Object-Based Image Coding for Cooperative 3D Visualization

Jobst Loffler

Institute for Media Communication - Competence Center for Value-added Solutions
GMD-German National Research Center for Information Technology
D-53754 Sankt Augustin - Germany
Jobst.Loeffler@gmd.de

ABSTRACT

This articel presents a new approach to interaction with 3D objects of virtual models in the context of
digital libraries, which was developed as part of the author‘s ongoing PhD research. Collaborative net-
worked environments support users in their work with shared content. One way to provide the visual
feedback a user needs to interact with 3D models is to distribute image streams of rendered objects in
a client-server-environment, which is described here. Image streams are coded in an object-based way
according to the MPEG-4 international standard. As a result, users in a heterogeneous and error-prone
network environment can cooperatively visualize complex 3D models. The use of coded video streams for
collaborative visualization offers flexible means of user interaction for digital library applications. There-
fore, future work should aim at providing a cooperative 3D visual interface for heterogeneous documents

in digital library systems.

Keywords: distributed visualization, object-based image coding, model segmentation, digital libraries

1 INTRODUCTION

Interactive visualization of 3D models in dis-
tributed applications is a current subject of re-
search and development. It is potentially applica-
ble to many areas of science, education, medicine
and industry for purposes of development, plan-
ning, communication and learning. In practice,
3D models are made available on a server as geo-
metric data with additional multimedia informa-
tion such as text, images, video or audio. Prob-
lems in this area arise from the combination of vi-
sualization techniques for complex data sets and
communication techniques in cooperative envi-
ronments. The possibility of discussing and coop-
eratively working with 3D models in digital docu-
ment collections will become increasingly impor-
tant and interesting for users, as the accessibility
of distributed documents in computer networks
improves.

A combination of data of different types together
with so-called descriptive meta-data is called a
heterogeneous digital document [Felln98]. A col-
lection of such documents, which users can ac-
cess and work with remotely over a network, is
called a digital library. This article describes

the approach and prototype realization of an in-
teractive visualization environment for heteroge-
neous digital documents using object-based video
coding. The main topic is visualization of 3D
models as part of digital documents. The dis-
tributed environment described is composed of a
server, which provides the digital document col-
lection in a database application, and of several
clients interested in interactive visualization (see
Fig. 1). The principal steps of this approach are
the following: after selecting a 3D model from a
database, the geometric data are preprocessed by
the server using a looping renderer module and
the resulting image data are then coded into el-
ementary video streams, which are sent to the
clients. On the client’s side the 2D video ob-
jects are re-composed again, showing the com-
plete scene on an interactive display. Users can
then interact with the server-side objects through
a client-server back-channel. The possibility of
interactively changing the structure and content
of generic documents enables cooperative visu-
alization, which allows cooperative retrieval and
work within distributed digital libraries. Further
advantages of this system are its ability to pre-
process and pre-structure document components
before transmission.

3D model

©
g5 %@ @ -

Figure 1: A distributed visualization envi-
ronment.

The main constraints of distributed visualization
in a network environment are the available band-
width and the local computing power on the
client’s side in terms of hardware and software
[Campa98]. The problem of limited bandwidth
can be solved by data compression before trans-
mission. Local computing power in terms of hard-
ware is a minor problem nowadays, whereas a dis-
tributed application, demanding the same dedi-
cated client software for visualization in a hetero-
geneous environment can result in compatibility
problems. To meet this requirements, the obvious
solution is the use of an international standard for
coding of multimedia content such as the MPEG-
4 standard.

2 APPROACHES
WORK

AND RELATED

Various strategies have already been developed
to address the mentioned requirements of coop-
erative visualization applications [Singh99]. To
optimize a system in a given network environ-
ment, one approach can be more suitable for a
certain purpose than another. Depending on net-
work bandwidth, number of clients and the het-
erogeneity of the environment, a combination of
the following concepts can be useful.

2.1 Full Replication and Visual Interac-
tion Approach

Two main concepts for cooperative visualization
of 3D models can be distinguished among other
approaches. One is the transmission of copies
of all model data to every client (Full Replica-
tion Approach FR), the other is the transmis-
sion of preprocessed data, eg. as video streams
of the rendered model, together with additional
information about the model structure extracted
from the scene graph (Model-Vision-Distribution
MVD).

In the first case, object copies are distributed and
client replica are locally visualized. All changes
of the 3D model are synchronized and transmit-
ted to all clients. The second approach can be
described as distribution of rendered viewing se-
quences of the model using coded image streams.
Client actions are sent back to the server, while
synchronization of user access and transforma-
tions of the model are carried out by the server.
In this case, there exists only one copy of the
model and users interact with this model during
a working conference.

As an extension of the second concept, the new
approach presented here uses object-based im-
age coding (MPEG-4). This approach allows the
users of a cooperative visualization application to
interact with the 3D objects of models on the
server over a back-channel. Clients can therefore
work cooperatively with the model without the
need to download the whole model (Visual In-
teraction Approach VTI). This enables selection
and pre-structuring of complex 3D models before
transmission of the geometric data and is a flex-
ible means of providing a 3D visual interface for
digital library collections.

2.2 Related Work

Several systems for cooperative work with 3D
models have been presented in the scientific liter-
ature [Singh99]. An example of a full replication
approach is the DIVE system, where every client
holds a copy of a 3D model and changes are dis-
tributed over multi-cast communication in a peer-
to-peer architecture [Carls93]. A system following
the MVD-approach was described by Haulsen et
al. [Hauls98]. In this system a virtual environ-
ment on a server is controlled using coded image
streams and a back-channel from the clients to
the server.

3 TECHNICAL BACKGROUND

Besides visualization, methods for object-based
coding of images and techniques for distribution
of image streams are important for the described
cooperative VI-approach. In this section a short
introduction to object-based visual coding ac-
cording to the international standard MPEG-4 is
given, and distribution methods in a client-server
system are discussed.

3.1 Object-based Visual Coding

The objective of video coding standards is to en-
able transmission of image sequences over connec-
tions with limited bandwidth. To this end loss-
less or lossy compression algorithms for digital
data are used to reach compression ratios of 2:1
(lossless) up to 100:1 (lossy) with good quality.
A common video signal in the D1 format requires
a data rate of 166 MBit/s uncompressed, while
possible bandwidths in heterogeneous networks
vary from 28 - 64 kBit/s (analogous telephone
and ISDN) to 10 - 100 MBit/s (Ethernet). Higher
bit rates are only achieved by ATM techniques,
which are not yet widely available. Coding meth-
ods, for example those described in the MPEG
standards, take advantage of spatial and tempo-
ral correlations in image sequences to reduce re-
dundant information. Algorithms for discrete co-
sine transform and motion compensated predic-
tion are used for these purposes [LeGal92]. The
MPEG video standards use lossy compression of
image sequences. The MPEG-1 and -2 standards
are block based, which means that the algorithms
work on blocks of image pixels. An image is seen
as a rectangular composition of pixel blocks.

In an object-based coding context such as the
MPEG-4 standard frames are seen as composi-
tions consisting of different scene objects. Each
object is assigned to a distinct region defined
in a segmental mask. The MPEG-4 video ver-
ification model (VM) encodes for each of these
video objects (VO) a texture map, a binary shape
and motion information [Sikor97]. The video ob-
jects of a scene are coded into elementary bit-
streams and transmitted as multiplexed MPEG-
4 streams. During scene recomposition by the
decoder, several 2D objects can be composed
with qualitative depth layering in front of a back-
ground. The decision about the visibility of over-
lapping pixels belonging to different objects re-
lates to depth knowledge provided by a VRML-
like scene description, which is included in the
coded MPEG-4 stream.

The structure of the multiplexed bitstream is
object-based and its content is arranged in differ-
ent hierarchical layers: video session (VS), video
object (VO), video object layer (VOL) and video
object plane (VOP) (see Fig. 2). The highest
layer, the video session, is divided into substruc-
tures, so-called video objects. A video object is
represented in different spatial and temporal res-
olutions in the next layer, the video object layer.
Finally the video objects planes contain the ac-
tual coded image data. The whole scene is rep-
resented as a video session in the multiplexed

MPEG-4 stream, while each video object is coded
into an elementary bitstream.

ol
VSO VS1 ...

ﬁvoo

Video Object Layer VOL 0

Video Session

Video Object

Video Object Planes VOP 0 VOP 1.... VOPOVOP 1

Figure 2: MPEG-4 video bitstream structure.

These elementary bitstreams are decoded at the
receiver end and re-composed with the help of the
scene description. If an MPEG-4 scene contains
both 2D video objects and 3D objects [Doeng97],
the decoder will also perform 3D rendering before
composition. (see Fig. 3).

3.2 Distribution Methods

An important performance criterion for dis-
tributed visualization environments is latency. In
this context this means the time needed, before a
user action becomes visible on all user displays.
Therefore, in order to minimize latency it is cru-
cial to choose a suitable communication structure
[Carls93].

A client-server architecture is based on an asym-
metric model where many clients connect to a
small number of servers, often only to a single
server. The number of connections is propor-
tional to the number of clients. The 3D data set

Demulti- Dec“‘_“' Composition
---»| plexing poession iand Rendering
T i
e : @ s
G S
Elementary M
b Biisireams ol
=)
E Scene
0 Description T
‘ ; Display
--- [H
.- H
L e e

Upstream Data (User Events)

Figure 3: Decoding of MPEG-4 streams:
re-composition and rendering.

@/'@

@

Peer-to-Peer

Client-Server

«—— Unicast or multicast connections

e Multicast transmission

Figure 4: Communication models in a
client-server and a peer-to-peer distribution
environment,.

resides on the server, from which clients request
data. Consistency of data can be controlled rel-
atively easily because the 3D model is modified
centrally.

On the contrary, communication in a peer-to-
peer architecture is distributed equally between
all participants. The number of connections in-
creases in a quadratic order compared to the num-
ber of peers. When using a peer-to-peer distri-
bution model for full replication, modification of
the local model copy is managed according to the
messages received from all other participants.

Communication models in a client-server and a
peer-to-peer distribution environment are shown
in Fig. 4. For collaborative work with virtual 3D
models, the following two distribution models fit
the requirements best: First, a client-server ar-
chitecture with multi-cast communication in the
server-to-client direction and uni-cast messages in
the client-to-server direction. Second, a peer-to-
peer model using multi-cast communication be-
tween all participants. The first approach will
be more successful for distribution of centrally-
rendered viewing sequences of 3D models, while
the second approach is more suitable for full repli-
cation applications.

4 INTERACTION APPROACH USING
MPEG-4 IMAGE STREAMS

Interactive visualization of 3D models in a dis-
tributed environment can be done by distributing
3D model data (FR), or image streams of the ren-
dered model (VI). Both approaches have advan-
tages and disadvantages under certain conditions,
which are determined mainly by the network con-

o Videostream g
o[a - @ T () [

X Rende- VOP MPEG-4 MPEG-4 .
Ob]_IIT) Gen. ™ Coder @ Decoder ‘4' Display | vO_ID

Backchannel actions

Figure 5: Transmission of object informa-
tion in the VI-approach.

nectivity and the available computing power ei-
ther on the server or locally on the client’s side.
The extended VI-approach will be described in
more depth and a conceptual system for cooper-
ative visualization, which was developed by the
author, will be introduced.

4.1 Accessing 3D objects over visual ob-
ject information

Using the VI-approach, image streams of the ren-
dered 3D model are distributed to several clients.
The minimum local client configuration consists
of a decoder and an interactive display. Us-
ing an object-based video codec allows coding
of single video objects into separate bitstreams
by generating video object planes. These VOPs
are referred to the respective object identifier
(ObjID = VO_ID) of the model. Elementary bit-
streams are then multiplexed and transmitted as
one MPEG-4 stream (see Fig. 5).

After de-multiplexing and decoding, the video
objects planes are superimposed as layers by a-
blending at the receiving end. It is possible
to locate and reference single objects of the 3D
model by comparing the pixel position of the
client display with the object shapes during com-
position. The user can now define 3D actions,
which contain an identifier for the respective ob-
ject and a 3D transformation matrix. These ac-
tion messages are then send back to the server.
Messages containing object identifiers and frame
numbers allow synchronization of user actions on
the server. In a networked environment, it would
not be sufficient to send back client display po-
sitions without this additional information, be-
cause latency and network errors would prevent
synchronization.

Bounding Planes

Rendered Image

Positive Masks

>

Negative Masks

Figure 6: Segmentation of objects.

4.2 Generation of Video Object Streams
for 3D Models

Without restriction to a special illumination
model and rendering method, the VI-approach
described here requires an image generation algo-
rithm which is able to generate shape images for
single objects. While the image is rendered, view-
dependent texture, contour and bounding plane
data for all visible objects are generated. This
information can be obtained by segmentation of
a positive mask, which contains the texture, and
a negative mask, which provides the shape as an
a-plane (see Fig. 6). The masks are bounded by a
rectangle, the bounding plane, which is estimated
during rendering, together with its offset to a ref-
erence point in the image. If an object is partly
covered, the shape is deformed accordingly. The
masks are processed in a suitable format, e.g. rgb
format, and attached to the main image.

A video object is described in the MPEG-4 stan-
dard through texture, shape and motion infor-
mation. To generate video object planes of the
output of a renderer, geometric rendering data
are used, which are defined as the number of
the intersected object, the color and the z-buffer
value for every pixel [Yun97]. Using the posi-
tive mask for texture information, the negative
mask for shape information and the bounding
plane for motion information, it is a straight for-
ward task to convert between rendering output
and video coding input. The generation of video
object planes for a virtual model is carried out by
this conversion. The MPEG-4 VM demands the

YUVS format (Y = luminance, U = blue color
component-Y, V = red color component-Y, S =
a -plane) as VOP input format. Here, the color
components are down-sampled to a quarter of the
resolution of the luminance and the shape, be-
cause the human eye is more sensitive to differ-
ences in brightness than to differences in color.

4.3 Distributed Application Concept

When handling a complex model, users will in
most cases work with several objects for a given
time period, leaving the other objects unchanged.
Taking this into consideration, a useful applica-
tion concept is one where the user selects an im-
age area for work and then gets the information
needed for object-based interaction. This idea is
illustrated in Fig. 7A.

Joining a working conference, a user gets a video
stream without any additional object informa-
tion. The view point obtained results from a
standard setting belonging to the model or was
already selected by a previous user. Then an im-
age area has to be marked with a rectangle which
contains the objects the user wants to interact
with. Two vertex points of the area are sent
back to the server, where VOPs for all objects
are generated, whose bounding plane intersects
the working area. These VOPs are attached to
the main background images of the video stream
before coding and are transmitted to the clients.
Even if the model is changing dynamically or the
transmission is delayed, the user can now pick ob-
jects with an input device, since the object identi-
fiers are coded into the bitstream. After sending
back the identifier of an object together with a
3D transformation matrix, providing parameters
for translation, scaling, rotation etc., the model
on the server side will be changed accordingly
and visual feedback given back to the clients (see
Fig. 7B).

@ ‘” Image Area (x1, y1,x2, y2)
. P 4 l
"' Video Objects: VO_ID

.n m + Background

3D Action: [Object ID, A(x,y,z), o, s]
Video Stream

Figure 7: A: Indicating an image area B:
Picking and manipulating an object.

On the server side, a list of objects and working
areas of all users is generated during rendering
and maintained in the following working session.
This object list contains information about ob-
ject numbers, geometric object parameters, ob-
ject anchors, which consist of the bounding plane
plus offset, user identifiers and a status flag for
all visible objects. This information is evaluated
continuously and is used for generation of needed
VOPs and for release of objects.

5 PROTOTYPE REALIZATION

A client-server environment was created to test
this new approach. Implementation and perfor-
mance measurements are presented in this sec-
tions.

5.1 Implementation

The main parts of the environment included a
distribution server for image streams and ac-
tion messages, a rendering/coding client for im-
age generation and coding, and finally, decod-
ing/display clients, which represented the user
applications and were composed of a decoder and
an interactive display (see Fig. 8). The server
functionality of the visual interaction approach
was provided by combining a distribution server
together with a rendering/coding client. The ap-
plication was controlled via a WW W-Interface,
which was put on top of the main modules using
a WWW-Server and a HTML-embedded script-
ing language.

All these components were connected via TCP /TP
sockets and run on UNIX machines. For render-
ing either a ray-tracer (RADIANCE [Ward94]) or
a simple OpenGL implementation were used. The
object segmentation functionality was tested with

D

PHP3

WWW Interface ‘ ‘ WWW Interface
Distribution

Rendering/ Server \ Decoding/

Coding Display

Client Clients ‘
v T v \
Ren- | | MPEG MPEG | | Interact,
derer Coder Decoder Display

Figure 8: Client-Server test implementation.

a modified version of RADIANCE, since rays offer
a clear concept for mask generation with the help
of geometric rendering data. The video codec was
an implementation of the MPEG-4 Verification
Model (VM), which provides the functionality for
object-based coding. The interactive display was
implemented using OSF/Motif functionality in
the modified decoder software. This allowed the
input of display positions and simple actions dur-
ing image composition, and therefore, the identi-
fication of single objects in the 3D model. The
back-channel was also connected using TCP/IP
sockets. So-called action strings, which use a cer-
tain syntax for action types and transformation
parameters, contained the information about user
actions. The transformation of 3D objects was
done by changing the internal representation of
the scene graph of the renderer according to the
information read from the action strings. Testing
was performed on a local Ethernet and bit rates
varied from 64 kBit/s up to 2MBit/s.

5.2 Results

Tests were carried out in the previously described
prototypical environment. The concept of the
object-based VI-approach was tested successfully,
and client interaction with 3D models on a server
was demonstrated. Experimental results were
gathered by measuring the execution times of sin-
gle operations. For the tests, synthetically mod-
eled scenes were used: scene 1, which contained
only a few objects and a light source, and scene
2, which was a 3D model of a room contain-
ing around 20 objects and 4 light sources. Ad-
ditional tests using the model of a marble bust
scanned at our institute (3D-mesh: 100000 Trian-
gles, 10MB with texture) were performed, which
is part of a digital library document about com-
posers of classical music. Image resolution was ei-
ther QCIF (176x144 pixels) or CIF (352x288 pix-
els), which are common formats in video coding.
Two video objects were coded and transmitted
for each model and two clients were connected.
Table 1 shows the execution times for each of the
test scenes with a transmission bandwidth of 128
kBit/s. Because the system components were ex-
ecuted on several machines simultaneously, total
time was not the sum of all time components,
but approximately the duration of the most time-
consuming process.

The most time-consuming processes were render-
ing, coding and decoding. Frame rates of 1.3 and
0.3 frames per second were attained respectively
with QCIF and CIF resolution for scene 1. Frame
rates for scene 2 were 0.3 and 0.1 frames per

Format Rende- | VOP- Co- | Deco- | Total
ring Con- | ding | ding/ | Time
ver- Dis-
sion play
scenel:
QCIF 0.64 0.02 0.73 0.42 0.79
CIF 2.20 0.07 2.90 1.30 3.12
scene2:
QCIF 3.10 0.02 0.94 0.45 3.35
CIF 10.20 0.07 3.82 1.36 10.90
marble
bust:
QCIF 120 [0.02 | 0.81 | 0.44 [1.34]

Table 1: Time per frame [s], 128 kBit/s

second, respectively. For the sculpture model, a
frame rate of 0.75 frames/s was reached in QCIF
resolution. Most of the execution time was spent
on rendering, while coding did not last consider-
ably longer for the more complex scene. Time
needed for VOP conversion was negligible com-
pared to the duration of other operations.

The disproportionately increasing rendering time
for more complex scenes causes frame rates to
become insufficient. Coding and decoding times
depend mainly on the image resolution and the
number of coded video objects. Therefore, the
coding time does not increase proportionately to
the complexity of the 3D model.

6 CONCLUSIONS AND
WORK

FUTURE

Based on the VI-approach, a system for visual in-
teraction with 3D models in a client-server envi-
ronment was presented. Using object-based video
coding together with this approach, it was possi-
ble to interactively manipulate 3D objects using
image streams and a back-channel. The compo-
nents of such a system for collaborative work were
defined and suggestions for implementation of the
components’ functionality were made. The basic
concept was tested using a prototypical environ-
ment, which was implemented using the MPEG-4
Verification Model.

The next steps will be tests with a real-time ren-
dering engine on the server side and the use of
a hardware coder instead of a software imple-
mentation to enable interactive frame rates. The
integration of the visual interaction approach in
a digital library system will be the focus of fu-
ture work to provide a 3D visual interface for
cooperative navigation and interaction with het-
erogeneous digital documents. The extension of
this concept for use with documents which con-
tain text, video, audio and 3D models will be

implemented using the standardized features and
tools of MPEG-4 and the upcoming standard for
description of audio-visual content MPEG-7. A
combination of standards for visualization, audio-
visual coding and retrieval, and network trans-
mission will lead to a highly flexible and platform-
independent toolkit for 3D visualization of het-
erogeneous distributed documents.

REFERENCES

[Campa98] Campagna,S. et al.: Enhancing Digi-
tal Documents by Including 3D-Models, Com-
puter & Graphics, Vol.22(6): 655-666, 1998

[Carls93] Carlsson,C., Hagsand,0.: DIVE- A
Platform for Multi-User Virtual Environ-
ments, Computer & Graphics, Vol.7(6): 663-
669, 1993

[Doeng97] Doenges,P., Capin,T., Lavagetto,F.,
Ostermann,]J. et al.. MPEG-4: Audio/video
and synthetic graphics/audio for mized me-
dia, Signal Processing: Image Communica-
tion, Vol.9(4): 433-463, 1997

[Felln98] Fellner,D.W., Havemann,S., Miiller,G.:
Modelling of and Navigation in complex 3D
Documents, Computer & Graphics, Vol.22(6):
647-653, 1998

[Hauls98] Haulsen,I., Jung,T., Tuchtenhagen,D.:
Remote Control of Virtual Environments Us-
ing Image Streams, To appear in Proc. of Sec-
ond IMA Conference on Image Processing,
Leicester, United Kingdom, 1998

[LeGal92] Le Gall,D.J.: The MPEG video com-
pression algorithm, Signal Processing: Image
Communication, Vol.4(4): 129-140, 1992

[Sikor97] Sikora,T.: The MPEG-4 Video Stan-
dard Verification Model, IEEE Transactions
on circuits and systems for video technology,
Vol.7(1): 19-31, 1997

[Singh99] Singhal,S., Zyda,M.: Networked wvir-
tual environments: design and implementa-
tion, Addison-Wesley, ISBN 0-201-32557-8,
1999

[Ward94] Ward,G.J.: The RADIANCE lighting
simulation and rendering system, Computer
Graphics, SIGGRAPH‘94 Proceedings: 459-
472, 1994

[Yun97]
Yun,H.C., Guenter,B.K., Mersereau,R.M.:
Lossless Compression of Computer- Gener-
ated Animation Frames, ACM Transactions
on Graphics, Vol.16(4): 359-396, 1997

