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Abstract

The familiar diffusion equation, ∂g/∂t = D∆g, is studied by using the spatially averaged quantities. A non-local

relation, so-called the self-measurability condition, fulfilled by this equation is obtained. We define a broad class

of diffusion equations defined by some “diffusion inequality”, ∂g/∂t ·∆g ≥ 0, and show that it is equivalent to the

self-measurability condition. It allows formulating the diffusion inequality in a non-local form. That represents

an essential generalization of the diffusion problem in the case when the field g(x, t) is not smooth. We derive a

general differential equation for averaged quantities coming from the self-measurability condition.
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1. Introduction

The parabolic diffusion equation,
∂g

∂t
= D∆g, (1)

is very frequently used in thermomechanics. Namely, it describes a typical dissipation process

when the time evolution of a continuum quantity g is governed by its “deviation” from a linear

distribution of this quantity. Physically, if the Laplace operator equals zero at a point, ∆g = 0,

the local production of entropy at this point is either zero (if g = const) or minimal (if g is a

nonconstant but linear function). A process governed by the diffusion equation tends into such a

state (if it is allowed by boundary conditions) because the time evolution decreases the absolute

value of the Laplace operator. The linearized heat conduction, for example, is a typical process

described by (1).

The diffusion equation, however, leads to the unacceptable result that information about

the distribution of quantity g propagates at infinite speed. Namely, it is a typical property

of parabolic differential equations. For example, if a Dirac distribution, g(x, t0) = cδ(x −
x0), describes the initial condition (the quantity g is zero everywhere except the point x0) the

function g becomes nonzero everywhere in an arbitrarily short time after t0. There is a simple

correction of the diffusion equation solving the problem. Namely, the addition of a second-

order term, τ∂2g/∂t2, makes a hyperbolic equation from the parabolic one, whatever small is

the parameter τ . This equation (proposed firstly by Cattaneo [2]),

∂g

∂t
+ τ

∂2g

∂t2
= D∆g, (2)
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guarantees that any signal cannot propagate faster than the velocity v0 =
√

D/τ (see e.g.

[5]). The question is, however, how this correction may be explained physically. Consider

the situation when the hyperbolic equation describes the heat conduction. The second-order

differential equation gives an “oscillatory behavior” that means that heat may spontaneously

flow (at least locally and for short time intervals) from colder to warmer regions. Though such

behavior is not a violation of the second law of thermodynamics (these local processes cannot

be used to make a “disallowed” effect during a thermodynamic cycle, [6]), it makes problematic

any local formulation of thermodynamics [1, 3, 6, 7].

The problem with the infinite speed of propagation indicates that the differential equation

(1) is only an approximation of a more proper equation. Nevertheless, we may imagine an

extremely broad class of various differential equations approximating (1) in a way. This class

may include linear — like the hyperbolic one with a small τ — as well as nonlinear equations.

In this contribution, we define a class of differential equations by imposing only the condition

that the time derivative, ∂g/∂t, has the same sign as the the Laplacian, ∆g (as trivially fulfilled

at (1) because D > 0). That is, the class is defined by the inequality ∂g/∂t · ∆g ≥ 0. Though

it is impossible to use effectively such an inequality, we find its equivalent formulation in a

form of integral equality. Physically, it describes some “self-measurability” of the field g(x, t).
Mathematically, it is a weak formulation of the inequality that allows formulating the problem at

non-smooth fields. Moreover, the integral formulation may be reformulated into a very general

differential equation.

The paper is organized as follows. First we define the volume and surface averages of

continuum quantities and recapitulate their important properties. Then the self-measurability of

the standard diffusion process is found out. In next sections, the diffusion inequality is defined

and it is found its equivalent integral formulation. Then the differential equation representing

the integral form of the diffusion inequality is obtained.

2. Volume and surface averages

2.1. Definition

Let us have a continuous function f defined on d-dimensional Euclidean space Ed. Denoting as

Bl(x) the d-dimensional ball with the center at the point x and radius l we define two averaged

values,

〈f〉l(x) ≡ V −1
l

∫

Bl(x)

f(x′)ddx′, (3)

where Vl = Kdl
d is the volume of the ball (K1 = 2, K2 = π, K3 = 4/3π etc.), and

〈f〉bl (x) ≡ S−1
l

∫

∂Bl(x)

f(x′)dd−1x′, (4)

where ∂Bl(x) is the border of the ball and Sl = ∂Vl/∂l = dKdl
d−1 its surface ((d − 1)-

dimensional volume). The continuity of the averaged function guarantees that liml→0〈f〉l(x) =
f(x), whereas the volume average differs from f(x) in order of lα where α ≥ 1, i.e.

〈f〉l(x) = f(x) + o(l). (5)
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2.2. Basic properties

Useful relations connecting the averages can be obtained by introducing the origin of polar

coordinate system at x and write the averages in the form

〈f〉l(x) ≡ V −1
l

∫

full sphere

ψ(Θ) dΘ

∫ l

0

drrd−1f̃(r, Θ), (6)

〈f〉bl (x) ≡ S−1
l

∫

full sphere

ψ(Θ) dΘld−1f̃(l, Θ) = d−1K−1
d

∫

full sphere

ψ(Θ) dΘf̃(l, Θ), (7)

where Θ = (Θ1, . . . , Θd−1) are angle coordinates, ψ(Θ)rd−1 dΘ dr = ddx′, i.e.

Vl = Kdl
d =

∫

full sphere

ψ(Θ) dΘ

∫ l

0

rd−1 dr = d−1ld
∫

full sphere

ψ(Θ) dΘ, (8)

and f̃(r, Θ) = f(x′). By using these formulas we see immediately that

〈f〉l = V −1
l

∫ l

0

Sr〈f〉
b
rdr = dl−d

∫ l

0

rd−1〈f〉br dr. (9)

Another important equality we obtain by using the fact that

∂

∂l

∫ l

0

drrd−1f̃(r, Θ) = ld−1f̃(l, Θ). (10)

Namely
∂〈f〉l

∂l
= −∂Vl

∂l
V −2

l Vl〈f〉l + V −1
l Sl〈f〉

b
l , and since Sl = ∂Vl/∂l we obtain the identity

〈f〉bl = 〈f〉l + d−1l
∂〈f〉l
∂l

. (11)

2.3. Slattery-Whitaker divergence theorem

There is a general relationship between gradients of volume averages (3) and volume averages

of gradients. It was found out independently by Slattery and Whitaker [8, 11]. The relationship

can be easily understood in an one-dimensional case. Namely, if d = 1 the volume average (3)

is simply defined as

〈f〉l(x) =
1

2l

∫ x+l

x−l

f(x′) dx′. (12)

Let us calculate the gradient of the average, i.e. ∇〈f〉l = ∂〈f〉l/∂x. We obtain

∂〈f〉l
∂x

=
1

2l
lim
ε→0

1

ε

(
∫ x+ε+l

x+ε−l

f(x′) dx′ −

∫ x+l

x−l

f(x′) dx′

)

=
1

2l
(f(x + l) − f(x − l)). (13)

Notice that the continuity of the function inside the averaged region is not necessary. Only the

continuity at the border — the points x ± l — has to be demanded. Therefore we will suppose

that the function f has N jump singularities at a finite set of points x(j) ∈ (x − l, x + l) and is

differentiable elsewhere. The integral of the gradient is thus given by

∫ x+l

x−l

∂f

∂x
(x′) dx′ = (f−(x(1)) − f(x − l)) + (f−(x(2)) − f+(x(1))) + . . . + f(x + l), (14)
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M. Holeček / Applied and Computational Mechanics 3 (2009) 51–62

where f−(x), f+(x) are limits of the function at x from the left and from the right respectively.

Hence we have

〈∇f〉l =
1

2l
(f(x + l) − f(x − l) −

N
∑

j=1

[f ](x(j))), (15)

where

[f ](x) ≡ f+(x) − f−(x), (16)

and using (13) we obtain the demanded relation

〈∇f〉l = ∇〈f〉l −
1

2l

N
∑

j=1

[f ](x(j)). (17)

By using the Reynolds transport theorem a generalization of this relation in d-dimensional space

can be derived,

〈∇f〉l = ∇〈f〉l − V −1
l

∑

∫

Aj∩B

([f ] · n) (x′) dd−1x′, (18)

where Aj ∩ B are surfaces at which the function has a jump discontinuity within the averaged

region B and n is the unit normal of surfaces pointing from f− to f+. It should be emphasized

that ∇f on the left hand side is defined only outside the singular surfaces.

2.4. Correlation equality

By using the Fourier analysis a very important relation coming from volume averaging over

balls have been derived recently by Voldřich [10]. The relation has an origin in the fact that

shifting of averaged regions in space has to be correlated in a way with shifting the size of

these regions. If the function F (x, l) ≡ 〈f〉l has the second derivative with respect to l, this

correlation may be written in the form of differential equality, namely

(

∂2

∂l2
+ (d + 1)l−1 ∂

∂l
− ∆

)

〈f〉l = 0, (19)

where ∆ is the Laplace operator with respect to x coordinates. This relation plays the important

role in this work. Substituting (3) into (19) we obtain another form of this equality,

(

∂2

∂l2
− (d − 1)l−1 ∂

∂l
− ∆

)
∫

Bl(x)

f(x′) ddx′ = 0. (20)

Using (7) we see immediately that

∂

∂l

∫

Bl(x)

f(x′) d =

∫

ψ(Θ) dΘld−1f̃(l, Θ) =

∫

∂Bl(x)

f(x′)dd−1x′ (21)

and, consequently,

∂2

∂l2

∫

Bl(x)

f(x′) d = (d − 1)l−1

∫

ψ(Θ) dΘld−1f̃(l, Θ) +

∫

ψ(Θ) dΘld−1∂f̃

∂l
(l, Θ). (22)

Using the fact that

∂f̃

∂l
= n · ∇f̃ , (23)
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where n is a unit normal vector of ∂Bl(x), we obtain

∂2

∂l2

∫

Bl(x)

f(x′) d = (d − 1)l−1

∫

∂Bl(x)

f(x′) dd−1x′ +

∫

∂Bl(x)

n · ∇f(x′) dd−1x′. (24)

Putting (21) and (24) into (20) we get the correlation equality in the form
∫

∂Bl(x)

n · ∇f(x′) dd−1x′ = ∆

(
∫

Bl(x)

f(x′) ddx′

)

. (25)

If the function f is smooth enough we can use the divergence theorem and the relation (25)

gains the form
∫

Bl(x)

∆f(x′) ddx′ = ∆

(
∫

Bl(x)

f(x′) ddx′

)

. (26)

Dividing the both sides by the averaging volume we obtain the useful equality,

〈∆f〉l = ∆〈f〉l. (27)

Notice that the equality (25) may be understood as a generalization of the divergence theorem

if the function f is not smooth within the region.

3. The standard diffusion equation and the self-measurability

We will study a process governed by the parabolic diffusion equation with a constant coefficient

κ, namely

κ
∂g

∂t
− ∆g = 0, (28)

where ∆ is the Laplace operator and the coefficient κ is an inverse value of the diffusion coef-

ficient D, κ ≡ D−1. The quantity g is defined on a medium in d-dimensional space and is not

specified (it may be the temperature field, the density of a material component and so on).

3.1. No time evolution

If κ = 0 the equation (28) becomes

∆g = 0 (29)

and describes the static case without a time evolution. Any solution of (29) is a harmonic

function. These functions have an important property: the value of g at any point x equals the

averaged value of g taken over the border of a ball with the center at x, i.e.

g(x) = 〈g〉bl (x). (30)

It implies that 〈g〉bl (x) = g(x) for each r and hence the equality (9) gives that

〈g〉l(x) = 〈g〉bl (x). (31)

This relation has a nice interpretation: the surface integral (4) may be understood as an averaged

value over a thin, ε-shell Σ(ε) around the ball,

〈g〉bl (x) ≈ V −1
ε

∫

Σ(ε)

g(x′) ddx′, (32)

where Vε = εdKdl
d−1 is the volume of Σ(ε). The relation (31) says that information about

the averaged value of g in the nearest surrounding of a small piece of media is given by the

averaged value of g inside the piece. This is crucial when a continuum quantity is measured —

measuring device gives a correct information about its surrounding.
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3.2. Time evolution

Though the relation (31) concerning functions fulfilling (28) is not valid, we show that a mod-

ification of (31) can be formulated for small balls. To show it let us expand g into the Taylor

series, i.e.

g(x′) = g(x) +
∑

i

yi

∂g

∂xi

+
1

2

∑

i,j

yiyj

∂2g

∂xi∂xj

+ . . . , (33)

where yi = x′
i − xi (i = 1, . . . , i). Putting this expansion into (3) we get the volume integrals

of functions such as yi, yiyj (i �= j) etc. These integrals are zero if the function is odd, e.g. yi

or yiyj if i �= j. Because Ii ≡
∫

y2
i dV = Ij ≡ I and Vl is given by (8) we have

d
∑

1

Ii = dI =

∫

ψ(Θ) dΘ

∫ l

0

rd+1 dr = (d + 2)−1ld+2

∫

ψ(Θ) dΘ = Vldl−d(d + 2)−1ld+2

(34)

and we get at the end,

〈g〉l = g + (1/2)l2(d + 2)−1∆g + o(l4). (35)

The surface average may be determined by using the identity (11). We have

〈g〉bl = g + (1/2)l2d−1∆g + o(l4). (36)

That is 〈g〉l and 〈g〉bl approximates g for small l with an error ∼ l2. The relations (35) and (36)

give

〈g〉l − 〈g〉bl = −l2d−1(d + 2)−1∆g + o(l4). (37)

By using the equation (28) we get from (37)

〈g〉l − 〈g〉bl = −D0l
2 ∂g

∂t
+ o(l4), (38)

where

D0 ≡ κd−1(d + 2)−1. (39)

The relation (5) implies that ∂〈g〉l/∂t = ∂g/∂t+o(l). Hence when replacing ∂g/∂t by ∂〈g〉l/∂t
we get

〈g〉l(x, t) − 〈g〉bl (x, t) = −D0l
2 ∂〈g〉l

∂t
+ o(l3). (40)

On the other hand, by using the Taylor expansion of 〈g〉l(x, t) in time variable, namely

〈g〉l(x, t + δt) = 〈g〉l(x, t) + δt
∂〈g〉l
∂t

+
1

2
(δt)2∂2〈g〉l

∂t2
+ . . . , (41)

we can interpret 〈g〉l(x, t) + D0l
2∂〈g〉l/∂t in (40) as 〈g〉l(x, t + δt) where

δt = D0l
2, (42)

and obtain the equation

〈g〉l(x, t + δt(l)) = 〈g〉bl (x, t) + o(l3), (43)

meaning that 〈g〉l(x, t + δt(l)) ≈ 〈g〉bl (x, t) for sufficiently small averaged regions (small l’s).
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It is a straightforward modification of (31): the averaged value of g over a spherical piece of

media copies the averaged values of g over its closest surrounding (in the sense of (32)) but with

a time delay δt. The diffusion process thus provides some self-measurability of the field g(x, t):
the volume averages 〈g〉l(x, t) give at any time instant t information about the averaged value

of the field g in their nearest surroundings (represented by 〈g〉bl ) at a previous instant t − δt.
The pieces thus work as measuring device giving continuously a correct, but slightly delayed

information about their surroundings. (Notice that the relation (43) may be read also in the way

that the situation at the ball surface at t predicts the volume average over the ball at t + δt.)

4. The diffusion inequality

The standard diffusion equation (1) is a linear equation that expresses the spontaneous process

of equilibrating the quantity g into an equilibrium state. Its validity is restricted into situations

when there are no sources of the quantity g (e.g. a local heating or supply of a mass component).

The process of equilibrating is demanded by the second law of thermodynamics. The only claim

of this law is that the diffusion coefficient D cannot be negative, i.e.

D ≥ 0. (44)

Nevertheless, the second law does not restrict a possible form of the diffusion equation. We

may formulate a broad class of possible differential equations (both linear and nonlinear) being

in agreement with this law. There is no physical argument giving reasons for preferring the

equation (1) except its extreme simplicity.

That is why we try to formulate the diffusion without using a special equation but rather as

a whole class of equations defined by a condition realizing the second law. Notice that when

working with the standard equation (1), the condition (44) may be written in the form

∂g

∂t
· ∆g ≥ 0. (45)

It expresses the essential physical content of the equation (1). Namely whenever the Laplace

operator is positive, ∆g > 0, the time evolution increases the value of g. In turn, if ∆g < 0 the

value of g is decreasing.

Namely, the sign of Laplace operator measures a local distribution of the field g in the

following sense: the formula (37) says that if ∆g > 0 then 〈g〉l < 〈g〉bl , if ∆g < 0 then

〈g〉l > 〈g〉bl . Hence the positivity of the Laplace operator indicates that the averaged value of

the field g within a sufficiently small ball around the studied point is smaller than the averaged

value of this field over its surface. The equilibration means that the field tends to equilibrate

this “unbalance” and its value should increase. Similarly, the negativity of the Laplace operator

indicates a decrease of the value of the field g. It explains the physical meaning of the relation

(45) in a fully general situation (if the distribution of the quantity g may be described by a

smooth function, of course).

Another reasoning for the relation (45) is as follows. Consider a body with an arbitrary

distribution of the quantity g within a volume V so that the boundary conditions fix its value

during time evolution, i.e.

g(x, t) |boundary = g0(x). (46)

Obviously
∫

V
(∇g)2dV ≥ 0 at any time of the equilibrating process. A condition guaranteeing

that the equilibrating process means a tendency of “smoothing the gradients away” may be
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formulated by the inequality
d

dt

∫

V

(∇g)2dV ≤ 0. (47)

Using the divergence theorem and the boundary condition (46) the condition (47) may be written

in the form

d

dt

∫

V

(∇g)2 dV = 2

∫

V

∂

∂t
(∇g)∇g dV = −2

∫

V

∂g

∂t
∆g dV ≤ 0. (48)

We see that the condition (45) guarantees the validity of (47). The question is, however, if the

validity of (47) implies the validity of (45). That is why we suppose that (47) is valid for each

volume V fulfilling (46) on its boundary and that there is a point x at a time t at which

G(x, t) ≡ ∂g/∂t · ∆g < 0.

The smoothness of the field means the continuity of partial derivatives which implies that there

is a region Ω including x so that G(x′, t) < 0 for each x′ ∈ Ω. Moreover, there exists a slightly

larger region Ω′, Ω ⊂ Ω′, so that the border of Ω has a finite distance from the border of Ω′

and
∫

Ω′
G(x′, t) dV < 0. Imagine a physical intervention into the system at time t fixing the

distribution of g at the boundary of Ω′. This intervention cannot influence the time evolution

(values of ∂g/∂t) within Ω at the same time t. Nevertheless, when fixing g on the boundary of

Ω′ the equalities in (48) remain valid for V = Ω′ and (47) cannot be fulfilled for Ω′ at time t.
As a result, the validity of (45) is a necessary condition for fulfilling the inequality (47).

In what follows the condition (45) is referred to as the diffusion inequality. It defines a

class of diffusion processes regardless if they are governed by a linear or nonlinear differential

equation. It is worth stressing that the condition (45) does not implicate that the governing

equation must have a form F (∂g/∂t, ∆g) = 0. Namely, whatever the form of differential

equation the time derivative as well as the Laplace operator may be defined at each time and

point. For example, the hyperbolic diffusion equation may or may not belong into this class. In

next section, we will find an integral (nonlocal) formulation of the condition (45) that allows

us to formulate it in cases when the field g is not smooth. Since the nonlocal formulation is

equivalent to the differential formulation when the field g is smooth, we find out, in fact, a

“weak formulation” of the condition (45).

5. Nonlocal formulation

The self-measurability condition derived for the standard diffusion equation may serve as a

motivation in searching for an integral formulation of the diffusion inequality (45). Let us

formulate this condition as follows.

Self-measurability: At each time t and spatial point x where the field g is defined, there is a

positive number l0 and a positive real function δt(l, x, t) fulfilling liml→0 δt(l, x, t) = 0, so that

for each 0 < l < l0 there holds the condition

〈g〉l(x, t + δt(l, x, t)) = 〈g〉bl (x, t). (49)

(Notice that the strict equality is demanded instead of (43) stating the equality up to terms of

order o(l3). The reason consists in the fact that the higher order terms may be “absorbed” into

the function δt (i.e. δt = D0l
2 + o(l3)).) The crucial result of our study may be formulated as

the following lemma.
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Lemma 1. Whenever the field g(x, t) is smooth in spatial and time variables the self-measurabi-

lity condition is equivalent to the diffusion inequality whenever ∂g/∂t · ∆g �= 0.

Proof. First we prove that the self-measurability implies the validity of the diffusion inequality

(45). Let us imagine that the condition (45) is not fulfilled at point x and time t, i.e. let

∂g

∂t
· ∆g(x, t) < 0. (50)

Let us suppose for instance that ∆g > 0. The equality (37) implies that for sufficiently small l’s
the inequality 〈g〉l(x, t) < 〈g〉bl (x, t) holds. On the other hand, (50) implies that ∂g/∂t < 0, i.e.

g(x, t + δt) = g(x, t) +
∂g

∂t
δt + . . . < g(x, t) (51)

for sufficiently small positive values δt. Since 〈g〉l → 〈g〉bl if l tends to zero, the condition (51)

implies that

〈g〉l(x, t + δt) < 〈g〉l(x, t) (52)

for sufficiently small balls (and sufficiently small δt). That is

〈g〉l(x, t + δt) < 〈g〉l(x, t) < 〈g〉bl (x, t) (53)

and no positive l exists so that (49) can be valid (since δt(l) > 0 for positive l). The case when

∆g < 0 can be analyzed in a complete analogical way.

Now, let us prove that the diffusion inequality (45) implies the self-measurability. Let ∆g >
0, for instance. The diffusion inequality implies that ∂g/∂t > 0 (since ∂g/∂t · ∆g �= 0) that

means that the function g(x, t′) is increasing in an interval (t, t0). The smoothness of the field

g (both in time and spatial variables) induces that there is l′ > 0 and t′ > t so that for each

0 < l < l′

〈g〉l(x, t + δt) > 〈g〉l(x, t) (54)

if t + δt < t′ (since liml→0〈g〉l(x, t) = g(x, t)). Since ∆g > 0, (37) implies that 〈g〉l(x, t) <
〈g〉bl (x, t) for sufficiently small l’s. Moreover, the function 〈g〉bl (x, t) tends to 〈g〉l(x, t) when

l → 0. It means that there is l0 ≤ l′ so that for any positive l < l0 exists a unique δt > 0 so

that the condition (49) holds. The case when ∆g < 0 can be analyzed in a complete analogical

way. �

The proven Lemma shows that the diffusion inequality may be formulated equivalently as

the self-measurability condition if the field g(x, t) is sufficiently smooth (and ∂g/∂t ·∆g �= 0).

The great advantage of this formulation is its useability in situations when the field g(x, t) is

not smooth. Namely the averaging integrals may be defined whenever the function g(x, t) is

continuous. The self-measurability is thus a rather general condition defining the diffusion

process.

6. The structure of differential equation yielded by the self-measurability

A surprising advantage of the self-measurability formulation of the diffusion inequality (45)

is the fact that it gives a possible structure of any differential equation fulfilling the diffusion

inequality. To show it we use the correlation equality (19). Our main result is formulated in the

following Lemma.

59
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Lemma 2. Let the function F (x, t, l) ≡ 〈g〉l(x, t) have the first and second spatial derivatives,

all time derivatives and the first and second derivatives with respect to the length l at a point

x ∈ Ed, time t and the averaging parameter l. Then the condition (49) implies the validity of

the relation
∞

∑

i=1

Ai

∂i〈g〉l
∂ti

= ∆〈g〉l, (55)

where Ai are functions uniquely determined by δt, i.e. Ai = Âi(δt(l, x, t)), and l < l0.

Proof. We use two mathematical equalities coming from the averaging over balls in d-dimensio-

nal space, namely (11) and (19). By using the expansion (41) and the identity (11) we obtain

the relation (49) in the form

∂〈g〉l
∂l

= β
∂〈g〉l
∂t

+ lβ2(2d)−1∂2〈g〉l
∂t2

+ . . . , (56)

where

β ≡ dl−1δt(l, x, t). (57)

Writing (56) as
∂〈g〉l
∂l

=
∑

i=1

bil
i−1βi ∂

i〈g〉l
∂ti

, (58)

where

bi =
1

i!di−1
, (59)

and using the fact that (49) holds for each l within an interval (0, l0), we may derive (58) with

respect to l, namely

∂2〈g〉l
∂l2

=
∑

i=1

bil
i−2βi−1

(

(i − 1)β + il
∂β

∂l

)

∂i〈g〉l
∂ti

+
∑

i=1

bil
i−1βi ∂i

∂ti

(

∂〈g〉l
∂l

)

. (60)

Substituting the derivative ∂〈g〉l/∂l from (58) we obtain

∂2〈g〉l
∂l2

=
∑

i=1

bil
i−2βi−1

(

(i − 1)β + il
∂β

∂l

)

∂i〈g〉l
∂ti

+
∑

i,j=1

bibjl
i+j−2βi+j ∂

i+j〈g〉l
∂ti+j

. (61)

When putting relations (58) and (61) into the equality (19) we get

∑

i=1

bil
i−2βi−1

(

(i + d)β + il
∂β

∂l

)

∂i〈g〉l
∂ti

+
∑

i,j=1

bibjl
i+j−2βi+j ∂

i+j〈g〉l
∂ti+j

= ∆〈g〉l, (62)

which is (55) where

A1 = ∂β/∂l + (d + 1)l−1β,

A2 = ld−1β∂β/∂l + β2(3d + 2)(2d)−1,

. . .

Ai = bil
i−2βi−1

(

(i + d)β + il
∂β

∂l

)

+ li−2βi
∑

m+n=i

bmbn (i > 2, m, n ≥ 1). (63)

Since β is a function of δt only, the lemma is proven. �
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The equation (55) is generally a highly nonlinear differential equation because the function

δ(l, x, t) may depend on x, t via the values of g(x, t) or its partial derivatives at x, t. Never-

theless, when neglecting this dependence we obtain a linear partial differential equation for the

averaged quantity 〈g〉l(x, t). The continuity of the field g(x, t) means that 〈g〉l(x, t) may be ap-

proximated by g(x, t) when l tends to zero. However, the limit l → 0 has to be done cautiously

because we must not forget that the coefficients Ai depend on l too.

To illustrate such a limit procedure we suppose that the function δt does not depend on x, t
and fulfills the condition

0 < lim
l→0

δt(l)

l2
< ∞, (64)

whereas the function g(x, t) defined on Ed has continuous second space derivatives and all time

derivatives exist at each (x, t). It implies that the condition

∂i〈g〉l
∂ti

=

〈

∂ig

∂ti

〉

l

(65)

is valid and (5) thus gives

∂i〈g〉l
∂ti

=
∂ig

∂ti
+ o(l). (66)

Similarly, the existence of the second space derivative at each point x implies that the first

derivative is a continuous function and there are no jumps in first derivatives. Due to the rela-

tions (27) and (5), it implies that

∆〈g〉l = 〈∆g〉l = ∆g + o(l), (67)

because ∆g is a continuous function. The equation (55) is thus equivalent to the condition

∞
∑

i=1

Ai

∂ig

∂ti
= ∆g + o(l). (68)

The condition (64) is fulfilled by choosing

δt(l) = d−1(d + 1)−1κl2 + o(l3)

that implies that β = (d + 2)−1κl + o(l2). Putting this β into the formulas (63) we get

A1 = κ + o(l), Ai = o(lp)

for i > 1, where p ≥ 1. Substituting these coefficients into (68) we get

κ
∂g

∂t
+ o(lp) = ∆g + o(l). (69)

Since (55) holds in an interval (0, l0) it has to be fulfilled in the limit l → 0, i.e. (69) gives the

parabolic diffusion equation κ∂g/∂t = ∆g.
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7. Conclusion

We study a broad class of diffusion equations defined by fulfilling the diffusion inequality (45).

This condition describes processes which permanently decrease a “sum of squares of gradi-

ents”,
∫

(∇g)2 dV. We present a new result that the diffusion inequality may be replaced by the

so-called self-measurability condition that is expressed in a form of integral equality (49). This

equality may be transformed into a form of a differential equation for averaged quantities (55).

If the relation (64) is fulfilled, a linear limit of this equation is the standard diffusion equation.

Nevertheless, other limits may be obtained when assuming another dependence of δt on l in the

self-measurability conditions. As outlined in [4], one limit leads to the hyperbolic heat conduc-

tion equation. Then, however, we get outside a scope of perfectly smooth fields because the

possible dependence δt(l) includes an artificial length parameter, a, describing a regularization

of the nonsmooth field g(x, t), namely δt(l) = A(a)l + B(a)l2. Hence the weak formulation is

crucial. The way in which the regulation parameter is removed from the resulting equation is

not trivial (a detail description appears in the work in preparation).

It is worth noting that the condition (45) cannot be generally valid. Consider for example

the case when the conductivity coefficient, λ, depends on the temperature, i.e. λ(T ). Then the

standard heat conduction equation obtains the form

∂T

∂t
= c−1 ∂λ

∂T
(∇T )2 + D∆T. (70)

We see that if the Laplace operator is very small and negative, ∆T < 0, the gradient of T
is large and the dependence of λ on T is increasing, then the time derivative ∂T/∂t may be

positive and ∆T · ∂T/∂t < 0. There is an open question how broad is the group of diffusion

phenomena fulfilling the self-measurability condition. Especially, its relation to the second law

of thermodynamics is a very interesting question.
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