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Abstract

The paper deals with mathematical modelling of dynamic response of the railway vehicle wheelset drives caused
by short-circuit traction motor torque. The individual wheelset drive with hollow graduated shaft is one of subsys-
tems of the two-axled vehicle bogie with two wheelset drives. The model respects the viscoelastic suspension of
the both engine stators with gear housings mounted on the bogie frame and all the other couplings among bogie
drive components. The dynamic response is investigated in dependence on longitudinal creepage and forward ve-
locity of the vehicle at the moment of the sudden short-circuit in one asynchronous traction motor. The method is
applied to bogie of the electric locomotive developed for speed about 200 km/h by the company ŠKODA TRANS-
PORTATION, s. r. o. The wheelset drive vibration is confronted with stability conditions of the whole bogie.
c© 2009 University of West Bohemia. All rights reserved.
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1. Introduction

Dynamic properties of individual wheelset drives of railway vehicles are usually investigated
using torsional models, as it was shown e.g. in [9, 11]. These models, however, do not en-
able investigation of dynamic load of wheelset drive components (Fig. 1) affected by spatial
vibrations of traction motor (TM), gear housing with gears (G), hollow shaft (H) embrasing
the wheelset axle and wheelset (W). The spatial vibrations of bogie components affect shaft
torques, forces transmitted by gearing, clutches, viscoelastic supports between traction motors
with gear housings and the bogie frame (BF) and creep forces acting at the contact patches
between rails and wheels. Hence, complex models of railway vehicles or their components,
presented e.g. in books [7, 13], in the latest works [6, 10] and there cited papers, were devel-
oped. The complex model of the railway vehicle bogie (Fig. 2) with radial, lateral, torsional and
bending elastic wheels (Fig. 3) was developed by authors [8] for the purpose of optimization of
design parameters in term of dynamic response caused by irregularities of the track geometry
and by the polygonalized running surface of the wheels. None of complex and detailed models
of the railway vehicle bogie has been used for determination of a dynamic response caused by
short-circuit moment in one traction motor.

In this paper the detailed linearized model of the two-axled bogie with two individual
wheelset drives is used for investigation of this extreme phenomenon in dependence on op-
erational conditions at the short-circuit instant in one traction motor.
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Fig. 1. Scheme of wheelset drive with a hollow shaft
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Fig. 2. Scheme of the bogie
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Fig. 3. Scheme of the elastic wheel

2. Mathematical model of the bogie

The development of the mathematical model of the bogie with rigid wheels was presented in
the paper [15] and detailed in the research report [14]. The mathematical model of the bogie
with elastic wheels was derived in configuration space [8]

q(t) = [qT
ID1(t), q

T
BFCB(t), qT

ID2(t)]
T (1)

of dimension 189, where subvectors correspond to three subsystems – two individual wheelset
drives and bogie frame linked by the secondary suspension to a half of the car body. Each indi-
vidual drive (subscripts ID1 and ID2) is composed from rigid mass components (see Fig. 2) –
rotor of traction motor, driving and driver gear, stator of traction motor with gear housing. These
components are coupled by massless viscoelastic couplings – driving shaft with torsional stiff-
ness kDS, gearing with mesh stiffness kG, disc clutch (DC) characterized by diagonal stiffness
matrix (stiffnesses with one subscript are translational and with double subscript are flexural)

KDC = diag[kx, ky, kz, kxx, kyy, kzz] ,

rubber silent blocks with centres of elasticity A1, B1, C1 (for ID1) and A2, B2, C2 (for ID2)
characterized by translation stiffnesses arranged in diagonal matrix KSB = diag[kx, ky, kz],
disc clutch (DC), claw clutch (CC) with torsional stiffnesses kDC and kCC and railway balast
(rail, railpad, sleeper and balast) reduced to a single mass-spring-damper system [5] defined by
mass, stiffness and damping parameters mR, kR, bR. The composite hollow shafts and wheelset
axes are considered to be one-dimensional continua and are discretized by FEM. Their node
displacements are expressed by the vector (see Fig. 2)

qi = [ui, vi, wi, ϕi, ϑi, ψi]
T , i = 5, . . . , 16 . (2)

The rigid discs of clutches, journals and wheels are mounted at nodes i = 5 (DC), i = 9 (CC),
i = 11, 15 (journals) and i = 12, 14 (wheels). The flexible connection between the wheel rims
and the wheel discs (Fig. 3) can be represented by massless springs and dampers [2]. Each
wheel rim may undergo lateral, vertical, longitudinal, torsional, yaw and roll motion described
by the displacement vector

qw
i = [uw

i , vw
i , ww

i , ϕw
i , ϑw

i , ψw
i ]T , i = 12, 14 (3)

for both individual drives ID1 and ID2. Individual drives are placed centrally symmetrical in
the bogie. The rigid bogie frame is linked by secondary suspension P1–P4 and dampers T1–T6

with a half of car body (Fig. 4).
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The mathematical model of the bogie has the form [8]

Mq̈(t) + Bq̇(t) + Kq = fG + fM(q̇, t) + fR,W (q, q̇, t) , (4)

where matrices have the block-diagonal structure

M = diag[MID, MBFCB, MID] ,

B = diag[BID, BBFCB, BID] + BD,BF + BW,BF , (5)
K = diag[KID, KBFCB, KID] + KD,BF + KW,BF

corresponding to subsystems. Matrices BD,BF and KD,BF describe the viscoelastic supports
of the stators with gear housings of both traction motors to the bogie frame in silent blocks.
Matrices BW,BF and KW,BF describe damping and stiffnesses of the primary suspension at
points T7 to T10 (damping) and P5, P6, P9, P10 (stiffness) and the longitudinal wheelset guide
between journal boxes and the bogie frame at points P7, P8, P11, P12 (see Fig. 2). The vector fG

expresses all gravitational forces and the vector fM(q̇, t) expresses the motor driving torques.
The vector fR,W (q, q̇, t) includes contact forces between rails and wheel rims affected by track
or wheel surface deviations Δj(t), j = 1, 2, 3, 4 (see Fig. 2 and Fig. 3).

3. Linearized mathematical model of the bogie

To analyze the dynamic response of the bogie caused by the sudden short-circuit for instance
in traction motor ID1 we neglect track and wheel irregularities Δj(t) = 0, j = 1, 2, 3, 4. The
torque characteristics of the fellow asynchronous traction motor of ID2 is linearized in the
neighbourhood of the state before short-circuit

MID2 = M(s0, v) − bMΔϕ̇
(ID2)
1 , (6)

where bM is the slope of the traction motor characteristics and Δϕ̇
(ID2)
1 is disturbance angular

velocity of the rotor with respect to rotation corresponding to vehicle forward velocity v and
longitudinal creepage s0 of all wheels. The motor torque of both electric motors in a state of
static equilibrium is

M(s0, v) = 2μ(s0, v)N0r0/p , (7)
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where μ(s0, v) is longitudinal creep coefficient [11], N0 is static vertical wheel force, r0 is wheel
radius in central position and p = ωM

ωW
is speed ratio.

Longitudinal Ti ad, lateral Ai ad creep forces and spin torque Mi ad acting at the contact
patches between rails and wheels can be expressed as

Ti ad = μ(si, v)Ni , (8)
Ai ad = b22(u̇

w
i + riψ̇

w
i ) + b23ϑ̇

w
i , (9)

Mi ad = −b23(u̇
w
i + riψ̇

w
i ) + b33ϑ̇

w
i , i = 12, 14 (10)

for ID1 and ID2. The longitudinal creep force is expressed in dependence on actual longitudinal
creep coefficient μ(si, v) and on vertical wheel force

Ni = N0 − (mRv̈w
i + bRv̇w

i + kRvw
i ) . (11)

The longitudinal creep coefficient μ(si, v) depends on longitudinal creepage defined by

si = s0 +
±ẇw

i ∓ riΔϕ̇w
i

v
, s0 =

r0ωW

v
, i = 12, 14 . (12)

whereas upper signs correspond to wheelset W1 and lower signs to wheelset W2, which rotate
with angular velocity ωW before the sudden shot-circuit. The vertical wheel forces are expressed
in dependence on vertical displacements vw

i , velocities v̇w
i and accelerations v̈w

i of wheel rim
mass centre. The whole track structure (rail, railpad, sleepe and balast) is reduced to a single
mass-spring-damper system [5] defined by mass, stiffness and damping parameters mR, bR, kR

figuring in term for Ni. The lateral creep force and the spin torque about vertical axis depend
on linearized creep coefficients bij , actual wheel radius ri and wheel rim mass centre velocities,
marked with subscript w (see Fig. 3). The creep coefficients were calculated using Kalker’s
theory [7] for static vertical wheel force N0.

To analyze the modal properties, stability conditions and vibration of the bogie, the lon-
gitudinal creep characteristics defined in [3, 12] and presented in Fig. 5 are linearized in the
neighbourhood of a state before short-circuit in the form

μ(si, v) = μ0(s0, v) +

[
∂μ

∂si

]
si=s0

(si − s0) . (13)

0 0.005 0.01 0.015 0.02 0.025
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

longitudinal creepage s

μ

40

80

120

160

200

Fig. 5. Creep characteristics
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The linearized longitudinal creep forces can be then expressed for Ni = N0 and ri = r0 as

Ti ad = μ(so, v)N0 + b11(±ẇw
i ∓ r0Δϕ̇w

i ) , i = 12, 14 , (14)

where

b11 =
N0

v

[
∂μ

∂si

]
si=s0

. (15)

If the static equilibrium is disturbed by short-circuit moment MC(t) of the traction motor in ID1,
the vector of generalized coordinates is expressed as a sum of static and dynamic displacements

q(t) = q0 + Δq(t) . (16)

After expressing of the motor torque in ID2 according (6) and the creep forces according
(8) to (15), the force vectors on right side of equation (4) can be written as

fG + fM(q̇, t) + fR,W (q, q̇, t) = f0 − [BM + Bad(s0, v)]Δq̇(t) + Δf (t) . (17)

The vector f0 = Kq0 expresses static force effects before the sudden short-circuit. The diago-
nal matrix BM has nonzero elements bM on positions corresponding to rotor and stator angular
velocities of the traction motor of ID2 in vector q(t). The block diagonal matrix of all creep
forces

Bad(s0, v) = diag[. . . , B̄ad . . . , B̄ad . . . , B̄ad . . . , B̄ad] (18)

has nonsymmetrical blocks

B̄ad =

⎡
⎢⎢⎢⎢⎢⎢⎣

b22 0 0 0 b23 r0b22

0 0 0 0 0 0
0 0 b11 −r0b11 0 0
0 0 −r0b11 r2

0b11 0 0
−b23 0 0 0 b33 −r0b23

r0b22 0 0 0 r0b23 r2
0b22

⎤
⎥⎥⎥⎥⎥⎥⎦ , (19)

which are localized on positions corresponding to wheel rim displacement vectors qw
i , (i = 12,

14 for both wheelsets) in vector of generalized coordinates q(t). The linearized mathematical
model of the bogie according (4), (16) and (17) can be written in perturbance coordinates in the
neighbourhood of the static equilibrium as

MΔq̈(t) + [B + BM + Bad(s0, v)]Δq̇(t) + KΔq(t) = Δf (t) . (20)

The excitation (perturbation) vector Δf (t) has nonzero components MC(t) on positions corre-
sponding to angular displacements of the rotor and stator of the traction motor in ID1 in vector
of generalized coordinates q(t).

4. Stability conditions of the bogie

The stability conditions of the bogie with rigid wheels were investigated in [15]. In this paper,
for the purpose of association with dynamic response caused by short-circuit traction motor,
the complex linearized autonomous mathematical model (20) can be used for stability analysis.
Eigenvalues are defined by eigenvalue problem solution

[λνN(s0, v) + P ]uν = 0 (21)
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in the state space u = [Δq̇T , ΔqT ]T , defined by matrices

N(s0, v) =

[
0 M

M B + BM + Bad(s0, v)

]
, P =

[
−M 0
0 K

]
. (22)

The eigenvalues λν depend on operational parameters s0, v, N0 and on the slope bM of torque
characteristic of the traction motor in ID2 at the instant of the short-circuit in the motor of ID1.
In the first step we perform eigenvalue problem solution for different longitudinal creepage s0 =
0.005 (stable state) and s0 = 0.014 (unstable state) corresponding to motor torque M0(s0, v) =
12 800 [Nm] for forward vehicle velocity v = 120 [km/h] and N0 = 105 [N].

Table 1. Eigenvalues of bogie

eigenvalues s0=0.005, v=120 km/h s0=0.014, v=120 km/h
sequence complex real complex real

1 −0.032 ± i1.262 −1.11 · 10−11 −0.029 ± i1.262 7.031
2 −0.041 ± i2.694 −2.73 · 10−11 −0.060 ± i2.689 0.062
3 −0.199 ± i5.425 −0.015 6 0.076 ± i5.374 −1.17 · 10−12

4 −0.056 ± i5.449 −0.027 1 −0.031 8 ± i5.443 −4.36 · 10−9

5 −1.583 ± i6.176 −0.071 7 −1.583 ± i6.174 −0.015 8
6 −0.164 ± i8.503 −1.611 −0.164 ± i8.505 −0.029 9
7 −0.289 ± i8.583 −1.790 0.416 ± i9.126 −0.071 7
8 −3.282 ± i9.183 −5.147 1.111 ± i9.535 −1.612
9 −3.958 ± i12.208 −6.221 0.911 ± i12.140 −5.438

10 −4.010 ± i12.58 −14.521 0.809 ± i12.162 −6.254

Table 2. Characteristics of the vibration mode shapes

ν Imλν[Hz] Dominant vibrations of bogie components accordant with mode shapes
1 1.262 vertical of CB in phase with BF and TMs of both IDs
2 2.694 torsion of TM rotor of ID1 with gear transmission, twisting of disc clutch
3 5.425 torsion of both gears and BF pitch, gearing deformations
4 5.449 vertical of BF with both TMs in phase
5 6.176 lateral and roll of BF with both TMs in phase
6 8.503 lateral of both TMs in opposite phase
7 8.584 combined longitudinal-pitch of W2 and combined BF roll-pitch
8 9.183 combined longitudinal-pitch of W1 and combined BF roll-pitch
9 12.208 combined longitudinal-yaw of W2

10 12.580 combined longitudinal-yaw of W1
58 298.4 torsion of ID1 pinion gear, twisting of ID1 driving shaft

BF. . . bogie frame
CB. . . car body
TM. . . traction motor
W1. . . wheelset of ID1
W2. . . wheelset of ID2

vertical

yaw

pitchroll

longitudinal

lateral

429



V. Zeman et al. / Applied and Computational Mechanics 3 (2009) 423–434

These values describe the possible operational state of the particular electric locomotive at
the instant of the sudden short-circuit [4]. The first ten pairs of complex conjugate eigenval-
ues sequenced according to magnitude of imaginary parts and ten real eigenvalues sequenced
from smallest values is presented in Table 1. Vibration mode shapes, corresponding to complex
conjugate eigenvalues for s0 = 0.005, are characterized in Table 2 in agreement with dominant
vibrations and deformations of bogie components. Aperiodic mode shapes, corresponding to
negative real eigenvalues , have no importance for dynamic load. Positive real parts of eigenval-
ues reflect system instability. This instability corresponding to positive real part of the complex
conjugate eigenvalues is flutter type (see five eigenvalues for s0 = 0.014 in Table 2) and insta-
bility of a divergence type corresponds to real eigenvalues (see the first and second real eigen-
values for s0 = 0.014). Obviously the system is stable for longitudinal creepage s0 = 0.005
and unstable for large creepage s0 = 0.014.

As an illustration, we present the dependence of real and imaginary parts of eight lowest
eigenvalues on the longitudinal creepage s0 for the vehicle velocity v = 120 km/h in Fig. 6.
The stability limit for v = 120 km/h is defined by creepage s0 = 0.008 2. We take a note that
for higher vehicle velocity the limiting creepage is smaller (for v = 200 km/h s0 = 0.006 9).
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Fig. 6. Dependence of the imaginary parts (top), real parts (mid) of complex conjugate eigenvalues and
real eigenvalues (bottom) on longitudinal creepage s0
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5. Dynamic response caused by short-circuit motor torque

The short-circuit motor torque in the air-space of the particular traction motor was calculated
in ŠKODA ELECTRIC, a. s., in dependence on time [4]. This dependence can be well approx-
imated in perturbation coordinates of the model (20) by function (Fig. 7)

MC(t) = −M(s0, v)H(t) − M0e
−Dωt sin[ω(t − Δt)] , (23)

where M(s0, v) is the traction motor torque in a state of the static equilibrium just before short-
circuit, H(t) is Heaviside function and the oscillating short-circuit torque is defined by ampli-
tude M0, frequency ω, shift phase ωΔt and short-circuit torque decay Dω. The total motor
torque after short time (here 0.2 [s]) is equal zero (in perturbation coordinates is −M(s0, v)).
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Fig. 7. Function approximating the disturbance by short-circuit moment in ID1

As an illustration the time behaviour in interval t ∈ 〈0; 2〉 [s] of the dynamic torques and
forces transmitted by chosen linkages of the wheelset drive of ID1 for operational parameters
s0 = 0.005 and v = 120 km/h at the instant of the short-circuit are presented in Fig. 8 to Fig. 10.

The frequency f = ω/2π = 90 [Hz] of the oscilating short-circuit torque and eigenfre-
quencies f2 = 2.69 [Hz] and f58 = 298.4 [Hz], corresponding to mode shapes (see Table 2)
characterized by torsion deformation of the flexible disc clutch (f2) and driving shaft (f58),
show up as dominant. The identical values of the wheelset drive of ID2 are multiple smaller.
The short-circuit motor torque causes an extreme load of the driving shaft torque MDS approx-
imately 50 % of its maximal value in time 0.18 [s] (Fig. 8). Maximal disc clutch torque Mx DC

in the same time is cca 105 [Nm] (Fig. 9) which means greater value than the maximal adhesion
wheelset moment Mad = 2N0rμmax(v) = 0.52 · 105 [Nm] for v = 120 [km/h].

Fundamentally worseness arises in the event of the short-circuit at large longitudinal creep-
age in the downward section of the creep characteristic (see Fig. 5). As an illustration the time
behaviour of the driving shaft torque MDS and of the disc clutch torque is shown in Fig. 11
for operational parameters s0 = 0.014 and v = 120 [km/h] at the moment of the short-circuit.
This model example illustrates relationship between modal properties and dynamic response of
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Fig. 9. Disc clutch moment

the unstable system and at once gives account of failure cause experimentally evidenced during
testing operation of the real railway vehicle. Such large longitudinal creepage occurs e.g. in
the case of a wet or a contaminated face of the rail. In consequence of system unstability (real
parts of five complex conjugate eigenvalues and two real values are positive – see Table 1) the
both above-mentioned torques continuously increse until the antislip protection equipment is
activated. The activation time should not be greater than cca 0.35 [s].
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Fig. 10. Components of force transmitted by disc clutch
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Fig. 11. Driving shaft torque (top) and disc clutch torque (bottom) caused by short-circuit moment in
ID1 in unstable state (s0 = 0.014; v = 120 km/h)

6. Conclusion

The paper presents the original mathematical modelling method and computer simulation of dy-
namic load of the wheelset drive caused by short-circuit motor moment. The detailed complex
model of the railway vehicle bogie with two individual wheelset drives was used for studying
of this extreme phenomenon. The model respects spatial vibrations of the traction motors, gear
housings, hollow shafts, wheelsets, bogie frame and viscoelastic coupling among bogie com-
ponents and among wheel rims and wheel discs, respectively. The mass, stiffness and damping
of the rail ballast and the longitudinal, lateral and spin linearized creep forces in wheel-rail
contacts are respected.
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The dynamic response of the wheelset drive depends strongly on longitudinal creepage of
wheels while on the forward locomotive velocity at the moment of the short-circuit has in-
significant influence. In the event of the short-circuit in one traction motor at large longitudinal
creepage the dynamic load of this wheelset drive extremely increases until activation of the
antislip protection. The dynamic load of the normally working wheelset drive is low.

The developed software in MATLAB code enables graphically record time behaviour of the
arbitrary generalized coordinates and with small software modification also the arbitrary forces
transmitted by linkages between bogie components.
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[14] Zeman, V., Hlaváč, Z., Byrtus, M., Modelling of wheelset drive vibration of locomotive 109E,
Research report n. H2,H6-06-01/2006, Research Centre of Rail Vehicles, Plzeň, 2007 (in Czech).
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