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ABSTRACT

This paper presents a new, accurate, efficient and unified method for dynamic animation of one, two or
three-dimensional deformable objects. The objects are modelled as d-dimensional juxtapositions of d-
dimensional patches defined as parametric blending of a common d-dimensional mesh of 3D control
points. Animation of the object is achieved by dynamic animation of its control points. This ensures that at
each time step the object shape conforms to its patches definitions, and, thus, that every property implied
by the nature of the blending functions is verified. Dynamic animation of these continuous models implies
no “matter discretising” as the control points are not considered as material points but moreover as the
degrees of freedom of the continuous object. A generic (both for blending functions nature and object
intrinsic dimension d) mechanical model reflecting this idea is proposed. Then, according to this
modelling idea, a convenient generic dynamic animation engine is built from Lagrangian Equations. This
engine relies upon an accurate and very efficient linear system. Forces and constraints handling as well as
numerical resolution process are then briefly discussed in this scheme.

Keywords: Dynamic animation , Lagrangian equations, spline, parametric surfaces, parametric volumes,
deformable objects.

INTRODUCTION

Usual dynamic animation methods for deformable
continuous objects often imply some discretising of
the objects’ matter (see for examples [Lucia86],
[Breen92], [Chanc95], [Provo95] ). In such schemes,
matter is concentrated upon a finite set of material
points. We think this is physically unrealistic and
would prefer to handle those objects as continuous.

We thus present how continuous deformable objects
of intrinsic dimension 1, 2 or 3 can be handled by an
unified, accurate and yet efficient dynamic animation
engine. This engine is built upon continuous

kinematics and mass repartition modelling, and
handles both discrete or continuous external strains
as well as supplementary constraints. As one can
immediately guess, we still lack an efficient tool
handling actually continuous internal strains such as
elasticity or viscoelasticity. Nevertheless, this work
could then be viewed as the foundation of an
animation engine dealing accurately and implicitly
with actually continuous deformable objects of any
intrinsic dimension between 1 to 3.

In a previous study ([Remio99a,99b]) we developed
an animation engine for continuous curve-like
objects. In order to animate actually continuous



objects, this engine modeled 3D curve-like objects
as successions of spline segments, and considered
their control points as the degrees of freedom of the
continuous objects rather than material points
“discretizing” the object. The geometrical properties
of the actual modelled object shape and the degree
of control exerted upon this shape are tied to the
chosen spline segments. These features may have
been carefully chosen by the object designer, in
which case they are relevant to the modelled object ;
the method conveniently ensures that they are
preserved over time. The engine, thus, accurately
handles generic continuous curve-like objects whose
shapes are constrained by the chosen spline segments
models. Furthermore, the generated linear system to
be solved exhibits interesting properties (axes
separation and common constant matrix for the 3
axes).

As we found these properties rather smart, the
presently described engine, not surprisingly, is built
upon similar assumptions but handles
indiscriminately continuous curves, surfaces or
volumes. The current paper then begins with an
extension of the “succession of spline segments”
model to similar 2D or 3D continuous models. In
fact a generic model for d-dimensional continuous
objects will be proposed that will both emphasise the
similarities between the 3 cases and bring a common
frame for the development of the underlying
dynamic animation engine. Obviously this
mechanical model encompasses geometry,
kinematics and mass repartition.

The theoretical development of the engine is then
proposed. We first choose Lagrangian Equations as
the most suited dynamic equations for the defined
mechanical system and reshape those equations in
computationally efficient formulas. After which
forces and constraints incidence in these equations
are briefly and generally discussed, and a short
presentation of classical numerical resolution
methods follows. The validity of the method is then
demonstrated on an example.

MECHANICAL MODEL

Geometry

The previous work was developed upon a unified
and generic parametric 3D curve model which we
called “succession of spline segments”. This model
is built as a succession of one or more curves defined
as functional combinations of a common set of 3D
control points with a set of parametric blending
functions. It encompasses a great deal of classical
spline models both “interpolating” (Hermitian
splines [Barnh74] , Catmull-Rom splines [Catmu74]

and TCB splines [Kocha84], … ) and
“approximating” (Bezier splines [Bézie66,77],
[Farin90], B-splines [Riese73], [Foley89], β-splines
[Barsk81,83] and NURBS [Piegl91], … ).

Extension of this modelling scheme to surfaces or
volumes is straightforward. Hence, we model objects
as juxtapositions of d-dimensional patches (see Fig 1
to 3).

Figure 1 : 1-d model : succession of spline segments

Figure 2 : 2-d model : juxtaposition of 2D patches

Figure 3 : 3-d model : juxtaposition of 3D patches

These patches are defined (see Fig 4 to 6) as d-
dimensional parametric functional combinations of a
common set of n 3D control points iq  ( [,0[ ni ∈ ). A

point on such an object is referenced by its patch
number [,0[ npj ∈ 1 and its parametric position on

this patch dp ]1,0[∈ . Its absolute 3D position is

given by the position function of its patch, built upon

a set of blending functions )( pb j
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1 Both control points and patches could be numbered
in a d-dimensional pattern ; for further convenience
in the engine building we number them in a one
dimensional way.
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Figure 4 : 1d patch geometrical definition
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Figure 5 : 2d patch geometrical definition
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Figure 6 : 3d patch geometrical definition2

Mechanical System Choice

Let’s now focus on specification of the
mechanical system that will be animated.

As previously noted, in order to preserve the
geometrical properties over time, we shall animate
the control points. Nevertheless, we have already
quoted that the concentration of the object mass on a
discrete set of 3D points would be unrealistic and

                                                          

2 Control points are not represented in order to keep
the figure clear.

even more so if one remembers that some of these
control points could not lie on the object.

Hence, similarly to the D-NURBS proposed by
D. Terzopoulos and H. Qin in [Terzo94] and
[Qin96], we consider the control points as the
degrees of freedom of the continuous object. As
mass repartition remains continuous, these methods
are more accurate than the more straightforward
animation of a set of material control points.

Kinematics

The first step in mechanical modelling of an
identified system concerns kinematics, and thus
expressions of the positions and velocities of the
material points. More precisely, this step should
yield temporal position functions for each of the
material points.

According to the previous decisions (i.e. geometrical
modelling and mechanical system choice), at each
time step the object shape will be defined as the
same parametric combination of the instantaneous
positions of the mobile control points. The temporal
position functions can easily be expressed on a per
patch basis as the following functions of a
parametric position p and time t :
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where )( pb j
i  still are the combination functions of

the control points iq  used by the patch number j3.

Therefore, the kinematics of the object are defined
by the position functions jP  and their first time

derivatives expressing the velocities of the material
points :
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As one can see, the kinematics of the whole
object are defined by the finite set of the n 3D
functions )(tqi . These functions can be seen as

the 3n degrees of freedom of the continuous
mechanical system.

Mass repartition

The second step in the mechanical modelling of the
system concerns mass repartition over the object.

                                                          

3 Hence, as expected, a material point is still
referenced by its patch number j and its parametric
position p on this patch.



In the particular cases where d=1 or 2 ( curves or
surfaces) we consider that thickness is negligible and
so, model mass repartition in the same way for each
value of d as np mass density functions (one per
patch) :
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These mass density functions should not be
considered as giving mass density per unit length,
surface or volume but rather per unit parametric
variation of p. Hence a small part dp around the
material point at parametric position p on patch
number j has a mass dptpj ),(ρ .

As patches geometry can evolve in time, this implies
that mass density per unit length, surface or volume
can evolve too, even if ),( tpjρ  is actually invariant

in time (this time invariance simply meaning that
matter is not gliding along the object and is tied to its
parametric position p).

ENGINE DEVELOPMENT

Dynamic equations

Kinematics and mass repartition being modelled, we
now have to choose the dynamic equations most
suited to the nature of the system.

Since the mechanical system is continuous and non
rigid with a finite number of degrees of freedom
(3n), analytic mechanics seem best suited than Euler
or Newton/Euler formalisms dealing respectively
with particles and solids. We therefore choose to use
Lagrangian equations :
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where ),,( tqqK " is the kinetic energy function, )(tqi
α

are the degrees of freedom, E the potential energy of
the external forces deriving from a potential and

α
iQ the power rating of the other external forces in

the virtual movement instilled by α
iq  (see

[Germa86]).

The kinetic function can be expressed as :
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Under the additional hypothesis that mass density
functions are invariant in time (i.e. matter is not
gliding along the object), this last term can be
simplified as :
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where ilM  are the constant following terms :
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Lagrangian equations then yield the following linear
equations system of the unknowns )(tqi"" :
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Some important facts should be noted concerning
this equations system :

•  it is formally accurate (i.e. it implies no
methodological numerical error such as those
brought by a purely numerical resolution of
Lagrangian equations) and nevertheless,
requires no symbolic computation.

•  it is composed of 3 independent systems, one for
each scene axis (x,y,z) .

•  these 3 systems use the same matrix M .

•  this matrix is constant over time and can be built
and inverted once at the beginning of the
animation process.

Forces

In order to change the kinematics of the object,
forces have to be exerted on it and these forces
should be handled as suited in the chosen dynamic
equations.

In Lagrangian equations, forces are introduced in the
system either by their contribution to the potential
energy E or by their power ratings in the virtual
movements instilled by the degrees of freedom. Let’s



show these two cases upon two classical external
force fields : respectively gravity and viscosity.

Gravity

Gravity forces obviously derive from the following
potential with z as the vertical axis :
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Under the usual hypothesis that mass density
functions are invariant in time, these terms are
invariant in time too and can be computed once at
the beginning of the process.

Viscosity

Viscosity forces do not derive from a potential,
hence their power ratings in the virtual movements
have to be expressed.

The force density exerted upon the material point at
parametric position p on patch number j is :
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where C is the viscosity coefficient.

The coordinates of the velocity of this material point

in the virtual movement instilled by α
iq  are :
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and thus the total contribution of viscosity is :
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which can be summarised as
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Constraints

Control of the dynamics is partly achieved by the
exertion of external forces, but in many practical
cases supplementary constraints are imposed to the
movement. These constraints are a smart way of
specifying things like “this point should not move”,
“this point should follow a specific trajectory over
time”, or many more kinds of movement restrictions.

Constraints are usually handled by one of the
following methods [Platt92], [Terzo94] :

•  the reduced coordinate method, each constraint
actually negates a dof. The system is made
smaller and the constraints are always actually
realised. The drawback is that this reduction is
an arbitrarily complex problem that can hardly
be efficiently and automatically resolved.

•  the penalisation method, which roughly consists
in adding viscous specialised springs aiming to
push constraints back to realisation when they
derive. This method is computationally
efficient since it only adds forces and does not
increase the system size, but constraints are
only rarely accurately realised. Moreover, this
method can lead to inaccurate equilibrium
states as the constraints springs responses
required to balance the other forces imply that
constraints are not realised.

•  Lagrangian multipliers, an accurate constraints
handling tool provided by the Lagrangian
formalism. Using this tool, the equations
classically become [Germa86]:
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where the second equations set express the nc
constraints upon the unknowns, and cλ  is the
Lagrangian multiplier of the constraint number
c, a new unknown related to the reaction force
needed to keep the constraint realised.

In this scheme, constraints are accurately
realised but the system size is increased by the
number of scalar constraints nc.

Using Lagrangian multipliers, our system becomes :





















=





















Λ

⋅





















−
−
−

D

W

W

W

q

q

q

LLL

LM

LM

LM

z

y

x

z

y

x

zyx

zT

yT

xT

""

""

""

0



If the αL  are time independent the whole matrix can
be built and inverted once. Thus the price for
accuracy is reduced and Lagrangian multipliers
method is practically usable.

If the αL  vary over time, the size increase and, worst,
the time dependence of the whole matrix could
impose the less accurate but more efficient
penalisation method.

Numerical resolution

Classically rewritten as a Cauchy’s problem the
linear system becomes :
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where f is the numerical function solving the linear
system of the unknows q"" .

The temporal integration of this system is a classical
mathematical problem for which a set of well-known
solutions exist [Press88], (for example explicit or
implicit Euler, prediction/correction, Runge Kutta
second or fourth order methods, …). These methods
differ according to their precision, to the number of
evaluations of F (i.e. resolution of the system) per
time step and to their ability to automatically adapt
the time step as needed by the actual temporal
“regularity” of the movement.

The later property (i.e. ability to adapt time step
automatically) is quite relevant since it permits to
either slow down resolution in order to properly
handle a singularity, or to speed up resolution when
movement is regular enough.

According to the precision and efficiency needed,
one can choose any of these (or others) methods.
Some authors ( [Desbr99], [Baraf98] ) recommend
implicit Euler resolution scheme for its stability,
especially for stiff scenes. We haven’t yet tested this
scheme, but we hope to do so in a near future as it
could allow for larger time steps and thus faster
simulations.

SOME RESULTS

The example shown below (plates 1 to 5) is an
animation of a deformable elastic child’s swing. The
mechanical system consists in 4 ropes each modelled
as 4 1d patches, a sitting board modelled as 3x2x1
3d-patches and a piece of cloth modelled as 2x2 2d
patches.

Every involved patch uses separable Catmull-Rom
blending functions. Thus the required control points
are 4+3 for each rope, (3+3)x(2+3)x(1+3) for the
board, and (2+3)x(2+3) for the piece of cloth, for a

grand total of 4x7+120+25=173. Hence our
mechanical system uses 519 degrees of freedom.

Gravity and viscosity are the sole external forces
applied. Internal strains (non-linear elasticity) are
roughly modelled by a d-dimensional mesh of non-
linear springs attached to material points inside each
d-patch.

Constraints encompass 4 ropes ends stationarity
(motionless material points) and 8 inter-objects links
(2 material points belonging respectively to each
object constrained to stick one to the other). We
handle those constraints by Lagrangian multipliers.

Numerical resolution is achieved by a fourth order
Runge-Kutta method using a fixed time step.

Plate 1 : deformable child’s swing starting position4

Plate 2 : deformable child’s swing at t=0.36 s

                                                          

4 In these plates, non material objects have been
added : a beam from which the swing is hanging and
4 spheres (one at each rope/board link).



Plate 3 : deformable child’s swing at t=0.84 s

Plate 4 : deformable child’s swing at t=2.0 s

Plate 5 : deformable child’s swing at t=3.28 s

A WORD ABOUT IMPLEMENTATION

Starting the implementation of the engine, we
decided to keep as close as possible to its unified
formal presentation. Hence we had to build a data
type for deformable objects that would be generic
both for the intrinsic dimension of the object and for
the peculiar blending functions used. If the
abstraction of blending functions was quite obvious
relying upon the function polymorphism, abstraction
of the intrinsic dimension was not as obvious. In fact
we came to define, in C++, our deformable object
class as a template of another type supposed to be
one of 3 proposed “dimension types”. These 3
“dimension types” share a peculiar feature : each of

them encompasses with the same names 2 nested
types encoding respectively discrete and continuous
positions for the associated dimension. In this
scheme the template abstract object type can rely on
its “dimension type” parameter for everything related
to its intrinsic dimension.

A concrete (usable) class for a peculiar object (with
known dimension and blending functions) is then
obtained as a class derived from the instantiation of
the abstract template with the right “dimension
type”. Obviously this class has to replace the abstract
methods related to actual blending functions.

The abstract template actually implements in its
methods the described engine overall design, relying
on both its “dimension type” parameter and its
abstract methods for any detail specific to intrinsic
dimension or actual blending functions used.

CONCLUSION

As expected, extension of the previous work to
surfaces and volumes was straightforward.
Furthermore, thanks to a unified but similar
mechanical model, the theoretical development is so
much similar that the resulting unified engine shares
the same interesting properties :

•  shape constraining : the object shape conforms
at each time step to its patches definitions ; this
can be seen either as a necessary restriction or as
a blessing as it implies that the geometrical
properties inferred by these peculiar patches are
always verified by the modelled object

•  generality : the underlying geometrical model is
generic enough to encompass a great deal of
classical parametric 3D curves, surfaces or
volumes modelisations

•  accuracy : the actual continuous objects are
handled by accurate numerical equations

•  efficiency : the linear system to be solved has
very interesting properties (axes separation and
common constant matrix for the 3 axes)

Obviously, this engine benefits from the unified
development frame, and equally animates curves,
surfaces or volumes.

This work is a step towards dynamic animation of
smooth deformable continuous objects, as it permits,
according to the chosen blending functions, a smooth
and continuous mass repartition. This has to be
completed by a continuous handling of internal
strains (implying elasticity, viscoelasticity and so
on). This completed engine should then be compared
to finite elements methods.
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