | e—e—0—=©
e e | e | © e—o—o0—©
® e || e e—6—6—=0
@ ® —

) N v;;els — N-1 voxe‘ls

Fig. 1: (a) center and (b) vertex image representation

209

3 Definition of surface point by ray casting

Let the surface S; of the I** object v is defined by means of interpolating function F; and
a threshold value #;:

S‘ = {.ﬁ(:,y,z) =1: (z,y,z) € Uvijk}
ik

where

Filz,y,2) = Y F*(z,y,2)
i3k

and
isk _ Fx(z,y,z, Uijk) ak [-‘C,y’zl € Yk
o) = { 0 ak [2,5,2] & vise

i Tepresents values piji or bji in some neighborhood of voxel Vijz. In the case of pijx

we speak about gray level interpolating function and we suppose, that the object I was

segmented by simple thresholding with threshold ¢;. In the case of some other segmentation
method[593] we come out of the values b in such a way that to samples bijx = [we assign
value 1 and to samples witk b;jx # ! we assign value 0. In this case we speak about binary
interpolating function and as threshold we use value {; = 0.5 for all objects.

The exact positior of the object surface and ray we get by solving a system given by
equations of ray and the surface:

X = A+tu
F(z,y,2,0u) i 1)

where A is the eye position and 4 is the ray direction vector.

It may happen, that the given voxe! is intersected by surfaces of more than one objects.
In this case it is necessary to compute the intersections with all of them and to take the
nearest to the eye point into account.

In the following we shall describe some possibilities for definition of the function F; in

dependency on o;j¢.
N

3.1 O-order interpolation in center representation

We shall use this kind of interpolation in the case of fast, less precise rendering of 3D
image. Let us define Fi(z,y, z. ¢;;;) within the voxel volume as)

JERE 1 ak b,'jk=l
Fl(i,ym%k) = { 0 ak bijk #1

which means that the binary interpolating functior is within the voxel volume constant.
The voxel value h;ji will be in this case initialized by min{1, b;;) (Fig. 2a). To detect the

210

L

surface by means of ray casting consists in finding the first voxel of the discrete ray with
nonzero value with no further surface point computation.

3.2 Trilinear interpolation in center representation

Trilinear interpolation function is defined as
F(z,y,2,0ix) = T(z,¥,%,%0,¥1,++.,07)
where
T(20Ys 2,00, U1y -+ -5 V1) = LoyaTYZ + Loy @Y + L22T2 + Ly 7 + 1T + 1y + 1z + 1

Coefficients ¢. . .1z depend on values vo, vy, ...,vr, which are positioned in the voxel Vi
vertices. Since in the center representation we suppose that the samples of the scanned
field are situated in voxel centers, vo, vy,. . ., v7 must be computed[592] as a mean of values
of those voxels, which share the given vertex. E.g. for vertex [z, j, k] of voxel Vi it will be

Vo = (Sic1jm1kei F Sijmiko1 + Sicijke1 + Siv1jm1k + Sijhe=1 + Sij=1k + Si=1jk T+ 5iji) /8

Due to the mean computation this approach gives smooth surfaces. As it has been shown
in [592), such surfaces are also shifted into the object, whick may completely "smooth out”
object details comparable with voxel size.

Another consequence of the mean value computation is that the surface can be detected
not only within object voxels but also within background voxels in their vicinity. Therefore,
in this case we shall assign value 0 only to those background voxels of the scene S€ not
26-adjacent to an object voxel. To all other voxels we shall assign 1(Fig. 2b).

Due to its smoothing ability we shall prefer this kind of interpolation for objects segmented
by some other method as the thresholding.

3.3 Trilinear interpolation in vertex representation
The interpolating function is in this case defined as in the previous section, only the values
Vo, V1, .. . , U7 are directly given by samples ik . . - Sis1j41k41 Positioned in the voxel vertices.

We shall assign value zero to background voxels and 1 to foreground voxels. This kind of
interpolation is suitable for scenes with details on voxel level.

4 Discrete ray traversal

In the previous sections we came to the conclusion, that, as the consequence of the seg-
mentation and choice of interpolation method, we partition the scene into 0-voxels with no

211

o|lolo|lo|e|o
o0 o|e o
00 oo o
ook o|o o
oo o|o o]
©|0|0|0|0|0| @ ®

(5] . sample bijk= 0
: S leb =
¢ . ample ik 1,2,3...
- O-voxel

1-voxel

Fig.. 2: Scene initialization: (a) S for 0 order interpolation, (b) S€ for trilinear interpo-
lation (c) SY for trilinear interpolation

212

-

L 43

13

1

B

object surface and 1-voxels, where the ray-surface intersection can be found. Let us define
the discrete ray as an ordered sequence of voxels V; of the scene S6(8Y), which are pierced
by a the ray with equation X = A + 7.

The goal of the discrete ray traversal algorithm is to find its first 1-voxel. We shall proceed
with the following voxel of the only in such case, when no ray-surface intersection is found
within the volume of the previous one. If we add to the demand of correctness of the
surface point detection also the demand of high speed, the discrete ray traversal algorithm
should have following properties:

1. it should pass the region of background voxels usually surrounding the object as fast
as possible, i.e. it should utilize the object scene coherency[OMS87] and

2. it must not miss any object voxel, i.c. at least in the vicinity of the object the voxels
of the ray should fulfill the condition of 6-adjacency[Y CK92}.

In the algorithm design we shall start from the assumption that to each 0-voxel Viji its
chessboard (CD) distance[Bor86] to the nearest object voxels is assigned. Thus a cubic
macro region is created .

o"(i,j,k)={hm,=o:i—nsp5j+n,i—n5q,5j+n,k-nsr'sk+-n}

with center in Vi and with side size 2n + 1. Since CD is independent on projection
parameters, we can assign it during a preprocessing phase. :

Since we know that there are no object voxels within O™(i, j, k), we can jump from Vj
directly to the first voxel outside of O(i, j, k) pierced by the ray. The traversal speed up
is thus achieved by bringing the number of visited voxels down. Detailed description of
the algorithm is in {594, therefore we shall limit ourselves only on brief description of its
main loop, i.e. of steps between macro regions and on description of traversal of single
macro region. Since the algorithm is symmetric with respect of all axes, we shall present
only relations for the z axis. Further, we shall assume that the direction vector has only
nonnegative coordinates. Generalization to all possible directions can be done by proper
initialization of some variables. C

4.1 Scene traversal

Let us imagine that we have reached the voxel Vi with assigned CD = n and ray entry
point p = (pz, Py, P:), the coordinates of which are expressed with respect to [i,4,k]. Let
entry (exit) face be that through which the ray enters (exits) the voxel. o

To find the first ray voxel outside of O"(%, 7, k) it is necessary to find the nearest intersection
of the line X = p + s7 with planes 2 = n, y = n and 2 = n. Let us suppose that the entry
face is of type X, i.e. that it is perpendicular to z axis. On Fig. 3 we can see that for each
n exists such threshold value t§(n) of the input coordinate p, that (2D case)

Fig. 3: Entry point coordinate thresholds

L. if p, < t§(n) then exit face is also of X type and

2. if py > t{(n) then it is of Y type.

which in 3D case holds also for p,. Upper index denotes the type of the entry face. It can

be shown that r—r
t{n) = n’—rzl

The basic scheme of the algorithm is on Fig. 4 left and scheme for the computation of

exit face type on the right side. The expression p, > ti(n) + p;{-‘,‘ enables to distinguish

between types ¥ and Z when it is not X. .

while(in scene and object not found) macroRegionStep(x,y,z,n)
n = GetMacroRegionSize();
if(faceType == X)

macroRegionStep(x,y,z.n);
else if(faceType == Y)

if(py < 15(n) and p. < t7(n))
NoChangeMacroRegionStep(x,y.z,n);
lse if(p, > £3(n) + p: L)

macroRegionStep(y,z,x,n); ChangeMacroRegionStep(x,y,z,n);
else if(faceType == Z) else
macroRegionStep(z x,y,n); ChangeMacroRegionStep(x,z,y.n);
end while)

Fig. 4: CD discrete ray traversal algorithm

4.2 Macro region traversal
In this part we indicate calculation of the next voxel position and the coordinates of the

ray intersection with it. As it results from Fig. 4b, one has to distinguish between 2 kinds
of steps across the macro region:

214

-

L4

[

1. without face type change (NoChangeMacroRegionStep, Fig. 5a) a
9. with face type change (ChangeMacroRegionStep, Fig. 5b).

The first case is a step across a slab defined by two parallel planes with distance n. If we
denote d%(n) = n * 1 then for the next voxel holds:

' = {+n

i = j+int(dy(r)), p, = fract(dy(n))
k+int(d;(n)), p, = fract(d}(n))

o

Lo
|

The second case is analogous, only the intersection with plane z = 0 must be calculated

first(Fig. 5b): .

Py = Lxp;
Tz

2]

Px

b

Fig. 5: Macro region traversal: (a) entry and exit face of the same type, (b) with different
types

4.3 Summary

In the previous section we have proposed the algorithm for fast discrete ray traversal based
on cubic macro regions. We have shown that the control variable ot the travers?.l can be the
position of the entry point of the ray into the voxel, which is advantageous in coherence
with exact computation of the ray-surface intersection point. Further speed up of the

traversal can be achieved by

215

1. implementation with fixed point arithmetics,

2. tabulation of arrays ¢t and d. This version is suitable only for parallel projection and
traversal of primary rays only and -

3. in the case when it is not necessary to know the exact position of the ray entry point
(e.g. for 0 order interpolation), by a new control variable

(ﬁzyﬁv’ﬁz)= B B Pz),

YTy
Tes Ty T2

which takes off some divisions.

5 Implementation and results

In this section we would like to present results of our comparison of the CD traversal al-
gorithm performance with some algorithms known in the literature, namely Cleary’s and
Wyvill's algorithm for fast voxel traversal (FVT) [CW88; and Spackman’s and Willis’s

SMART (Spatial Measure for Accelerated Ray Tracing) navigation oct-tree traversal [SW91].

The first one generates a sequence of voxels in a uniformly subdivided scene that are
pierced by the ray. The decision, as to which voxel will be the next in the sequence, is
controlled by three degision variables dz, dy and dz, which record the total distance along
the ray from some common point to its last crossing with X, Y and Z type voxel faces.
If, say, dr is the smallest one, than the next crossing will be with the X type face and
therefore the next voxel will have the z coordinate incremented. This approach results in
an efficient incremental algorithm that has only a few operations for each loop and might
be implemented in integer arithmetic.

The second chosen approach works on the oct-tree represented as a breadth first list. Two
decision vectors control the progress of the ray through the oct-tree:
o Hgparr vector, which navigates iterative horizontal steps from sibling to sibling by
examination of its component signs, and
¢ Veamarr vector, which controls recursive vertical steps from parent to child by mid-
point comparison of its components and a comparison variable.
Both decision vectors are maintained in an incremental way and also may be implemented
in integer arithmetic.

Performance of three CD traversal algorithm versions has been studied:

CD1, the basic version,

-

ey

CD2, the basic version ‘with tabulated arrays ¢ and d with respect to macro-region size,
and T

CD3, as CD2 with (f., py, f-) control variable.

The algorithms have been implemented in C language on Decstation 5000/200 UNIX work-
station equipped with 48 MB of main memory.

5.1 Phantom study

To compare these algorithms and to obtain information about their behavior over a large
variety of scenes with various complexities, a computer experiment was set up, based on
rendering of scene phantoms: randomly positioned spheres of various size and number.

The notion of the spatial coherency leads to the following idea: The t’more” coherent
scene contains a few Jarger objects, while the "less” coherent scene cox%tams alot of‘sn_xa.lL
objects. Therefore we can say that the scene with a single spherical object ha.xs the highest
spatial coberency. Since the sphere has the smallest surface-to-volume ratio (SVR), we
propose this ratio to be a measure of the scene coherency for the purpose of the anOflpl:xm

comparison.

The sequence of scene phantoms for algorithm comparison purpose has been' g.enera',ted
in the following manner. The scene built up of 128x128x128 voxels was subdivided into
NxNxN subregions (N = 1 —12). Within each subregion a voxeliz.ed spfhere was ra.x':domly .
placed (1-1728 spheres), such that total volume of all spheres is identical for all N. Thus
we obtain scenes with equal number of object voxels but with different SVR.

In the experiment, only parallel primary rays were traced until the first .objecf. voa.cel was
found, with no subsequent shading. The results of the experiment are degncted in Fig.6(a).
The y axis values represent the pure traversal time measured as a dlf'ference‘between
user time (in the sense of UNIX time command) of such program version, which stops
computation for each ray in that moment, when the first object voxel is found,. a.'nd a
version, which stops just before the traversal starts. This approach enables to e.hrmnate
the influence of various initialization and data loading conditions of various algorithms.

The total traversal time can be expressed as
T=tn (2)
where ¢ is one step time and n is number of traversal steps necessary to render the scene.

If we express t as c.lo, where 1o is one step time for some reference algorithm (e.g. -the
fastest one, in our case FVT) and n as a ratio of total distance traversed and mean step

size %, we obtain)
d.o (3)

2
$1008
Fohy

cpo timas]

qeeevomier-qumRir- SIS USSR

(a) » P : N .
) .2 0.3 0.4 0.5 .6 0.7 0.0 ..
B/V ratio

1

23
Ve
maxr

»ann atep langth

(b) . : : — :
0. 0.2 °.3 0.4 8.5 L) .7 c.5
8/V ratic .
due0?
CD
3.3%a407 Ilhr: :
3ee0?
B 2.5e007
i w
:
H 20407 J
H
H
<
5 1.8e0?
le+07
Set06 |-
o = e 4
(C) o A L . N N
0.l 8.2 0.3 o.4 0.5 0.6 0.7 (]
/Y ratio o g

Fig.. 6: (a) CPI.J time, (b) mean step size and (c) number of steps vs. surface-to-volume
ratio for rendering of 3 arbitrary views of phantom scenes with different object coherency.

218

]

ad

While the term d.o is a constant for the given scene, the algorithm efficiency is given by
the proportion of the relative one step cost ¢ and mean step size do.

The experiment has shown that the cost ¢ for CD1, CD2 and CD3 versions was nearly
constant for the whole range of SVR with values 3.8, 4.2 and 5.2 respectively. Slight
increase within an interval of 5% can be explained by the growing proportion of face chance
steps with higher computational demands. The value of ¢ for the SMART algorithm was
in the range from 6.9 to 7.9. This increase is caused by higher number of vertical oct-tree
traversal steps in respect to horizontal steps for the more complex scene.

The dependence of the mean step length do on SVR is depicted in Fig.6(b). While the
FVT algorithm step is determined only by voxel geometry and therefore is constant, the
CD and SMART mean distances are also affected by distribution of object voxels in the
scene. The more compact scene, with small number of larger objects, results in a greater
traversal step mean length, and therefore in shorter total traversal time.

The relative efficiency of two algorithms is given in (3) by the ratio of relative cost and
mean step size. In the case of CD and FVT algorithms, this ratio is more favorable for all of
the CD versions for nearly the whole range of SVR. Of course, with increasing complexity
of the scene the relatively higher step cost of CD begins to prevail and FVT achieves higher

performance than CD.

Fig.6(c) plots the number of traversal steps vs. SVR. The increasing complexity of the
scene results in smaller total traversed distance as well as in lower number of steps for FVT
algorithm, which is the reason for shorter rendering time. On the other hand, decrease
of mean step size for the CD and SMART algorithms counteracts the smaller traversed
distance. As a consequence, the number of traversal steps as well as rendering time increase.

Both CD and SMART algorithms adapt their step to the actual object distribution, and
therefore exhibit similar behavior with respect io SVR. Although for the more complex
scenes, the oct-tree structure results in the larger mean traversal step (Fig.6b), the lower
cost of the single step makes CD predominant over the whole SVR range.

6 Conclusion

In our contribution we have shown (a) how to define an approximating function to.an
object surface within a voxel and (b) we have proposed CD algorithm for fast discrete ray
traversal which is based on knowledge of chessboard distance of the background voxels
from the nearest object voxel. As the computer experiment has shown, one step of such
algorithm can be up to 15 times longer than for traditional one voxel step algorithms. In
spite of the fact, that complexity of one step of CD algorithm is higher, it results in up to
6-fold speed up.

Another possibility to shorten the scene rendering time granted by the CD algorithm, but

21¢

we <.iid not deal with, is minimization of number of rays totally missing the object. The
f'm.mma.l C?D of voxels such ray passes through can be used to estimate a distance in which
it is sufficient to generate next ray without missing any object voxel.

References

[Bor86] Gunilla Borgefors. Distance transformations in digital images. Computer Visi i
Image Processing, 34(3):344-371, 1986. ¢ ¢ puter Vision, Graphics, and

[CW88] John C4.C;l?a.r)' and Geoff Wyvill. Analysis of an algorithm for fast ray tracing using uniform
space subdivision. The Visual Computer, 4(2):65-83, July 1988.

[LCS7]'W.E. Lorensen and H.E. Cline. Marching cubes: A high-resolution 3D surface construction algo-
rithm. Computer Graphics, 21(4):163-169, July 1987.

{OM87) Matasaka Ohta e}nd“Man_mru Maekawa. Ray coherence theorem and constant time ray tracing
algorithm. In T. I.\uml, editor, Computer Graphics 1987 - Proceedings of CG International '87,
pages 303-314. Springer-Verlag, 1987.

[SWQ]} John Spackman and Philip Willis. The smart navigation of through
put.&Graphics, 15(2):185-194, 1991. s ® ray through an octrree. Com-

[892) Milos Srémek.‘ Ray tracing volume data with subvoxel precision. In Véclav Skala, editor, Proceed-
ings of 'thc Winter School on Computer Graphics end CAD sysiems, pages 4765, Plzeii, Technical
University, CSFR, 1992.

[593] Mi%oé Sré@ek. Interactive segmentation of tissues for medical imaging. In Véclav Hlavat and Toma$
Pa)dla,.ednors, Czech Patlern Recognition Workshop '93, pages 164-171, Temedvar u Pisku, Czech
Republic, November 4*h-64, 1993.

{894] Milos S;é.mek. Cubic macro-regions for fast voxel traversal. In GKPO’94, Poland, June 1994.
accepted.

[YCK92] Roni 'Yag.el, Daniel Cohen, and Arie Kaufman. Discrete ray tracing. JEEE Computer Graphics
and Applications, 12(5):19-28, September 1992.

. 220

.

3]

Generating Plants for Computer Graphics

Bedrich Benes CTU, Fac. of Electrical Eng.,
Dept. of Computer Science
Karlovo nédm. 13, 121 35 Praha 2
BENES@CSLAB.FELK.CVUT;CZ

keywords: Tree, L-system, Rendering, Computer Graphics

Computer Graphics focuses its activites mostly on the modelling of the
real world. It means in practice to find a model of the modelled object which
can be interpreted by means of computer graphics. There has been a lot of
progress in this research. We have fundamental models of light of reflecting,
and are able to simulate real surfaces (e.g. an orange, a metal, 2 wood and
8o on). To visualise these models we can use on of two principal methods:
ray tracing or radiosity [ZARA92].

There are several open problems in Comupter Graphics. One of these is
the general problem of time. These methods are really strongly time consu-
ming. This time depends on the modeled scene. The time needed for visua-
lisation increase with the number of modeled cbjects and can be strongly
decreased with a smart algorithm or a good data representation or speed
hardware.

Lindenmayer [LIND68] showed a structure of a parallel string rewriting
system for the growth of living organisms in 1968. This method describes the
geometry of a tree, but it was used for these purposes for the first time in
1984 in the work of Aono and Smith [SMIT84]. This work continues in the
work of Lindenmayer and Pruzsinkiewicz at present. A focus of these works
lies in the topology of trees, a geometry of these objects is showed in works
of [BLOOS8S5}, {OPPESE), [KAWAS2].

The generation of topology is based on string rewriting systems (called
by Lindemayer [LIND68] L-systems).

Let V [PRUSS6] equal a set called alphabet whose members are symbols.
Let V* equal a set of words over V and V* is 2 set of non-empty words over
V.

The L-system is a triple [LIND68] G = (V,w, P), where

o V is an alphabet

221

