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ABSTRACT

This paper presents a spline approximation method for the representation of a large set of points.
The representation should be smooth with preserving important shape characteristics given by
the points. Because of a large size of the set, the standard spline interpolation cannot be used.
The proposed method is based on a least squares minimization of the distances of the points
from the spline function subject to the conditions of smoothness of the representation. The spline
approximation produces accurate and suitable representation of the points. The proposed approach
has been verified on both synthetic and real data sets of points.
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1 INTRODUCTION AND
MOTIVATION

An important problem of pattern recognition and
computer vision is fitting the set of points by parts
of geometric primitives, described by a curve or a
function. The set of points is a typical result of
many applications such as computer acquisition of
various real objects. The representation of these
results by the set of points is not convenient for
two reasons: Firstly, the set is usually too large to
be processed due to the computational time con-
straints. Therefore, the number of points needs
to be reduced while all the essential character-
istics expressed by the set have to be preserved.
Secondly, the function representation is more ap-
propriate for further processing and it better de-
scribes the given set of points. For that reasons
it is advisable to replace the set of points by a
function.

The proposed method was motivated by the re-
quirement of a suitable representation of profiles
of fragments of archaeological pottery. Each frag-
ment needs to be measured and classified ac-
cording to its shape and material characteris-
tics [Rice87]. The manual classification is very
time-consuming process. Thus, the computer
based acquisition of the processing of fragments
is highly required. The computer processing is

performed in this manner: Each fragment is mea-
sured by a computer, based on the computer vi-
sion methods (stereo-aquisition or structure-light-
aquisition) [Sabla93], what gives its 2.5-D object
model. On this data, the axis of rotation of the
fragment is estimated [Halif99]. After the axis of
rotation is known, the model of the fragment is
transfered according to the rotation axis to the
2-D set of points which represents the profile of
this fragment. These points are noisy caused by
errors in aquisition the 2.5-D model, in estima-
tion the rotation axis and in transfering the data
to the 2-D set of points. Consequently, the set of
points is not suitable for further processing and
thus it needs to be replaced by better represen-
tation. This representation should be smooth and
preserve the important shape characteristics of the
given set. The spline approximation method rep-
resents the profile of a pottery fragments suffi-
ciently.

In this paper, the spline approximation method for
the replacing of the set of points is proposed. The
approximation minimizes the average distance of
the points from the fitted function. The proposed
method is able to estimate the spline in accurate,
fast and stable manner. The paper is organized
as follows: in the next Section, various methods
for the representation of a set of points are men-
tioned. The following Section describes the spline
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Figure 1: An overview of the methods for the representation of the set of points
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Figure 2: Two possibilities of fitting the function to the set of points: (a) interpolation, (b) ap-

proximation

approximation method in details. In the next Sec-
tion, the proposed method is verified on synthetic
and real data. In the last Section, the whole pa-
per is concluded and some future directions are
outlined.

2 REPRESENTATION
METHODS

It was already noted that the set of points is typi-
cally not convenient for further processing. There-
fore, it needs to be replaced by another represen-
tation. There already exist various methods for
the representation of the given set of points. The
methods can be divided into two main groups, as
depicted in Fig. 1: interpolation or approximation.

The basic difference between interpolation and ap-
proximation methods is demonstrated in Fig. 2.
When the number of points is small, the interpo-
lation method is convenient. But when the set is
large and the points are noisy, the approximation
method should be applied.

3 SPLINE APPROXIMATION

The method for the representation by the spline
approximation replaces the set of points by a
spline function. The spline is a piecewise poly-
nomial function with conditions of smoothness on
the endpoints of the polynomials. The math-
ematical theory of splines is known for a long
time [Reins67, Reins71]. In spline approximation

method, the given points are divided into suffi-
cient number of intervals which are defined by the
user. In each interval the points are approximated
by a polynomial. The coefficients of the polynomi-
als are computed with respect to the smoothness
of the spline function. In typical applications the
spline functions of the second or the third degree
are used, because this degree is sufficient [Boor78].
The higher degree only adds the computational
difficulty. In this approach the splines of the third
degree are used.

The accuracy of the representation can be charac-
terized by the approximation error. The approx-
imation error is given as the average distance of
the points from the approximating function in this
approach. In [Punta98], another criterion of the
accuracy was defined: the number of inflex points.
However, that criterion does not characterize the
smoothness and the accuracy of the function suffi-
ciently, because of its discontinuity and irregular-
ity.

In order to represent the given set of points by
the spline approximation it is necessary to solve
the following tasks:

e define the sufficient number of intervals
e compute the appropriate spline coefficients

e estimate the error of the provided approxi-
mation



3.1 Number of Intervals

The decision of the right number of intervals
is crucial for the overall success of the method.
More intervals bring more accurate approxima-
tion. However, in order to avoid unwanted side-
effects (such as oscillations of the function) and
also due to the performance, it is desirable to keep
the number of intervals small. For many applica-
tions, the small number of intervals (5 — 10) is
sufficient.

3.2 Spline Coefficients

After the number of intervals is known, the coef-
ficients of the appropriate spline function are es-
timated by the approximation of the points with
respect to the function smoothness. The standard
least squares method [Lawso95] is chosen for com-
puting these coefficients, what formulated the fol-
lowing task:

min |[Ac — b||*> under Be=0. (1)

The matrix A expresses the approximation of the
points, the matrix B represents the smoothness
conditions and c is the vector of spline coefficients.
In the following equations, two constants are used:
N is the number of points and M is the number
of intervals the points are divided into.

The vector ¢ of the length (4 x M),

C=(al,bl,cl,dl,...,GM,bM,CM,dM)T, (2)

represents the coefficients of the spline function
on each interval. The coefficients {a;,b;,¢;j,d;}
define the polynomial in the j-th interval as fol-
lows:

aj*x? + by * 30 (1—z;) + 3
+e 30l —z) + djx(1—=)° 3)
where {23, 32%(1—x;), 3x;(1—=;)?, (1—x;)3} are so
called Bernstein polynomials and z;, i = 1,..., N;
are the x-coordinates of the points in the j-th in-
terval, N; is the number of points in the j-th in-
terval.

The matrix A of the size N x (4% M),

Ay 0 0 0
0 A, 0 0

A= : : ; (4)
0 0 Av_o1 O

represents the approximation of the points over
all the intervals. It consists from the sub-matrices
A; for each interval. The matrices A; of the size
N. j X 4,

ap B oM 6

anj BN, N, 0N,

describes the approximation of the points from the
j-th interval, j = 1,..., M. The {«ay, 3,7, 0;} are
the Bernstein polynomials defined in Eq. 3. Note
that each interval can contain different number of
points (and thus the matrix A is not block diago-
nal) and that

The column vector b of the length N,

b= (ylay27"'7yN—1ayN)Ta (7)

is created from the y-coordinates of the points.

The matrix B of the size (3% (M — 1)) x (4% M):

B, B 0 .. 0 0 0

0 By B, ... 0 0 0

0 0 By .. 0 0 0
B=| : : i oL@

0 0 0 .. B2 O 0

0 0 0 .. By B, 0

0 0 0 .. 0 Bi B

represents the smoothness conditions in the end-
points. In this approach the splines of the third
order are used, and for that reason is required the
continuity of the function to the second deriva-
tive. The continuity conditions are expressed in
the following matrices:

1 0 0 0
Bi:=(1 -1 0 0], 9)
1 -2 1 0
and
0 0 0 -1
B,=(0 0 -1 1 (10)



To solve the problem described in Eq. 1, a stan-
dard method of Lagrange multipliers [Barre94] is
used, which yields:

ATA BT c ATb
(%" 0 )(5)-(%")
where A is a vector of Lagrange multipliers. From
Eq. 11 the coefficients of the spline function (the

vector ¢, defined in Eq. 2) can be computed di-
rectly by Gauss elimination.

3.3 Approximation Error

The aim of the sufficient representation is to re-
place the given set of points by the spline which
minimizes the approximation error. In our ap-
proach, the approximation error is defined as the
average distance of the points from the estimated
spline function,

N
E=< > |f(x)—ul, (12)
i=1

2=

where N is the number of points, f(x;) is the
spline function defined in Eq. 3 and (z;,y;) are
the coordinates of the points. It is clear that in-
creasing the number of intervals decreases the ap-
proximation error. But due to the input noise,
this decreasing is limited. Consequently, when the
approximation error reaches the input error, the
increasing number of intervals does not change the
approximation error considerably.

4 PRACTICAL REALIZATION

The proposed spline approximation is performed
in the following steps:

1. Preprocessing of the set of points: After the
number of intervals is defined the given
points are divided into the corresponding in-
tervals.

2. Construction of the linear system of equa-
tions: The matrices A (Eq. 4) and B (Eq. 8)
and the vector b (Eq. 7) are constructed
with respect to the given points divided into
relevant intervals. From these matrices the
linear system of equations, defined in Eq. 1,
is set up.

3. Computation of the spline coefficients: The
coefficients of the spline, defined in Eq. 2,
are computed by Gauss elimination method
form the Eq. 11.

4. Estimation of the approzimation error: The
approximation error of the estimated spline
representation is computed as given in
Eq. 12.

5 EXPERIMENTAL RESULTS

The proposed method has been evaluated in many
experiments. The experiments confirmed the ac-
curacy and stability of the spline approximation
used for the representation of the given sets of
points. The approach was tested on both syn-
thetic and real data. The method works fast, com-
paring with other methods, such as the spline in-
terpolation.

The method has been used practically in the pro-
cessing of the fragments of archaeological pottery.
An automated processing of fragments is highly
requested in archaeology now [Sabla93, Halir97a,
HaliF97b]. Every fragment needs to be measured
and classified [Orton93]. An important part of the
classification is the estimation of so called profile
of a fragment. First, the fragment is measured by
a computer, using the computer vision methods,
what results in its 2.5-D model. After the axis
of rotation of this fragment is known [Hali¥99],
the model is transformed to the set of 2-D points
representing the profile of the investigated frag-
ment. The set of points is typically not convenient
for further processing and that is why it needs to
be replaced by better representation. The ancient
pottery were hand-made on the potter’s wheel and
therefore it is rotationaly symmetric and the shape
of the pots is typically smooth. Consequently, the
spline approximation is suitable for the represen-
tation of the profile of the fragments.

Various representations of the given set of points
are compared in Fig. 3. This experiment was per-
formed on the real data set which represents the
profile of a pottery fragment (depicted in (a)).
Five intervals were used for the estimation in all
the techniques. In the broken line representa-
tion (b), the number of points is reduced first.
In each interval, the points are replaced by their
center of gravity. These centers are marked by
a 74”7 in sub-figures. The broken line is fitted
through these new points. This method is fast,
but it does not represent the given set of points
very well. The interpolation spline (c) works also
with the reduced number of points (made by the
same way). Then the spline function is interpo-
lated through these points. This representation is
smooth, but it is not accurate due to the system-
atic errors caused during the reduction of the num-
ber of points. The spline approximation (d) rep-
resents the set of points conveniently, it is smooth
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Figure 3: Different representations of the set of points: (a) the given set of points, which represents
the profile of a fragment, (b) broken line, (c) spline interpolation and (d) spline approximation.
Five intervals are used in all the representation. Compare the appropriate error of approximation
given in each example.
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Figure 4: Results of fitting the spline approximation technique applied on various input data: (a) a
real data set which represents the profile of a pottery fragment, (b) a real data set which represents
the profile of another fragment, (c) a synthetic data set which represents the noised cubic function.
The given sets are illustrate on the left sides of sub-figures, the estimated splines on the right sides.

Compare the appropriate error of approximation given in each example.
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Figure 5: Two representations of the real data set from Fig. 3a using different number of intervals:
(a) two intervals, (b) six intervals. Compare the appropriate error of approximation given in each
example. The accuracy of representations is illustrated by the residua of points of function with:
(c) two intervals and (d) six intervals. In can be seen that two intervals are insufficient, but six
intervals represents the given set accurate.
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Figure 6: The influence of the number of intervals to the accuracy of the representation: (a) the ap-
proximation error, (b) the number of inflex points. The approximation error decreases continuously,
but from six intervals it is not changing considerably. The number of inflex points changes slowly
and non-continuously. Thus, it does not characterize the accuracy of the estimated representation

conveniently.

and accurate.

The proposed spline approximation technique ap-
plied on various data sets is depicted in Fig. 4. Six
intervals were used in all examples. The method
applied on real data is demonstrated in Fig. 4 (a)
and (b). These sets represent the profiles of frag-
ments from different archaeological pots. It can
be seen that the spline approximation is accu-
rately, even with small number of intervals. The
application on the synthetic data is illustrated
in Fig. 4 (c). This set was generated by adding
the Gaussian noise to the points which represent
the cubic function:

5023 — 9032 + 493 + 18 , & = 2/60 , = € (0, 60)

This cubic function was chosen, because it simu-

lates a profile of a real pot. For that reason it was
possible to evaluate the proposed method on the
data which reminds the data of the real applica-
tion, but its equation is known. The experiments
on this synthetic data verified the accuracy and
stability of the method even on very noisy data.

The influence of the number of intervals on the
accuracy of the proposed spline approximation is
demonstrated in Fig. 5. Two spline functions with
different number of intervals are fitted to the same
data set, depicted in Fig. 3a: with two intervals (a)
and with six intervals (b). It can be seen that it
is possible to approximate the points even with
small number of intervals. But with bigger num-
ber, the spline represents the points accurate. The
accuracy of the representation from sub-figures (a)
and (b) is illustrated by the residua of the given

points in sub-figures (¢) and (d). The residuum of
the point is the distance of this point from the esti-
mated function. The sub-figure (c) corresponds to
the approximation depicted in (a). It can be seen,
that the residua ”oscillate” around the zero, what
means that this representation is insufficient. But
in sub-figure (d), corresponding to (b), the residua
are only around the zero, what means that this
number of intervals is sufficient. Only in the ends
the residua are changed. It is caused by two rea-
sons: First, there was bigger noise. Second, the
bottom part of the fragment changes its form dis-
tinctly and thus, it should need more intervals in
this part. The dispersion of the residua (£1 mm)
is the input noise of the data.

The dependence of the accuracy on the number
of intervals is depicted in Fig. 6. The figure illus-
trates the progress of the approximation error (a)
and the number of inflex points (b) with increasing
number of intervals. For this experiment the same
data as in Fig. 3a were used. The approximation
error (a) decreases continuously by increasing the
number of intervals. It can be seen, that from
six intervals the approximation error does not de-
crease considerably, because it already reaches the
input error. For that reason, the increasing num-
ber of intervals is inconvenient, because it does
not change the error, but it increases the compu-
tational difficulty. The progress of the number of
inflex points is demonstrated in (b). It should be
noted that the number of inflex points need not
change continuously not even regularly. Thus, it
does not characterize the accuracy of the repre-
sentation conveniently.



6 CONCLUSION AND
OUTLOOK

In this paper, the spline approximation of the
large set of points was presented. This approach
started with a brief overview of possible represen-
tations of the set of points and then the spline
approximation method was described in details.
The approximation problem is based on a least
squares minimization under the smoothness con-
ditions. The method was verified on various data
sets, which confirmed the accuracy of the method
and its advisability for representation of the set, of
points.

Many other methods for representation of the set
of points by a spline function already exist. But
for the archaeological task, the priority is the
quickness of the method and preserving the es-
sential characteristics of the points. The spline
approximation covers excellent this conditions.

There are many possibilities for improving of this
approach. The same lengths of the intervals are
used, but for some applications should be conve-
nient the various interval lengths. The mentioned
criterion of the representation, the number of in-
flex points, is not good enough to determine the
quality of the representation, so another task can
be to find the suitable criterion. The proposed
method is general, and therefore, there are no
problems with including these extensions.

7 REFERENCES

[Barre94] R. Barrett, M. Berry, T. F. Chan,
J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van
der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iter-
ative Methods. Society for Industrial and
Applied Mathematics, 1994.

[Boor78] C. de Boor. A practical guide to splines.
Springer-Verlag, 1978.

[Halit97a] R. Halif. Estimation of the axis of ro-
tation of fragments of archaeological pot-
tery. In Axel Pinz, editor, Proc. of the 21th
Workshop of the Austrian Association for
Pattern Recognition (OFEAGM’97), pages
175-184, 1997.

[Halit99] R. Halif. An automatic estimation of the
axis of rotation of fragments of archaeolog-
ical pottery: A multi-step model-based ap-
proach. In V. Skala, editor, Proc. of the 7th
International Conference in Central Eu-
rope on Computer Graphics, Visualization
and Interactive Digital Media (WSCG’99),
1999.

[Halif97b] R. Halif and J. Flusser. Estimation
of profiles of sherds of archaeological pot-
tery. In Czech Pattern Recognition Work-
shop (CPRW’97), pages 126-130, Czech
Republic, Milovy, February 1997.

[Laws095] Ch. L. Lawson and R. J. Hanson. Solv-
ing Least Squares Problems. Number 15
in Classics in Applied Mathematics. Soci-
ety for Industrial and Applied Mathemat-
ics, 1995.

[Orton93] C. Orton, P. Tyers, and A. Vince. Pot-
tery In Archaeology. Cambridge University
Press, 1993.

[Punta98] N. V. Puntambekar and A. G.
Jablokow.  Selection of the number of
control points for spline surface approxima-
tion. In V. Skala, editor, Proc. of the 6th
International Conference in Central Europe
on Computer Graphics, Visualization and
Interactive Digital Media (WSCG’98),
1998.

[Reins67] Ch. H. Reinsch. Smoothing by
spline functions. Numerische Matematik,
10(3):177-183, February 1967.

[Reins71] Ch. H. Reinsch. Smoothing by spline
functions II. Numerische Matematik,
16(5):451-454, March 1971.

[Rice87] P. M. Rice. Pottery Analysis: A Source-
book. University of Chicago Press, 1987.

[Sabla93] R. Sablatnig, Ch. Menard, and
P. Dintsis. A preliminary study on
methods for a pictorial acquisition of
archaeological finds. In P. M. Fisher,
editor, Archaeology and Natural Science,
volume 1, pages 143-151. Paul Astroems
Foerlag, Gotenburg, 1993.



