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ABSTRACT

A semi-automatic, two-stage multimodality medical volume registration is described. This registration hinges
on surface matching by using 3D chamfer matching algorithm first and on global-information-based matching
afterwards. Two stages are applied, because information contents of registered volumes are different and no
single registration method works satisfactorily so far. This approach is applied to MRI (Magnetic Resonance
Imaging), CT (Computed Tomography) and SPECT (Single Photon Emission Computed Tomography) data

volumes. Pilot experiments prove satisfactory results.
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1 INTRODUCTION

Registration of volume data of different modalities
and the consecutive fusion of registered data are the
basic prerequisites for data visualisation and
comparison of medical volumes. Registration
represents the finding of parameters of geometrical
transformation that brings depicted objects into
geometric alignment.

A number of medical volume registration methods
was published until now. A comprehensive review of
these methods has been presented e.g. in [Maint98].
The registration methods can be divided into two
main categories: feature-based (FB) and global-
information-based (GIB) methods.

FB methods require segmentation of some
significant features that are present within both
registered volumes. These features can be
represented by landmarks (either extrinsic or
intrinsic), curves or surfaces, etc. A drawback of FB
methods is that registration accuracy depends on
segmentation error. The FB methods are commonly
automated except for the segmentation step, which

is performed semi-automatically most of the time.
On the other hand, the methods are advantageous if
depicted objects differ by their internal structure but
their outlines or surfaces (as is often the case of
multimodality data sets).

GIB methods rely on the whole information content
of volumes, without prior data reduction by
segmentation. These methods require a suitable
criterion function evaluating the data similarity.
Since dependencies between multimodality volumes
may be non-linear, thus the criterion function has to
be suited to this fact. A group of non-linear criterion
functions includes e.g. Woods’s algorithm
[Wo0ds93] or mutual information [Maes97]. The
criterion function is optimised over a chosen
parametric space by using a suitable optimisation
strategy. The main drawbacks of the GIB methods
are higher computational cost when compared with
FB methods and unreliability if geometry of objects
is deformed and more complex data dependencies
than non-linear are present.



2 DATA

Volume data sets of a human head of three different
modalities are registered: MRI (Magnetic Resonance
Imaging), CT (X-Ray Computed Tomography) that
both depict patient morphology (anatomy) primarily,
and SPECT (Single Photon Emission Computed
Tomography) that depicts information on the
metabolism of the underlying anatomy.

MRI does not represent significant load for patients,
therefore, it is possible to perform more detailed
measurements and obtain MRI data sets with high
resolution along all x, y and z axes. Our MRI sets
have 256 x 256 pixels per slice typically and up to
200 slices.

Fig. 1: MRI slice.

On the contrary, CT represents a health risk.
Therefore, scan time is minimised, which leads to
low resolution in zaxe, thus, CT volumes have
usually 10-13 slices, each of 256 x 256 pixels. It is
possible to obtain CT scans with two options —
“bone oriented” (Fig. 2) presenting bones, and “inner
structure oriented” (Fig. 3) presenting soft tissues,
i.e. somehow similar to MRI data sets.

SPECT volumes carry information about brain
metabolic activity. Thus, the part representing
anatomical subsets of above-mentioned data volumes
is captured (i.e. no slices corresponding to e.g. jaw
bone are presented). SPECT data sets have from 30
to 64 slices, each having 128 x 128 pixels, thus
SPECT sets are of lower resolution in xy plane when
compared with MRI and CT (Fig. 4).

Fig. 2: “Bone oriented” CT slice.

Fig. 3: “Inner structure oriented” CT slice.
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Fig. 4: SPECT slice.

3 METHODS

Both approaches — FB and GIB — are combined in
this work, because no single method provides
reliable registration in the case of multimodality
medical data.

3.1  FB approach
Surfaces of objects are employed as features. Their

segmentation is done semi-automatically by user-
controlled thresholding of volumes. After obtaining



binary volumes, the surfaces of objects are extracted
by using methods of mathematical morphology
(closing & dilation & subtraction of binary volumes)
[Serra82] (Fig. 5).

Fig. 5: MRI slice and its extracted 2-D surface.

Surfaces of both volumes are matched by 3-D
chamfer matching algorithm [Borge88]. It
transforms the floating volume (i.e. undergoing
transformations) into “distance volume” the voxels
of which take values approximating their Euclidean
distances from the nearest surface voxels (darker
values are closer to the surface, lighter values are
more distant from it — see Fig. 6).

Fig. 6: CT 2-D surface and its distance
transformation image.

The distance between a reference surface volume
and a floating distance volume, expressed by the root
mean square average, is minimised over a parametric
space of geometrical transformations by using a
suitable optimisation strategy (see below).

3.2  GIB approach

Reliable GIB registration requires a criterion
function evaluating data similarity that is smooth,
robust regarding noise, changes of photometry of the
data sets, and has minimum number of local
extremes over a parametric space.

We have investigated a number of criterion
functions, including the stochastic sign change
criterion (SSC), the sum of absolute valued

differences  (SAVD), normalised correlation
coefficient (NCC), Woods’s algorithm and a variety
of algorithms of mutual information (MI) evaluation.
These functions were evaluated regarding their
smoothness, robustness and behaviour in the vicinity
of global extreme.

Our results [Capek99] confirm that the optimal
criterion function for medical volume registration is
MI computed according to [Maes97]. This function
has low computation demands, is smooth, has no
local extremes in the vicinity of global one (see Fig.
7) and is robust regarding noise, and linear and non-
linear grey-scale transfer function shifts. Moreover,
the computation time of this function, in contrast to
other above-mentioned ones, is practically
independent on the size of data sets, which is
advantageous especially in case of large data
volumes.
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Fig. 7: Behaviour of MI in the vicinity of its
global extreme (x, y mutual shifts of 240 pixels
of NMR volumes).

The criterion function has to be optimised over a
parametric space, and an optimisation strategy
should be fast and converging to global extreme with
high probability even in case of non-linear
parametric space and in the presence of local
extremes in the vicinity of the global one.

A number of optimisation strategies (full-search,
genetic  algorithm, downhill simplex method,
Powell’s method, simulated annealing) were tested
in order to select the most optimal one [Capek99].
The best results gave multiply restarted adaptive
simulated annealing (ASA) [Ingber]. It provides the
highest probability of finding the global extreme in
the parametric space and requires low number of
evaluations of the criterion function during the
optimisation process.



3.3 Implementation issues

The largest amount of computational time required
by GIB registration is consumed by geometrical
transformations of the floating volume during
optimisation. This is due to necessity of evaluation
of the volume for every co-ordinate of the parametric
space. Selecting a sub-volume, e.g. brain, i.e.
eliminating the information void background,
shortens the computation time. The sub-volume is
determined by thresholding during the segmentation
step.

To diminish further the computational load, the
criterion function [Pokra96] is evaluated over an
evenly distributed random sample of voxels, and a
pyramidal set-up is applied. We start with just a few
voxels with high number of ASA restarts, and with
increasing quality of registration the number of
voxels is increased and the number of ASA restarts
is decreased. This approach does not need any re-
sampling of volumes, therefore, data are not changed
during registration.

4 RESULTS

We began our experiments with NMR-NMR
registration of the same volume set (consisting of
256x256x23 voxels) in order to evaluate accuracy of
the proposed method. The floating volume was
randomly misregistered in extents of [-20, 20] voxels
for translations and of [-10°, 10°] for rotation using
trilinear interpolation.

Registration was done in three levels with growing
accuracy and computation time. FB approach was
applied first to accomplish coarse registration by
using only 10% of all surface voxels to speed-up the
computation. Then GIB registration was used in two
levels. On the first level (GIB1), 10 re-starts of ASA
by using only 1% of voxels (cca 16 000) of the sub-
volume mentioned in the chapter 3.3 starting from
the registration position given by the FB approach
were applied. The GIB1 was followed by GIB2 — 10
ASA re-starts by using 3% of voxels (cca 48 000) of
the sub-volume. This set-up kept the computational
load low, even when a common PC (Intel Celeron
450 MHz) was exploited, without significant lost of
accuracy. Table 1 gives absolute valued errors (dx,
dy, dz, da, dB, d9) of geometrical transformation
parameters obtained during registration on the
individual levels (including time of computation ¢ [s]
when the above-mentioned PC was used). Zero
registration errors were not obtained due to
application of tri-linear interpolation.

dx dy dz da dg dy t [s]

FB | 0.677 | 0.189 | 0.137 [ 0.698 | 1.299 | 0.689 | 59

GIB1 | 0.031 | 0.183 | 0.806 | 0.303 | 0.208 | 0.129 | 458

GIB2 | 0.032 | 0.067 | 0.085 | 0.246 | 0.052 | 0.072 | 1222

Table 1: Registration errors of identical NMR-
NMR data sets for the individual registration
levels (see text) and the computation time.

Figures 8-10 represent multimodality registrations.
In these cases, without some markers, exact
evaluation of registration errors is practically
impossible. Therefore, evaluation of registration
quality is done by visual comparison of fused slices
of different modalities before and after registration.

For all following figures it is valid that the floating
volume is in the left half of images, the reference one
is in the right half. Left column of images represents
volumes before and right column after registration.

Fig. 8: Fusion of SPECT (128x128%x64) — NMR
(256x256x23) volumes registered by using the
two-stage approach (upper raw = 7" NMR slice,
bottom raw = 15" NMR slice). The resulted
registration parameters were x=-2.057, y=-5.219,
7=-5.081 (SPECT voxels), a=11.990°, =3.174°,
1=-6.290°.



Fig. 9: Fusion of SPECT (128x128x35) — CT
(256x256x13, “bone oriented” with manual
removal of a bed) volumes registered by using
FB approach only — brain to bone surface
registration (upper raw = 5" CT slice, bottom
raw = 9" CT slice). The resulted registration
parameters were x=-0.735, y=16.582, z=11.992
(SPECT voxels), a=-28.070°, p=8.479°, y=-
0.481°.

Fig. 10: Fusion of NMR (128x128x40) — CT
(256x256x12,  “inner  structure  oriented”)
volumes registered by using GIB approach only
(upper raw = 6" CT slice, bottom raw = 11" CT
slice). The resulted registration parameters were
x=3.962, y=12.987, z=29.450 (NMR voxels), o=-
40.802°, f=-3.445°, y=-4.356°.

5  CONCLUSION

A two-stage, semi-automated multimodality medical
volume registration is presented. It was chosen,
because multimodality registration is difficult and no
single method gives good results when dealing with
NMR, CT and SPECT data sets.

Registration of data volumes of the same modality is
an easy task, and our method gives satisfactory
results with even a low computational burden.

SPECT-NMR registration is more difficult. To avoid
local extremes FB registration based on surfaces is
applied first. Surfaces of brain from SPECT data are
matched with surfaces of skin from NMR data. This
procedure result in some translation error in
z direction that has to be compensated and results
further refined by registration based on a GIB
method by using mutual information.

SPECT-CT (“bone oriented”) registration can be
accomplished by FB approach, because these CT
data sets do not show any of inner structures,
however, some similarity can be seen in surfaces.
Therefore, surfaces of brain from SPECT data are
matched with surfaces of bones from CT data.
Again, this introduces some translation error in
z direction, which, however, is difficult to correct.
Moreover, these CT data always contain a bed, on
which a patient lies, and this bed has to be removed
by-hand before registration, otherwise it would affect
the registration.

NMR-CT (“inner structure oriented”) registration
can be performed by GIB approach. In this case
there is no use for FB approach, because data
contain a lot of objects (see Fig. 3), which produce
undesirable surfaces. Registration of different
modality volumes with CT volumes is made more
difficult by their sparse sampling in z direction (other
modality volumes are sampled with higher density)
and by great mutual sagittal inclination of heads (see
Fig. 10). These facts result in a great parametrical
space that has to be examined and a lot of local
minima in this space that make the registration time-
consuming or even impossible.

It is obvious that the weakest part of FB registration
is segmentation of surfaces, which is done semi-
automatically by thresholding. Therefore, it is not
possible to segment only brain in NMR data or inner
parts of bones in CT data and register them with
brain in SPECT data, which would improve
registration results. Accordingly, better segmentation
of studied objects will be a goal of our future studies.

The next problem dealing with multimodality
registration is evaluation of registration quality. We



shall evaluate the described method by joining “The
Retrospective  Registration Evaluation Project”
sponsored by Vanderbilt University in Nashville, TN
(USA). This project provides multimodality data
which will be registered by us and results will be
evaluated by the project.
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